dolphin/Source/Core/DiscIO/WIABlob.cpp

1359 lines
49 KiB
C++
Raw Normal View History

// Copyright 2018 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "DiscIO/WIABlob.h"
2019-01-02 14:24:18 -07:00
#include <algorithm>
2019-12-29 15:29:51 -07:00
#include <array>
2020-04-14 03:40:32 -06:00
#include <cinttypes>
2019-01-02 14:24:18 -07:00
#include <cstring>
#include <limits>
#include <map>
#include <memory>
2020-04-14 03:40:32 -06:00
#include <optional>
2019-12-29 15:29:51 -07:00
#include <utility>
#include <bzlib.h>
#include <lzma.h>
2020-01-11 16:54:00 -07:00
#include <mbedtls/sha1.h>
2019-12-27 14:26:00 -07:00
#include "Common/Align.h"
2020-04-13 14:04:16 -06:00
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/File.h"
2020-04-13 14:04:16 -06:00
#include "Common/FileUtil.h"
#include "Common/Logging/Log.h"
2020-04-13 14:04:16 -06:00
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "Common/Swap.h"
2020-04-13 14:04:16 -06:00
#include "DiscIO/Blob.h"
2020-04-14 03:40:32 -06:00
#include "DiscIO/DiscExtractor.h"
#include "DiscIO/Volume.h"
#include "DiscIO/VolumeWii.h"
#include "DiscIO/WiiEncryptionCache.h"
namespace DiscIO
{
WIAFileReader::WIAFileReader(File::IOFile file, const std::string& path)
: m_file(std::move(file)), m_encryption_cache(this)
{
m_valid = Initialize(path);
}
WIAFileReader::~WIAFileReader() = default;
bool WIAFileReader::Initialize(const std::string& path)
{
if (!m_file.Seek(0, SEEK_SET) || !m_file.ReadArray(&m_header_1, 1))
return false;
if (m_header_1.magic != WIA_MAGIC)
return false;
const u32 version = Common::swap32(m_header_1.version);
const u32 version_compatible = Common::swap32(m_header_1.version_compatible);
if (WIA_VERSION < version_compatible || WIA_VERSION_READ_COMPATIBLE > version)
{
ERROR_LOG(DISCIO, "Unsupported WIA version %s in %s", VersionToString(version).c_str(),
path.c_str());
return false;
}
2020-01-11 16:54:00 -07:00
SHA1 header_1_actual_hash;
mbedtls_sha1_ret(reinterpret_cast<const u8*>(&m_header_1), sizeof(m_header_1) - sizeof(SHA1),
header_1_actual_hash.data());
if (m_header_1.header_1_hash != header_1_actual_hash)
return false;
if (Common::swap64(m_header_1.wia_file_size) != m_file.GetSize())
{
ERROR_LOG(DISCIO, "File size is incorrect for %s", path.c_str());
return false;
}
2019-01-02 14:24:18 -07:00
const u32 header_2_size = Common::swap32(m_header_1.header_2_size);
const u32 header_2_min_size = sizeof(WIAHeader2) - sizeof(WIAHeader2::compressor_data);
if (header_2_size < header_2_min_size)
return false;
2019-01-02 14:24:18 -07:00
std::vector<u8> header_2(header_2_size);
if (!m_file.ReadBytes(header_2.data(), header_2.size()))
return false;
2020-01-11 16:54:00 -07:00
SHA1 header_2_actual_hash;
mbedtls_sha1_ret(header_2.data(), header_2.size(), header_2_actual_hash.data());
if (m_header_1.header_2_hash != header_2_actual_hash)
return false;
2019-01-02 14:24:18 -07:00
std::memcpy(&m_header_2, header_2.data(), std::min(header_2.size(), sizeof(WIAHeader2)));
if (m_header_2.compressor_data_size > sizeof(WIAHeader2::compressor_data) ||
header_2_size < header_2_min_size + m_header_2.compressor_data_size)
{
return false;
}
const u32 chunk_size = Common::swap32(m_header_2.chunk_size);
if (chunk_size % VolumeWii::GROUP_TOTAL_SIZE != 0)
return false;
2019-01-02 14:24:18 -07:00
const u32 compression_type = Common::swap32(m_header_2.compression_type);
2019-12-29 15:29:51 -07:00
m_compression_type = static_cast<CompressionType>(compression_type);
if (m_compression_type > CompressionType::LZMA2)
2019-01-02 14:24:18 -07:00
{
ERROR_LOG(DISCIO, "Unsupported WIA compression type %u in %s", compression_type, path.c_str());
return false;
}
const size_t number_of_partition_entries = Common::swap32(m_header_2.number_of_partition_entries);
const size_t partition_entry_size = Common::swap32(m_header_2.partition_entry_size);
std::vector<u8> partition_entries(partition_entry_size * number_of_partition_entries);
if (!m_file.Seek(Common::swap64(m_header_2.partition_entries_offset), SEEK_SET))
return false;
if (!m_file.ReadBytes(partition_entries.data(), partition_entries.size()))
return false;
2020-01-11 16:54:00 -07:00
SHA1 partition_entries_actual_hash;
mbedtls_sha1_ret(reinterpret_cast<const u8*>(partition_entries.data()), partition_entries.size(),
partition_entries_actual_hash.data());
if (m_header_2.partition_entries_hash != partition_entries_actual_hash)
return false;
2019-01-02 14:24:18 -07:00
const size_t copy_length = std::min(partition_entry_size, sizeof(PartitionEntry));
const size_t memset_length = sizeof(PartitionEntry) - copy_length;
u8* ptr = partition_entries.data();
m_partition_entries.resize(number_of_partition_entries);
for (size_t i = 0; i < number_of_partition_entries; ++i, ptr += partition_entry_size)
{
std::memcpy(&m_partition_entries[i], ptr, copy_length);
std::memset(reinterpret_cast<u8*>(&m_partition_entries[i]) + copy_length, 0, memset_length);
}
for (size_t i = 0; i < m_partition_entries.size(); ++i)
2019-01-02 14:24:18 -07:00
{
const std::array<PartitionDataEntry, 2>& entries = m_partition_entries[i].data_entries;
size_t non_empty_entries = 0;
for (size_t j = 0; j < entries.size(); ++j)
{
const u32 number_of_sectors = Common::swap32(entries[j].number_of_sectors);
if (number_of_sectors != 0)
{
++non_empty_entries;
const u32 last_sector = Common::swap32(entries[j].first_sector) + number_of_sectors;
m_data_entries.emplace(last_sector * VolumeWii::BLOCK_TOTAL_SIZE, DataEntry(i, j));
}
}
if (non_empty_entries > 1)
2019-01-02 14:24:18 -07:00
{
if (Common::swap32(entries[0].first_sector) > Common::swap32(entries[1].first_sector))
2019-01-02 14:24:18 -07:00
return false;
}
}
const u32 number_of_raw_data_entries = Common::swap32(m_header_2.number_of_raw_data_entries);
m_raw_data_entries.resize(number_of_raw_data_entries);
Chunk& raw_data_entries =
ReadCompressedData(Common::swap64(m_header_2.raw_data_entries_offset),
Common::swap32(m_header_2.raw_data_entries_size),
number_of_raw_data_entries * sizeof(RawDataEntry), false);
if (!raw_data_entries.ReadAll(&m_raw_data_entries))
2019-01-02 14:24:18 -07:00
return false;
for (size_t i = 0; i < m_raw_data_entries.size(); ++i)
{
const RawDataEntry& entry = m_raw_data_entries[i];
const u64 data_size = Common::swap64(entry.data_size);
if (data_size != 0)
m_data_entries.emplace(Common::swap64(entry.data_offset) + data_size, DataEntry(i));
}
2019-01-02 14:24:18 -07:00
const u32 number_of_group_entries = Common::swap32(m_header_2.number_of_group_entries);
m_group_entries.resize(number_of_group_entries);
Chunk& group_entries = ReadCompressedData(Common::swap64(m_header_2.group_entries_offset),
Common::swap32(m_header_2.group_entries_size),
number_of_group_entries * sizeof(GroupEntry), false);
if (!group_entries.ReadAll(&m_group_entries))
2019-01-02 14:24:18 -07:00
return false;
if (HasDataOverlap())
return false;
return true;
}
bool WIAFileReader::HasDataOverlap() const
{
for (size_t i = 0; i < m_partition_entries.size(); ++i)
{
const std::array<PartitionDataEntry, 2>& entries = m_partition_entries[i].data_entries;
for (size_t j = 0; j < entries.size(); ++j)
{
if (Common::swap32(entries[j].number_of_sectors) == 0)
continue;
const u64 data_offset = Common::swap32(entries[j].first_sector) * VolumeWii::BLOCK_TOTAL_SIZE;
const auto it = m_data_entries.upper_bound(data_offset);
if (it == m_data_entries.end())
return true; // Not an overlap, but an error nonetheless
if (!it->second.is_partition || it->second.index != i || it->second.partition_data_index != j)
return true; // Overlap
}
}
for (size_t i = 0; i < m_raw_data_entries.size(); ++i)
{
if (Common::swap64(m_raw_data_entries[i].data_size) == 0)
continue;
const u64 data_offset = Common::swap64(m_raw_data_entries[i].data_offset);
const auto it = m_data_entries.upper_bound(data_offset);
if (it == m_data_entries.end())
return true; // Not an overlap, but an error nonetheless
if (it->second.is_partition || it->second.index != i)
return true; // Overlap
}
return false;
}
std::unique_ptr<WIAFileReader> WIAFileReader::Create(File::IOFile file, const std::string& path)
{
std::unique_ptr<WIAFileReader> blob(new WIAFileReader(std::move(file), path));
return blob->m_valid ? std::move(blob) : nullptr;
}
bool WIAFileReader::Read(u64 offset, u64 size, u8* out_ptr)
{
2019-01-02 14:24:18 -07:00
if (offset + size > Common::swap64(m_header_1.iso_file_size))
return false;
if (offset < sizeof(WIAHeader2::disc_header))
{
const u64 bytes_to_read = std::min(sizeof(WIAHeader2::disc_header) - offset, size);
std::memcpy(out_ptr, m_header_2.disc_header.data() + offset, bytes_to_read);
offset += bytes_to_read;
size -= bytes_to_read;
out_ptr += bytes_to_read;
}
const u32 chunk_size = Common::swap32(m_header_2.chunk_size);
while (size > 0)
{
const auto it = m_data_entries.upper_bound(offset);
if (it == m_data_entries.end())
return false;
2019-01-02 14:24:18 -07:00
const DataEntry& data = it->second;
if (data.is_partition)
2019-12-27 14:26:00 -07:00
{
const PartitionEntry& partition = m_partition_entries[it->second.index];
const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector);
const u64 partition_data_offset = partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
const u32 second_number_of_sectors =
Common::swap32(partition.data_entries[1].number_of_sectors);
const u32 partition_total_sectors =
second_number_of_sectors ? Common::swap32(partition.data_entries[1].first_sector) -
partition_first_sector + second_number_of_sectors :
Common::swap32(partition.data_entries[0].number_of_sectors);
for (const PartitionDataEntry& partition_data : partition.data_entries)
{
if (size == 0)
return true;
const u32 first_sector = Common::swap32(partition_data.first_sector);
const u32 number_of_sectors = Common::swap32(partition_data.number_of_sectors);
const u64 data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 data_size = number_of_sectors * VolumeWii::BLOCK_TOTAL_SIZE;
if (data_size == 0)
continue;
if (data_offset + data_size <= offset)
continue;
if (offset < data_offset)
return false;
const u64 bytes_to_read = std::min(data_size - (offset - data_offset), size);
2020-01-27 08:12:56 -07:00
bool hash_exception_error = false;
if (!m_encryption_cache.EncryptGroups(
offset - partition_data_offset, bytes_to_read, out_ptr, partition_data_offset,
2020-01-27 08:12:56 -07:00
partition_total_sectors * VolumeWii::BLOCK_DATA_SIZE, partition.partition_key,
[this, chunk_size, first_sector, partition_first_sector, &hash_exception_error](
VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP], u64 offset) {
const u64 partition_part_offset =
(first_sector - partition_first_sector) * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 index =
(offset - partition_part_offset) % chunk_size / VolumeWii::GROUP_TOTAL_SIZE;
// EncryptGroups calls ReadWiiDecrypted, which populates m_cached_chunk
if (!m_cached_chunk.ApplyHashExceptions(hash_blocks, index))
hash_exception_error = true;
}))
{
return false;
}
2020-01-27 08:12:56 -07:00
if (hash_exception_error)
return false;
offset += bytes_to_read;
size -= bytes_to_read;
out_ptr += bytes_to_read;
}
}
else
{
const RawDataEntry& raw_data = m_raw_data_entries[data.index];
if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_TOTAL_SIZE,
Common::swap64(raw_data.data_offset), Common::swap64(raw_data.data_size),
Common::swap32(raw_data.group_index),
Common::swap32(raw_data.number_of_groups), 0))
{
return false;
}
2019-12-27 14:26:00 -07:00
}
}
2019-01-02 14:24:18 -07:00
return true;
2019-12-27 14:26:00 -07:00
}
2019-01-02 14:24:18 -07:00
2019-12-27 14:26:00 -07:00
bool WIAFileReader::SupportsReadWiiDecrypted() const
{
return !m_partition_entries.empty();
}
2019-01-02 14:24:18 -07:00
2019-12-27 14:26:00 -07:00
bool WIAFileReader::ReadWiiDecrypted(u64 offset, u64 size, u8* out_ptr, u64 partition_data_offset)
{
const u64 chunk_size = Common::swap32(m_header_2.chunk_size) * VolumeWii::BLOCK_DATA_SIZE /
VolumeWii::BLOCK_TOTAL_SIZE;
2019-01-02 14:24:18 -07:00
const auto it = m_data_entries.upper_bound(partition_data_offset);
if (it == m_data_entries.end() || !it->second.is_partition)
return false;
2019-12-27 14:26:00 -07:00
const PartitionEntry& partition = m_partition_entries[it->second.index];
const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector);
if (partition_data_offset != partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE)
return false;
2019-12-27 14:26:00 -07:00
for (const PartitionDataEntry& data : partition.data_entries)
{
if (size == 0)
return true;
const u64 data_offset =
(Common::swap32(data.first_sector) - partition_first_sector) * VolumeWii::BLOCK_DATA_SIZE;
const u64 data_size = Common::swap32(data.number_of_sectors) * VolumeWii::BLOCK_DATA_SIZE;
2019-12-27 14:26:00 -07:00
if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_DATA_SIZE,
data_offset, data_size, Common::swap32(data.group_index),
Common::swap32(data.number_of_groups),
chunk_size / VolumeWii::GROUP_DATA_SIZE))
{
return false;
}
2019-12-27 14:26:00 -07:00
}
return size == 0;
2019-12-27 14:26:00 -07:00
}
bool WIAFileReader::ReadFromGroups(u64* offset, u64* size, u8** out_ptr, u64 chunk_size,
u32 sector_size, u64 data_offset, u64 data_size, u32 group_index,
u32 number_of_groups, u32 exception_lists)
2019-12-27 14:26:00 -07:00
{
if (data_offset + data_size <= *offset)
return true;
if (*offset < data_offset)
return false;
const u64 skipped_data = data_offset % sector_size;
data_offset -= skipped_data;
data_size += skipped_data;
const u64 start_group_index = (*offset - data_offset) / chunk_size;
for (u64 i = start_group_index; i < number_of_groups && (*size) > 0; ++i)
{
const u64 total_group_index = group_index + i;
if (total_group_index >= m_group_entries.size())
return false;
const GroupEntry group = m_group_entries[total_group_index];
const u64 group_offset = data_offset + i * chunk_size;
const u64 offset_in_group = *offset - group_offset;
2019-01-02 14:24:18 -07:00
chunk_size = std::min(chunk_size, data_offset + data_size - group_offset);
2019-12-29 15:29:51 -07:00
const u64 bytes_to_read = std::min(chunk_size - offset_in_group, *size);
const u32 group_data_size = Common::swap32(group.data_size);
if (group_data_size == 0)
2019-12-29 15:29:51 -07:00
{
std::memset(*out_ptr, 0, bytes_to_read);
}
else
{
const u64 group_offset_in_file = static_cast<u64>(Common::swap32(group.data_offset)) << 2;
Chunk& chunk =
ReadCompressedData(group_offset_in_file, group_data_size, chunk_size, exception_lists);
if (!chunk.Read(offset_in_group, bytes_to_read, *out_ptr))
{
m_cached_chunk_offset = std::numeric_limits<u64>::max(); // Invalidate the cache
return false;
}
2019-12-29 15:29:51 -07:00
}
*offset += bytes_to_read;
*size -= bytes_to_read;
*out_ptr += bytes_to_read;
}
return true;
}
WIAFileReader::Chunk& WIAFileReader::ReadCompressedData(u64 offset_in_file, u64 compressed_size,
u64 decompressed_size, u32 exception_lists)
2019-12-29 15:29:51 -07:00
{
if (offset_in_file == m_cached_chunk_offset)
return m_cached_chunk;
std::unique_ptr<Decompressor> decompressor;
2019-12-29 15:29:51 -07:00
switch (m_compression_type)
{
case CompressionType::None:
decompressor = std::make_unique<NoneDecompressor>();
break;
2019-12-29 15:29:51 -07:00
case CompressionType::Purge:
decompressor = std::make_unique<PurgeDecompressor>(decompressed_size);
break;
case CompressionType::Bzip2:
decompressor = std::make_unique<Bzip2Decompressor>();
break;
case CompressionType::LZMA:
decompressor = std::make_unique<LZMADecompressor>(false, m_header_2.compressor_data,
m_header_2.compressor_data_size);
break;
case CompressionType::LZMA2:
decompressor = std::make_unique<LZMADecompressor>(true, m_header_2.compressor_data,
m_header_2.compressor_data_size);
break;
}
2019-12-29 15:29:51 -07:00
const bool compressed_exception_lists = m_compression_type > CompressionType::Purge;
2019-12-29 15:29:51 -07:00
m_cached_chunk = Chunk(&m_file, offset_in_file, compressed_size, decompressed_size,
exception_lists, compressed_exception_lists, std::move(decompressor));
m_cached_chunk_offset = offset_in_file;
return m_cached_chunk;
}
2019-12-29 15:29:51 -07:00
std::string WIAFileReader::VersionToString(u32 version)
{
const u8 a = version >> 24;
const u8 b = (version >> 16) & 0xff;
const u8 c = (version >> 8) & 0xff;
const u8 d = version & 0xff;
2019-12-29 15:29:51 -07:00
if (d == 0 || d == 0xff)
return StringFromFormat("%u.%02x.%02x", a, b, c);
else
return StringFromFormat("%u.%02x.%02x.beta%u", a, b, c, d);
}
2019-12-29 15:29:51 -07:00
WIAFileReader::Decompressor::~Decompressor() = default;
2019-12-29 15:29:51 -07:00
bool WIAFileReader::NoneDecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
const size_t length =
std::min(in.bytes_written - *in_bytes_read, out->data.size() - out->bytes_written);
2019-12-27 14:26:00 -07:00
std::memcpy(out->data.data() + out->bytes_written, in.data.data() + *in_bytes_read, length);
2019-12-29 15:29:51 -07:00
*in_bytes_read += length;
out->bytes_written += length;
2019-12-29 15:29:51 -07:00
m_done = in.data.size() == *in_bytes_read;
return true;
}
2019-12-29 15:29:51 -07:00
WIAFileReader::PurgeDecompressor::PurgeDecompressor(u64 decompressed_size)
: m_decompressed_size(decompressed_size)
{
2020-01-11 16:54:00 -07:00
mbedtls_sha1_init(&m_sha1_context);
}
bool WIAFileReader::PurgeDecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
2020-01-11 16:54:00 -07:00
if (!m_started)
{
mbedtls_sha1_starts_ret(&m_sha1_context);
// Include the exception lists in the SHA-1 calculation (but not in the compression...)
mbedtls_sha1_update_ret(&m_sha1_context, in.data.data(), *in_bytes_read);
m_started = true;
}
while (!m_done && in.bytes_written != *in_bytes_read &&
(m_segment_bytes_written < sizeof(m_segment) || out->data.size() != out->bytes_written))
{
if (m_segment_bytes_written == 0 && *in_bytes_read == in.data.size() - sizeof(SHA1))
{
const size_t zeroes_to_write = std::min<size_t>(m_decompressed_size - m_out_bytes_written,
out->data.size() - out->bytes_written);
std::memset(out->data.data() + out->bytes_written, 0, zeroes_to_write);
out->bytes_written += zeroes_to_write;
m_out_bytes_written += zeroes_to_write;
2020-01-11 16:54:00 -07:00
if (m_out_bytes_written == m_decompressed_size && in.bytes_written == in.data.size())
{
2020-01-11 16:54:00 -07:00
SHA1 actual_hash;
mbedtls_sha1_finish_ret(&m_sha1_context, actual_hash.data());
SHA1 expected_hash;
std::memcpy(expected_hash.data(), in.data.data() + *in_bytes_read, expected_hash.size());
*in_bytes_read += expected_hash.size();
m_done = true;
2020-01-11 16:54:00 -07:00
if (actual_hash != expected_hash)
return false;
}
return true;
}
if (m_segment_bytes_written < sizeof(m_segment))
{
const size_t bytes_to_copy =
std::min(in.bytes_written - *in_bytes_read, sizeof(m_segment) - m_segment_bytes_written);
std::memcpy(reinterpret_cast<u8*>(&m_segment) + m_segment_bytes_written,
in.data.data() + *in_bytes_read, bytes_to_copy);
2020-01-11 16:54:00 -07:00
mbedtls_sha1_update_ret(&m_sha1_context, in.data.data() + *in_bytes_read, bytes_to_copy);
*in_bytes_read += bytes_to_copy;
m_bytes_read += bytes_to_copy;
m_segment_bytes_written += bytes_to_copy;
}
if (m_segment_bytes_written < sizeof(m_segment))
return true;
2019-12-29 15:29:51 -07:00
const size_t offset = Common::swap32(m_segment.offset);
const size_t size = Common::swap32(m_segment.size);
2019-12-29 15:29:51 -07:00
if (m_out_bytes_written < offset)
2019-12-29 15:29:51 -07:00
{
const size_t zeroes_to_write =
std::min(offset - m_out_bytes_written, out->data.size() - out->bytes_written);
2019-12-29 15:29:51 -07:00
std::memset(out->data.data() + out->bytes_written, 0, zeroes_to_write);
2019-12-29 15:29:51 -07:00
out->bytes_written += zeroes_to_write;
m_out_bytes_written += zeroes_to_write;
2019-12-29 15:29:51 -07:00
}
if (m_out_bytes_written >= offset && m_out_bytes_written < offset + size)
{
const size_t bytes_to_copy = std::min(
std::min(offset + size - m_out_bytes_written, out->data.size() - out->bytes_written),
in.bytes_written - *in_bytes_read);
2019-12-29 15:29:51 -07:00
std::memcpy(out->data.data() + out->bytes_written, in.data.data() + *in_bytes_read,
bytes_to_copy);
2020-01-11 16:54:00 -07:00
mbedtls_sha1_update_ret(&m_sha1_context, in.data.data() + *in_bytes_read, bytes_to_copy);
2019-12-29 15:29:51 -07:00
*in_bytes_read += bytes_to_copy;
m_bytes_read += bytes_to_copy;
out->bytes_written += bytes_to_copy;
m_out_bytes_written += bytes_to_copy;
}
if (m_out_bytes_written >= offset + size)
m_segment_bytes_written = 0;
}
return true;
}
WIAFileReader::Bzip2Decompressor::~Bzip2Decompressor()
{
if (m_started)
BZ2_bzDecompressEnd(&m_stream);
}
bool WIAFileReader::Bzip2Decompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
if (!m_started)
{
if (BZ2_bzDecompressInit(&m_stream, 0, 0) != BZ_OK)
return false;
m_started = true;
}
constexpr auto clamped_cast = [](size_t x) {
return static_cast<unsigned int>(
std::min<size_t>(std::numeric_limits<unsigned int>().max(), x));
};
char* const in_ptr = reinterpret_cast<char*>(const_cast<u8*>(in.data.data() + *in_bytes_read));
m_stream.next_in = in_ptr;
m_stream.avail_in = clamped_cast(in.bytes_written - *in_bytes_read);
char* const out_ptr = reinterpret_cast<char*>(out->data.data() + out->bytes_written);
m_stream.next_out = out_ptr;
m_stream.avail_out = clamped_cast(out->data.size() - out->bytes_written);
const int result = BZ2_bzDecompress(&m_stream);
*in_bytes_read += m_stream.next_in - in_ptr;
out->bytes_written += m_stream.next_out - out_ptr;
m_done = result == BZ_STREAM_END;
return result == BZ_OK || result == BZ_STREAM_END;
}
WIAFileReader::LZMADecompressor::LZMADecompressor(bool lzma2, const u8* filter_options,
size_t filter_options_size)
{
m_options.preset_dict = nullptr;
if (!lzma2 && filter_options_size == 5)
{
// The dictionary size is stored as a 32-bit little endian unsigned integer
static_assert(sizeof(m_options.dict_size) == sizeof(u32));
std::memcpy(&m_options.dict_size, filter_options + 1, sizeof(u32));
const u8 d = filter_options[0];
if (d >= (9 * 5 * 5))
{
m_error_occurred = true;
}
else
{
m_options.lc = d % 9;
const u8 e = d / 9;
m_options.pb = e / 5;
m_options.lp = e % 5;
}
}
else if (lzma2 && filter_options_size == 1)
{
const u8 d = filter_options[0];
if (d > 40)
m_error_occurred = true;
else
m_options.dict_size = d == 40 ? 0xFFFFFFFF : (static_cast<u32>(2) | (d & 1)) << (d / 2 + 11);
}
else
{
m_error_occurred = true;
}
m_filters[0].id = lzma2 ? LZMA_FILTER_LZMA2 : LZMA_FILTER_LZMA1;
m_filters[0].options = &m_options;
m_filters[1].id = LZMA_VLI_UNKNOWN;
m_filters[1].options = nullptr;
}
WIAFileReader::LZMADecompressor::~LZMADecompressor()
{
if (m_started)
lzma_end(&m_stream);
}
bool WIAFileReader::LZMADecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
if (!m_started)
{
if (m_error_occurred || lzma_raw_decoder(&m_stream, m_filters) != LZMA_OK)
return false;
m_started = true;
}
const u8* const in_ptr = in.data.data() + *in_bytes_read;
m_stream.next_in = in_ptr;
m_stream.avail_in = in.bytes_written - *in_bytes_read;
u8* const out_ptr = out->data.data() + out->bytes_written;
m_stream.next_out = out_ptr;
m_stream.avail_out = out->data.size() - out->bytes_written;
const lzma_ret result = lzma_code(&m_stream, LZMA_RUN);
*in_bytes_read += m_stream.next_in - in_ptr;
out->bytes_written += m_stream.next_out - out_ptr;
m_done = result == LZMA_STREAM_END;
return result == LZMA_OK || result == LZMA_STREAM_END;
}
WIAFileReader::Chunk::Chunk() = default;
WIAFileReader::Chunk::Chunk(File::IOFile* file, u64 offset_in_file, u64 compressed_size,
u64 decompressed_size, u32 exception_lists,
bool compressed_exception_lists,
std::unique_ptr<Decompressor> decompressor)
: m_file(file), m_offset_in_file(offset_in_file), m_exception_lists(exception_lists),
m_compressed_exception_lists(compressed_exception_lists),
m_decompressor(std::move(decompressor))
{
constexpr size_t MAX_SIZE_PER_EXCEPTION_LIST =
Common::AlignUp(VolumeWii::BLOCK_HEADER_SIZE, sizeof(SHA1)) / sizeof(SHA1) *
VolumeWii::BLOCKS_PER_GROUP * sizeof(HashExceptionEntry) +
sizeof(u16);
m_out_bytes_allocated_for_exceptions =
m_compressed_exception_lists ? MAX_SIZE_PER_EXCEPTION_LIST * m_exception_lists : 0;
m_in.data.resize(compressed_size);
m_out.data.resize(decompressed_size + m_out_bytes_allocated_for_exceptions);
}
bool WIAFileReader::Chunk::Read(u64 offset, u64 size, u8* out_ptr)
{
if (!m_decompressor || !m_file ||
offset + size > m_out.data.size() - m_out_bytes_allocated_for_exceptions)
{
return false;
}
while (offset + size > m_out.bytes_written - m_out_bytes_used_for_exceptions)
{
u64 bytes_to_read;
if (offset + size == m_out.data.size())
{
// Read all the remaining data.
bytes_to_read = m_in.data.size() - m_in.bytes_written;
}
else
{
// Pick a suitable amount of compressed data to read. The std::min line has to
// be as it is, but the rest is a bit arbitrary and can be changed if desired.
// The compressed data is probably not much bigger than the decompressed data.
// Add a few bytes for possible compression overhead and for any hash exceptions.
bytes_to_read =
offset + size - (m_out.bytes_written - m_out_bytes_used_for_exceptions) + 0x100;
// Align the access in an attempt to gain speed. But we don't actually know the
// block size of the underlying storage device, so we just use the Wii block size.
bytes_to_read =
Common::AlignUp(bytes_to_read + m_offset_in_file, VolumeWii::BLOCK_TOTAL_SIZE) -
m_offset_in_file;
// Ensure we don't read too much.
bytes_to_read = std::min<u64>(m_in.data.size() - m_in.bytes_written, bytes_to_read);
}
if (bytes_to_read == 0)
{
// Compressed size is larger than expected or decompressed size is smaller than expected
return false;
}
if (!m_file->Seek(m_offset_in_file, SEEK_SET))
return false;
if (!m_file->ReadBytes(m_in.data.data() + m_in.bytes_written, bytes_to_read))
return false;
m_offset_in_file += bytes_to_read;
m_in.bytes_written += bytes_to_read;
if (m_exception_lists > 0 && !m_compressed_exception_lists)
{
if (!HandleExceptions(m_in.data.data(), m_in.data.size(), m_in.bytes_written,
&m_in_bytes_used_for_exceptions, true))
{
return false;
}
m_in_bytes_read = m_in_bytes_used_for_exceptions;
}
if (m_exception_lists == 0 || m_compressed_exception_lists)
{
if (!m_decompressor->Decompress(m_in, &m_out, &m_in_bytes_read))
return false;
}
if (m_exception_lists > 0 && m_compressed_exception_lists)
{
if (!HandleExceptions(m_out.data.data(), m_out_bytes_allocated_for_exceptions,
m_out.bytes_written, &m_out_bytes_used_for_exceptions, false))
{
return false;
}
}
if (m_exception_lists == 0)
{
const size_t expected_out_bytes = m_out.data.size() - m_out_bytes_allocated_for_exceptions +
m_out_bytes_used_for_exceptions;
if (m_out.bytes_written > expected_out_bytes)
return false; // Decompressed size is larger than expected
if (m_out.bytes_written == expected_out_bytes && !m_decompressor->Done())
return false; // Decompressed size is larger than expected
if (m_decompressor->Done() && m_in_bytes_read != m_in.data.size())
return false; // Compressed size is smaller than expected
}
}
std::memcpy(out_ptr, m_out.data.data() + offset + m_out_bytes_used_for_exceptions, size);
return true;
}
bool WIAFileReader::Chunk::HandleExceptions(const u8* data, size_t bytes_allocated,
size_t bytes_written, size_t* bytes_used, bool align)
{
while (m_exception_lists > 0)
{
if (sizeof(u16) + *bytes_used > bytes_allocated)
{
ERROR_LOG(DISCIO, "More hash exceptions than expected");
return false;
}
if (sizeof(u16) + *bytes_used > bytes_written)
return true;
const u16 exceptions = Common::swap16(data + *bytes_used);
size_t exception_list_size = exceptions * sizeof(HashExceptionEntry) + sizeof(u16);
if (align && m_exception_lists == 1)
exception_list_size = Common::AlignUp(*bytes_used + exception_list_size, 4) - *bytes_used;
if (exception_list_size + *bytes_used > bytes_allocated)
{
ERROR_LOG(DISCIO, "More hash exceptions than expected");
return false;
}
if (exception_list_size + *bytes_used > bytes_written)
return true;
*bytes_used += exception_list_size;
--m_exception_lists;
}
return true;
}
2020-01-27 08:12:56 -07:00
bool WIAFileReader::Chunk::ApplyHashExceptions(
VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP], u64 exception_list_index) const
{
if (m_exception_lists > 0)
return false; // We still have exception lists left to read
const u8* data = m_compressed_exception_lists ? m_out.data.data() : m_in.data.data();
for (u64 i = exception_list_index; i > 0; --i)
data += Common::swap16(data) * sizeof(HashExceptionEntry) + sizeof(u16);
const u16 exceptions = Common::swap16(data);
data += sizeof(u16);
for (size_t i = 0; i < exceptions; ++i)
{
HashExceptionEntry exception;
std::memcpy(&exception, data, sizeof(HashExceptionEntry));
data += sizeof(HashExceptionEntry);
const u16 offset = Common::swap16(exception.offset);
const size_t block_index = offset / VolumeWii::BLOCK_HEADER_SIZE;
if (block_index > VolumeWii::BLOCKS_PER_GROUP)
return false;
const size_t offset_in_block = offset % VolumeWii::BLOCK_HEADER_SIZE;
if (offset_in_block + sizeof(SHA1) > VolumeWii::BLOCK_HEADER_SIZE)
return false;
std::memcpy(reinterpret_cast<u8*>(&hash_blocks[block_index]) + offset_in_block, &exception.hash,
sizeof(SHA1));
}
return true;
}
2020-04-13 14:04:16 -06:00
bool WIAFileReader::PadTo4(File::IOFile* file, u64* bytes_written)
{
constexpr u32 ZEROES = 0;
const u64 bytes_to_write = Common::AlignUp(*bytes_written, 4) - *bytes_written;
if (bytes_to_write == 0)
return true;
*bytes_written += bytes_to_write;
return file->WriteBytes(&ZEROES, bytes_to_write);
}
2020-04-14 03:40:32 -06:00
void WIAFileReader::AddRawDataEntry(u64 offset, u64 size, int chunk_size, u32* total_groups,
std::vector<RawDataEntry>* raw_data_entries,
std::vector<DataEntry>* data_entries)
{
constexpr size_t SKIP_SIZE = sizeof(WIAHeader2::disc_header);
const u64 skip = offset < SKIP_SIZE ? std::min(SKIP_SIZE - offset, size) : 0;
offset += skip;
size -= skip;
if (size == 0)
return;
const u32 group_index = *total_groups;
const u32 groups = static_cast<u32>(Common::AlignUp(size, chunk_size) / chunk_size);
*total_groups += groups;
data_entries->emplace_back(raw_data_entries->size());
raw_data_entries->emplace_back(RawDataEntry{Common::swap64(offset), Common::swap64(size),
Common::swap32(group_index), Common::swap32(groups)});
}
WIAFileReader::PartitionDataEntry WIAFileReader::CreatePartitionDataEntry(
u64 offset, u64 size, u32 index, int chunk_size, u32* total_groups,
const std::vector<PartitionEntry>& partition_entries, std::vector<DataEntry>* data_entries)
{
const u32 group_index = *total_groups;
const u64 rounded_size = Common::AlignDown(size, VolumeWii::BLOCK_TOTAL_SIZE);
const u32 groups = static_cast<u32>(Common::AlignUp(rounded_size, chunk_size) / chunk_size);
*total_groups += groups;
data_entries->emplace_back(partition_entries.size(), index);
return PartitionDataEntry{Common::swap32(offset / VolumeWii::BLOCK_TOTAL_SIZE),
Common::swap32(size / VolumeWii::BLOCK_TOTAL_SIZE),
Common::swap32(group_index), Common::swap32(groups)};
}
WIAFileReader::ConversionResult WIAFileReader::SetUpDataEntriesForWriting(
const VolumeDisc* volume, int chunk_size, u64 iso_size, u32* total_groups,
std::vector<PartitionEntry>* partition_entries, std::vector<RawDataEntry>* raw_data_entries,
std::vector<DataEntry>* data_entries)
{
std::vector<Partition> partitions;
if (volume && volume->IsEncryptedAndHashed())
partitions = volume->GetPartitions();
std::sort(partitions.begin(), partitions.end(),
[](const Partition& a, const Partition& b) { return a.offset < b.offset; });
*total_groups = 0;
u64 last_partition_end_offset = 0;
const auto add_raw_data_entry = [&](u64 offset, u64 size) {
return AddRawDataEntry(offset, size, chunk_size, total_groups, raw_data_entries, data_entries);
};
const auto create_partition_data_entry = [&](u64 offset, u64 size, u32 index) {
return CreatePartitionDataEntry(offset, size, index, chunk_size, total_groups,
*partition_entries, data_entries);
};
for (const Partition& partition : partitions)
{
// If a partition is odd in some way that prevents us from encoding it as a partition,
// we encode it as raw data instead by skipping the current loop iteration.
// Partitions can always be encoded as raw data, but it is less space efficient.
if (partition.offset < last_partition_end_offset)
{
WARN_LOG(DISCIO, "Overlapping partitions at %" PRIx64, partition.offset);
continue;
}
if (volume->ReadSwapped<u32>(partition.offset, PARTITION_NONE) != u32(0x10001))
{
// This looks more like garbage data than an actual partition.
// The values of data_offset and data_size will very likely also be garbage.
// Some WBFS writing programs scrub the SSBB Masterpiece partitions without
// removing them from the partition table, causing this problem.
WARN_LOG(DISCIO, "Invalid partition at %" PRIx64, partition.offset);
continue;
}
std::optional<u64> data_offset =
volume->ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE);
std::optional<u64> data_size =
volume->ReadSwappedAndShifted(partition.offset + 0x2bc, PARTITION_NONE);
if (!data_offset || !data_size)
return ConversionResult::ReadFailed;
const u64 data_start = partition.offset + *data_offset;
const u64 data_end = data_start + *data_size;
if (data_start % VolumeWii::BLOCK_TOTAL_SIZE != 0)
{
WARN_LOG(DISCIO, "Misaligned partition at %" PRIx64, partition.offset);
continue;
}
if (*data_size < VolumeWii::BLOCK_TOTAL_SIZE)
{
WARN_LOG(DISCIO, "Very small partition at %" PRIx64, partition.offset);
continue;
}
if (data_end > iso_size)
{
WARN_LOG(DISCIO, "Too large partition at %" PRIx64, partition.offset);
*data_size = iso_size - *data_offset - partition.offset;
}
const std::optional<u64> fst_offset = GetFSTOffset(*volume, partition);
const std::optional<u64> fst_size = GetFSTSize(*volume, partition);
if (!fst_offset || !fst_size)
return ConversionResult::ReadFailed;
const IOS::ES::TicketReader& ticket = volume->GetTicket(partition);
if (!ticket.IsValid())
return ConversionResult::ReadFailed;
add_raw_data_entry(last_partition_end_offset, partition.offset - last_partition_end_offset);
add_raw_data_entry(partition.offset, *data_offset);
const u64 fst_end = volume->PartitionOffsetToRawOffset(*fst_offset + *fst_size, partition);
const u64 split_point = std::min(
data_end, Common::AlignUp(fst_end - data_start, VolumeWii::GROUP_TOTAL_SIZE) + data_start);
PartitionEntry partition_entry;
partition_entry.partition_key = ticket.GetTitleKey();
partition_entry.data_entries[0] =
create_partition_data_entry(data_start, split_point - data_start, 0);
partition_entry.data_entries[1] =
create_partition_data_entry(split_point, data_end - split_point, 1);
// Note: We can't simply set last_partition_end_offset to data_end,
// because construct_partition_data_entry may have rounded it
last_partition_end_offset =
(Common::swap32(partition_entry.data_entries[1].first_sector) +
Common::swap32(partition_entry.data_entries[1].number_of_sectors)) *
VolumeWii::BLOCK_TOTAL_SIZE;
partition_entries->emplace_back(std::move(partition_entry));
}
add_raw_data_entry(last_partition_end_offset, iso_size - last_partition_end_offset);
return ConversionResult::Success;
}
2020-04-13 14:04:16 -06:00
WIAFileReader::ConversionResult WIAFileReader::ConvertToWIA(BlobReader* infile,
2020-04-14 03:40:32 -06:00
const VolumeDisc* infile_volume,
2020-04-13 14:04:16 -06:00
File::IOFile* outfile, int chunk_size,
CompressCB callback, void* arg)
{
ASSERT(infile->IsDataSizeAccurate());
ASSERT(chunk_size > 0);
const u64 iso_size = infile->GetDataSize();
u64 bytes_read = 0;
u64 bytes_written = 0;
2020-04-14 03:40:32 -06:00
size_t groups_written = 0;
2020-04-13 14:04:16 -06:00
// These two headers will be filled in with proper values at the very end
WIAHeader1 header_1;
WIAHeader2 header_2;
if (!outfile->WriteArray(&header_1, 1) || !outfile->WriteArray(&header_2, 1))
return ConversionResult::WriteFailed;
bytes_written += sizeof(WIAHeader1) + sizeof(WIAHeader2);
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
std::vector<PartitionEntry> partition_entries;
2020-04-14 03:40:32 -06:00
std::vector<RawDataEntry> raw_data_entries;
std::vector<GroupEntry> group_entries;
2020-04-13 14:04:16 -06:00
2020-04-14 03:40:32 -06:00
const auto run_callback = [&] {
2020-04-13 14:04:16 -06:00
int ratio = 0;
if (bytes_read != 0)
ratio = static_cast<int>(100 * bytes_written / bytes_read);
const std::string temp =
StringFromFormat(Common::GetStringT("%i of %i blocks. Compression ratio %i%%").c_str(),
groups_written, group_entries.size(), ratio);
2020-04-14 03:40:32 -06:00
float completion = 0.0f;
if (group_entries.size() != 0)
completion = static_cast<float>(groups_written) / group_entries.size();
return callback(temp, completion, arg);
2020-04-13 14:04:16 -06:00
};
2020-04-14 03:40:32 -06:00
if (!run_callback())
return ConversionResult::Canceled;
u32 total_groups;
std::vector<DataEntry> data_entries;
const ConversionResult set_up_data_entries_result =
SetUpDataEntriesForWriting(infile_volume, chunk_size, iso_size, &total_groups,
&partition_entries, &raw_data_entries, &data_entries);
if (set_up_data_entries_result != ConversionResult::Success)
return set_up_data_entries_result;
group_entries.resize(total_groups);
2020-04-13 14:04:16 -06:00
if (!infile->Read(0, header_2.disc_header.size(), header_2.disc_header.data()))
return ConversionResult::ReadFailed;
// We intentially do not increment bytes_read here, since these bytes will be read again
std::vector<u8> buffer(chunk_size);
2020-04-14 03:40:32 -06:00
std::vector<u8> decryption_buffer(VolumeWii::BLOCK_DATA_SIZE);
for (const DataEntry& data_entry : data_entries)
2020-04-13 14:04:16 -06:00
{
2020-04-14 03:40:32 -06:00
if (data_entry.is_partition)
{
const PartitionEntry& partition_entry = partition_entries[data_entry.index];
const PartitionDataEntry& partition_data_entry =
partition_entry.data_entries[data_entry.partition_data_index];
2020-04-13 14:04:16 -06:00
2020-04-14 03:40:32 -06:00
const u32 first_group = Common::swap32(partition_data_entry.group_index);
const u32 last_group = first_group + Common::swap32(partition_data_entry.number_of_groups);
2020-04-13 14:04:16 -06:00
2020-04-14 03:40:32 -06:00
const u64 data_offset =
Common::swap32(partition_data_entry.first_sector) * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 data_size =
Common::swap32(partition_data_entry.number_of_sectors) * VolumeWii::BLOCK_TOTAL_SIZE;
2020-04-13 14:04:16 -06:00
2020-04-14 03:40:32 -06:00
ASSERT(groups_written == first_group);
ASSERT(bytes_read == data_offset);
mbedtls_aes_context aes_context;
mbedtls_aes_setkey_dec(&aes_context, partition_entry.partition_key.data(), 128);
for (u32 i = first_group; i < last_group; ++i)
{
const u64 bytes_to_read = std::min<u64>(chunk_size, data_offset + data_size - bytes_read);
ASSERT(bytes_to_read % VolumeWii::BLOCK_TOTAL_SIZE == 0);
const u64 bytes_to_write =
bytes_to_read / VolumeWii::BLOCK_TOTAL_SIZE * VolumeWii::BLOCK_DATA_SIZE;
if (!infile->Read(bytes_read, bytes_to_read, buffer.data()))
return ConversionResult::ReadFailed;
const u64 exception_lists = Common::AlignUp(bytes_to_read, VolumeWii::GROUP_TOTAL_SIZE) /
VolumeWii::GROUP_TOTAL_SIZE;
const u64 exceptions_size = Common::AlignUp(exception_lists * sizeof(u16), 4);
const u64 total_size = exceptions_size + bytes_to_write;
ASSERT((bytes_written & 3) == 0);
group_entries[i].data_offset = Common::swap32(static_cast<u32>(bytes_written >> 2));
group_entries[i].data_size = Common::swap32(static_cast<u32>(total_size));
for (u64 j = 0; j < exception_lists; ++j)
{
const u16 exceptions = 0;
if (!outfile->WriteArray(&exceptions, 1))
return ConversionResult::WriteFailed;
bytes_written += sizeof(u16);
}
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
for (u64 j = 0; j < bytes_to_read; j += VolumeWii::BLOCK_TOTAL_SIZE)
{
VolumeWii::DecryptBlockData(buffer.data() + j, decryption_buffer.data(), &aes_context);
if (!outfile->WriteArray(decryption_buffer.data(), VolumeWii::BLOCK_DATA_SIZE))
return ConversionResult::WriteFailed;
}
bytes_read += bytes_to_read;
bytes_written += bytes_to_write;
++groups_written;
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
if (!run_callback())
return ConversionResult::Canceled;
}
}
else
{
const RawDataEntry& raw_data_entry = raw_data_entries[data_entry.index];
const u32 first_group = Common::swap32(raw_data_entry.group_index);
const u32 last_group = first_group + Common::swap32(raw_data_entry.number_of_groups);
u64 data_offset = Common::swap64(raw_data_entry.data_offset);
u64 data_size = Common::swap64(raw_data_entry.data_size);
2020-04-13 14:04:16 -06:00
2020-04-14 03:40:32 -06:00
const u64 skipped_data = data_offset % VolumeWii::BLOCK_TOTAL_SIZE;
data_offset -= skipped_data;
data_size += skipped_data;
2020-04-13 14:04:16 -06:00
2020-04-14 03:40:32 -06:00
ASSERT(groups_written == first_group);
ASSERT(bytes_read == data_offset);
for (u32 i = first_group; i < last_group; ++i)
{
const u64 bytes_to_read = std::min<u64>(chunk_size, data_offset + data_size - bytes_read);
if (bytes_written >> 2 > std::numeric_limits<u32>::max())
return ConversionResult::InternalError;
ASSERT((bytes_written & 3) == 0);
group_entries[i].data_offset = Common::swap32(static_cast<u32>(bytes_written >> 2));
group_entries[i].data_size = Common::swap32(static_cast<u32>(bytes_to_read));
if (!infile->Read(bytes_read, bytes_to_read, buffer.data()))
return ConversionResult::ReadFailed;
if (!outfile->WriteArray(buffer.data(), bytes_to_read))
return ConversionResult::WriteFailed;
bytes_read += bytes_to_read;
bytes_written += bytes_to_read;
++groups_written;
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
if (!run_callback())
return ConversionResult::Canceled;
}
}
2020-04-13 14:04:16 -06:00
}
2020-04-14 03:40:32 -06:00
ASSERT(groups_written == total_groups);
ASSERT(bytes_read == iso_size);
2020-04-13 14:04:16 -06:00
const u64 partition_entries_offset = bytes_written;
const u64 partition_entries_size = partition_entries.size() * sizeof(PartitionEntry);
if (!outfile->WriteArray(partition_entries.data(), partition_entries.size()))
return ConversionResult::WriteFailed;
bytes_written += partition_entries_size;
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
const u64 raw_data_entries_offset = bytes_written;
const u64 raw_data_entries_size = raw_data_entries.size() * sizeof(RawDataEntry);
if (!outfile->WriteArray(raw_data_entries.data(), raw_data_entries.size()))
return ConversionResult::WriteFailed;
bytes_written += raw_data_entries_size;
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
const u64 group_entries_offset = bytes_written;
const u64 group_entries_size = group_entries.size() * sizeof(GroupEntry);
if (!outfile->WriteArray(group_entries.data(), group_entries.size()))
return ConversionResult::WriteFailed;
bytes_written += group_entries_size;
if (!PadTo4(outfile, &bytes_written))
return ConversionResult::WriteFailed;
2020-04-14 03:40:32 -06:00
u32 disc_type = 0;
if (infile_volume)
{
if (infile_volume->GetVolumeType() == Platform::GameCubeDisc)
disc_type = 1;
else if (infile_volume->GetVolumeType() == Platform::WiiDisc)
disc_type = 2;
}
header_2.disc_type = Common::swap32(disc_type);
2020-04-13 14:04:16 -06:00
header_2.compression_type = Common::swap32(static_cast<u32>(CompressionType::None));
header_2.compression_level = 0;
header_2.chunk_size = Common::swap32(static_cast<u32>(chunk_size));
header_2.number_of_partition_entries = Common::swap32(static_cast<u32>(partition_entries.size()));
header_2.partition_entry_size = Common::swap32(sizeof(PartitionEntry));
header_2.partition_entries_offset = Common::swap64(partition_entries_offset);
if (partition_entries.data() == nullptr)
partition_entries.reserve(1); // Avoid a crash in mbedtls_sha1_ret
mbedtls_sha1_ret(reinterpret_cast<const u8*>(partition_entries.data()), partition_entries_size,
header_2.partition_entries_hash.data());
header_2.number_of_raw_data_entries = Common::swap32(static_cast<u32>(raw_data_entries.size()));
header_2.raw_data_entries_offset = Common::swap64(raw_data_entries_offset);
header_2.raw_data_entries_size = Common::swap32(static_cast<u32>(raw_data_entries_size));
header_2.number_of_group_entries = Common::swap32(static_cast<u32>(group_entries.size()));
header_2.group_entries_offset = Common::swap64(group_entries_offset);
header_2.group_entries_size = Common::swap32(static_cast<u32>(group_entries_size));
header_2.compressor_data_size = 0;
std::fill(std::begin(header_2.compressor_data), std::end(header_2.compressor_data), 0);
header_1.magic = WIA_MAGIC;
header_1.version = Common::swap32(WIA_VERSION);
header_1.version_compatible = Common::swap32(WIA_VERSION_WRITE_COMPATIBLE);
header_1.header_2_size = Common::swap32(sizeof(WIAHeader2));
mbedtls_sha1_ret(reinterpret_cast<const u8*>(&header_2), sizeof(header_2),
header_1.header_2_hash.data());
header_1.iso_file_size = Common::swap64(infile->GetDataSize());
header_1.wia_file_size = Common::swap64(bytes_written);
mbedtls_sha1_ret(reinterpret_cast<const u8*>(&header_1), offsetof(WIAHeader1, header_1_hash),
header_1.header_1_hash.data());
if (!outfile->Seek(0, SEEK_SET))
return ConversionResult::WriteFailed;
if (!outfile->WriteArray(&header_1, 1) || !outfile->WriteArray(&header_2, 1))
return ConversionResult::WriteFailed;
return ConversionResult::Success;
}
bool ConvertToWIA(BlobReader* infile, const std::string& infile_path,
const std::string& outfile_path, int chunk_size, CompressCB callback, void* arg)
{
File::IOFile outfile(outfile_path, "wb");
if (!outfile)
{
PanicAlertT("Failed to open the output file \"%s\".\n"
"Check that you have permissions to write the target folder and that the media can "
"be written.",
outfile_path.c_str());
return false;
}
2020-04-14 03:40:32 -06:00
std::unique_ptr<VolumeDisc> infile_volume = CreateDisc(infile_path);
2020-04-13 14:04:16 -06:00
WIAFileReader::ConversionResult result =
2020-04-14 03:40:32 -06:00
WIAFileReader::ConvertToWIA(infile, infile_volume.get(), &outfile, chunk_size, callback, arg);
2020-04-13 14:04:16 -06:00
if (result == WIAFileReader::ConversionResult::ReadFailed)
PanicAlertT("Failed to read from the input file \"%s\".", infile_path.c_str());
if (result == WIAFileReader::ConversionResult::WriteFailed)
{
PanicAlertT("Failed to write the output file \"%s\".\n"
"Check that you have enough space available on the target drive.",
outfile_path.c_str());
}
if (result != WIAFileReader::ConversionResult::Success)
{
// Remove the incomplete output file
outfile.Close();
File::Delete(outfile_path);
}
return result == WIAFileReader::ConversionResult::Success;
}
} // namespace DiscIO