dolphin/Source/Core/VideoBackends/D3D12/DescriptorHeapManager.cpp

189 lines
5.9 KiB
C++
Raw Normal View History

2019-03-28 04:35:46 -06:00
// Copyright 2019 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/D3D12/DescriptorHeapManager.h"
#include "Common/Assert.h"
#include "VideoBackends/D3D12/DXContext.h"
#include "VideoCommon/VideoConfig.h"
namespace DX12
{
DescriptorHeapManager::DescriptorHeapManager() = default;
DescriptorHeapManager::~DescriptorHeapManager() = default;
bool DescriptorHeapManager::Create(ID3D12Device* device, D3D12_DESCRIPTOR_HEAP_TYPE type,
u32 num_descriptors)
{
D3D12_DESCRIPTOR_HEAP_DESC desc = {type, static_cast<UINT>(num_descriptors),
D3D12_DESCRIPTOR_HEAP_FLAG_NONE};
HRESULT hr = device->CreateDescriptorHeap(&desc, IID_PPV_ARGS(&m_descriptor_heap));
CHECK(SUCCEEDED(hr), "Create descriptor heap");
if (FAILED(hr))
return false;
m_heap_base_cpu = m_descriptor_heap->GetCPUDescriptorHandleForHeapStart();
m_heap_base_gpu = m_descriptor_heap->GetGPUDescriptorHandleForHeapStart();
m_num_descriptors = num_descriptors;
m_descriptor_increment_size = device->GetDescriptorHandleIncrementSize(type);
// Set all slots to unallocated (1)
const u32 bitset_count =
num_descriptors / BITSET_SIZE + (((num_descriptors % BITSET_SIZE) != 0) ? 1 : 0);
m_free_slots.resize(bitset_count);
for (BitSetType& bs : m_free_slots)
bs.flip();
return true;
}
bool DescriptorHeapManager::Allocate(DescriptorHandle* handle)
{
// Start past the temporary slots, no point in searching those.
for (u32 group = 0; group < m_free_slots.size(); group++)
{
BitSetType& bs = m_free_slots[group];
if (bs.none())
continue;
u32 bit = 0;
for (; bit < BITSET_SIZE; bit++)
{
if (bs[bit])
break;
}
u32 index = group * BITSET_SIZE + bit;
bs[bit] = false;
handle->index = index;
handle->cpu_handle.ptr = m_heap_base_cpu.ptr + index * m_descriptor_increment_size;
handle->gpu_handle.ptr = m_heap_base_gpu.ptr + index * m_descriptor_increment_size;
return true;
}
PanicAlert("Out of fixed descriptors");
return false;
}
void DescriptorHeapManager::Free(u32 index)
{
ASSERT(index < m_num_descriptors);
u32 group = index / BITSET_SIZE;
u32 bit = index % BITSET_SIZE;
m_free_slots[group][bit] = true;
}
void DescriptorHeapManager::Free(const DescriptorHandle& handle)
{
Free(handle.index);
}
SamplerHeapManager::SamplerHeapManager() = default;
SamplerHeapManager::~SamplerHeapManager() = default;
static void GetD3DSamplerDesc(D3D12_SAMPLER_DESC* desc, const SamplerState& state)
{
if (state.mipmap_filter == SamplerState::Filter::Linear)
{
if (state.min_filter == SamplerState::Filter::Linear)
{
desc->Filter = (state.mag_filter == SamplerState::Filter::Linear) ?
D3D12_FILTER_MIN_MAG_MIP_LINEAR :
D3D12_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR;
}
else
{
desc->Filter = (state.mag_filter == SamplerState::Filter::Linear) ?
D3D12_FILTER_MIN_POINT_MAG_MIP_LINEAR :
D3D12_FILTER_MIN_MAG_POINT_MIP_LINEAR;
}
}
else
{
if (state.min_filter == SamplerState::Filter::Linear)
{
desc->Filter = (state.mag_filter == SamplerState::Filter::Linear) ?
D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT :
D3D12_FILTER_MIN_LINEAR_MAG_MIP_POINT;
}
else
{
desc->Filter = (state.mag_filter == SamplerState::Filter::Linear) ?
D3D12_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT :
D3D12_FILTER_MIN_MAG_MIP_POINT;
}
}
static constexpr std::array<D3D12_TEXTURE_ADDRESS_MODE, 3> address_modes = {
{D3D12_TEXTURE_ADDRESS_MODE_CLAMP, D3D12_TEXTURE_ADDRESS_MODE_WRAP,
D3D12_TEXTURE_ADDRESS_MODE_MIRROR}};
desc->AddressU = address_modes[static_cast<u32>(state.wrap_u.Value())];
desc->AddressV = address_modes[static_cast<u32>(state.wrap_v.Value())];
desc->AddressW = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
desc->MaxLOD = state.max_lod / 16.f;
desc->MinLOD = state.min_lod / 16.f;
desc->MipLODBias = static_cast<s32>(state.lod_bias) / 256.f;
desc->ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
if (state.anisotropic_filtering)
{
desc->Filter = D3D12_FILTER_ANISOTROPIC;
desc->MaxAnisotropy = 1u << g_ActiveConfig.iMaxAnisotropy;
}
}
bool SamplerHeapManager::Lookup(const SamplerState& ss, D3D12_CPU_DESCRIPTOR_HANDLE* handle)
{
const auto it = m_sampler_map.find(ss.hex);
if (it != m_sampler_map.end())
{
*handle = it->second;
return true;
}
if (m_current_offset == m_num_descriptors)
{
// We can clear at any time because the descriptors are copied prior to execution.
// It's still not free, since we have to recreate all our samplers again.
WARN_LOG(VIDEO, "Out of samplers, resetting CPU heap");
Clear();
}
D3D12_SAMPLER_DESC desc = {};
GetD3DSamplerDesc(&desc, ss);
const D3D12_CPU_DESCRIPTOR_HANDLE new_handle = {m_heap_base_cpu.ptr +
m_current_offset * m_descriptor_increment_size};
g_dx_context->GetDevice()->CreateSampler(&desc, new_handle);
m_sampler_map.emplace(ss.hex, new_handle);
m_current_offset++;
*handle = new_handle;
return true;
}
void SamplerHeapManager::Clear()
{
m_sampler_map.clear();
m_current_offset = 0;
}
bool SamplerHeapManager::Create(ID3D12Device* device, u32 num_descriptors)
{
const D3D12_DESCRIPTOR_HEAP_DESC desc = {D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER, num_descriptors};
HRESULT hr = device->CreateDescriptorHeap(&desc, IID_PPV_ARGS(&m_descriptor_heap));
CHECK(SUCCEEDED(hr), "Failed to create sampler descriptor heap");
if (FAILED(hr))
return false;
m_num_descriptors = num_descriptors;
m_descriptor_increment_size =
device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);
m_heap_base_cpu = m_descriptor_heap->GetCPUDescriptorHandleForHeapStart();
return true;
}
} // namespace DX12