dolphin/Source/Core/VideoCommon/VertexLoader.cpp

423 lines
12 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project
2015-05-17 17:08:10 -06:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexLoaderUtils.h"
#include "VideoCommon/VertexLoader_Color.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
#include "VideoCommon/VertexLoader_TextCoord.h"
#include "VideoCommon/VideoCommon.h"
// This pointer is used as the source/dst for all fixed function loader calls
2014-11-27 15:53:11 -07:00
u8* g_video_buffer_read_ptr;
u8* g_vertex_manager_write_ptr;
2014-11-27 15:53:11 -07:00
static void PosMtx_ReadDirect_UByte(VertexLoader* loader)
{
u32 posmtx = DataRead<u8>() & 0x3f;
if (loader->m_counter < 3)
VertexLoaderManager::position_matrix_index[loader->m_counter + 1] = posmtx;
DataWrite<u32>(posmtx);
PRIM_LOG("posmtx: %d, ", posmtx);
}
static void TexMtx_ReadDirect_UByte(VertexLoader* loader)
{
loader->m_curtexmtx[loader->m_texmtxread] = DataRead<u8>() & 0x3f;
PRIM_LOG("texmtx%d: %d, ", loader->m_texmtxread, loader->m_curtexmtx[loader->m_texmtxread]);
loader->m_texmtxread++;
}
static void TexMtx_Write_Float(VertexLoader* loader)
{
DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++]));
}
static void TexMtx_Write_Float2(VertexLoader* loader)
{
DataWrite(0.f);
DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++]));
}
static void TexMtx_Write_Float3(VertexLoader* loader)
{
DataWrite(0.f);
DataWrite(0.f);
DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++]));
}
static void SkipVertex(VertexLoader* loader)
{
if (loader->m_vertexSkip)
{
// reset the output buffer
g_vertex_manager_write_ptr -= loader->m_native_vtx_decl.stride;
loader->m_skippedVertices++;
}
}
VertexLoader::VertexLoader(const TVtxDesc& vtx_desc, const VAT& vtx_attr)
: VertexLoaderBase(vtx_desc, vtx_attr)
{
VertexLoader_Normal::Init();
CompileVertexTranslator();
// generate frac factors
m_posScale = 1.0f / (1U << m_VtxAttr.PosFrac);
for (int i = 0; i < 8; i++)
m_tcScale[i] = 1.0f / (1U << m_VtxAttr.texCoord[i].Frac);
}
void VertexLoader::CompileVertexTranslator()
{
m_VertexSize = 0;
const TVtxAttr& vtx_attr = m_VtxAttr;
// Reset pipeline
m_numPipelineStages = 0;
// Colors
const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
// TextureCoord
const u64 tc[8] = {m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord,
m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord,
m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord};
u32 components = 0;
// Position in pc vertex format.
int nat_offset = 0;
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_ReadDirect_UByte);
components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = nat_offset;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
nat_offset += 4;
m_VertexSize += 1;
}
if (m_VtxDesc.Tex0MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX0;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex1MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX1;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex2MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX2;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex3MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX3;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex4MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX4;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex5MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX5;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex6MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX6;
WriteCall(TexMtx_ReadDirect_UByte);
}
if (m_VtxDesc.Tex7MatIdx)
{
m_VertexSize += 1;
components |= VB_HAS_TEXMTXIDX7;
WriteCall(TexMtx_ReadDirect_UByte);
}
// Write vertex position loader
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat,
m_VtxAttr.PosElements));
m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat,
m_VtxAttr.PosElements);
int pos_elements = m_VtxAttr.PosElements + 2;
m_native_vtx_decl.position.components = pos_elements;
m_native_vtx_decl.position.enable = true;
m_native_vtx_decl.position.offset = nat_offset;
m_native_vtx_decl.position.type = VAR_FLOAT;
m_native_vtx_decl.position.integer = false;
nat_offset += pos_elements * sizeof(float);
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT)
{
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat,
m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(
m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
if (pFunc == nullptr)
{
PanicAlert("VertexLoader_Normal::GetFunction(%i %i %i %i) returned zero!",
(u32)m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements,
m_VtxAttr.NormalIndex3);
}
WriteCall(pFunc);
for (int i = 0; i < (vtx_attr.NormalElements ? 3 : 1); i++)
{
m_native_vtx_decl.normals[i].components = 3;
m_native_vtx_decl.normals[i].enable = true;
m_native_vtx_decl.normals[i].offset = nat_offset;
m_native_vtx_decl.normals[i].type = VAR_FLOAT;
m_native_vtx_decl.normals[i].integer = false;
nat_offset += 12;
}
components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements == 1)
components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
for (int i = 0; i < 2; i++)
{
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
switch (col[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565:
m_VertexSize += 2;
WriteCall(Color_ReadDirect_16b_565);
break;
case FORMAT_24B_888:
m_VertexSize += 3;
WriteCall(Color_ReadDirect_24b_888);
break;
case FORMAT_32B_888x:
m_VertexSize += 4;
WriteCall(Color_ReadDirect_32b_888x);
break;
case FORMAT_16B_4444:
m_VertexSize += 2;
WriteCall(Color_ReadDirect_16b_4444);
break;
case FORMAT_24B_6666:
m_VertexSize += 3;
WriteCall(Color_ReadDirect_24b_6666);
break;
case FORMAT_32B_8888:
m_VertexSize += 4;
WriteCall(Color_ReadDirect_32b_8888);
break;
default:
_assert_(0);
break;
}
break;
case INDEX8:
m_VertexSize += 1;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565:
WriteCall(Color_ReadIndex8_16b_565);
break;
case FORMAT_24B_888:
WriteCall(Color_ReadIndex8_24b_888);
break;
case FORMAT_32B_888x:
WriteCall(Color_ReadIndex8_32b_888x);
break;
case FORMAT_16B_4444:
WriteCall(Color_ReadIndex8_16b_4444);
break;
case FORMAT_24B_6666:
WriteCall(Color_ReadIndex8_24b_6666);
break;
case FORMAT_32B_8888:
WriteCall(Color_ReadIndex8_32b_8888);
break;
default:
_assert_(0);
break;
}
break;
case INDEX16:
m_VertexSize += 2;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565:
WriteCall(Color_ReadIndex16_16b_565);
break;
case FORMAT_24B_888:
WriteCall(Color_ReadIndex16_24b_888);
break;
case FORMAT_32B_888x:
WriteCall(Color_ReadIndex16_32b_888x);
break;
case FORMAT_16B_4444:
WriteCall(Color_ReadIndex16_16b_4444);
break;
case FORMAT_24B_6666:
WriteCall(Color_ReadIndex16_24b_6666);
break;
case FORMAT_32B_8888:
WriteCall(Color_ReadIndex16_32b_8888);
break;
default:
_assert_(0);
break;
}
break;
}
// Common for the three bottom cases
if (col[i] != NOT_PRESENT)
{
components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].offset = nat_offset;
m_native_vtx_decl.colors[i].enable = true;
nat_offset += 4;
}
}
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++)
{
m_native_vtx_decl.texcoords[i].offset = nat_offset;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
const int format = m_VtxAttr.texCoord[i].Format;
const int elements = m_VtxAttr.texCoord[i].Elements;
if (tc[i] != NOT_PRESENT)
{
_assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16,
"Invalid texture coordinates!\n(tc[i] = %d)", (u32)tc[i]);
_assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT,
"Invalid texture coordinates format!\n(format = %d)", format);
_assert_msg_(VIDEO, 0 <= elements && elements <= 1,
"Invalid number of texture coordinates elements!\n(elements = %d)", elements);
components |= VB_HAS_UV0 << i;
WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements));
m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements);
}
if (components & (VB_HAS_TEXMTXIDX0 << i))
{
m_native_vtx_decl.texcoords[i].enable = true;
if (tc[i] != NOT_PRESENT)
{
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
m_native_vtx_decl.texcoords[i].components = 3;
nat_offset += 12;
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
}
else
{
m_native_vtx_decl.texcoords[i].components = 3;
nat_offset += 12;
WriteCall(TexMtx_Write_Float3);
}
}
else
{
if (tc[i] != NOT_PRESENT)
{
m_native_vtx_decl.texcoords[i].enable = true;
m_native_vtx_decl.texcoords[i].components = vtx_attr.texCoord[i].Elements ? 2 : 1;
nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1);
}
}
if (tc[i] == NOT_PRESENT)
{
// if there's more tex coords later, have to write a dummy call
int j = i + 1;
for (; j < 8; ++j)
{
if (tc[j] != NOT_PRESENT)
{
WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right!
break;
}
}
// tricky!
if (j == 8 && !((components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1))))
{
// no more tex coords and tex matrices, so exit loop
break;
}
}
}
// indexed position formats may skip a the vertex
if (m_VtxDesc.Position & 2)
{
WriteCall(SkipVertex);
}
m_native_components = components;
m_native_vtx_decl.stride = nat_offset;
}
void VertexLoader::WriteCall(TPipelineFunction func)
{
m_PipelineStages[m_numPipelineStages++] = func;
}
int VertexLoader::RunVertices(DataReader src, DataReader dst, int count)
{
g_vertex_manager_write_ptr = dst.GetPointer();
g_video_buffer_read_ptr = src.GetPointer();
m_numLoadedVertices += count;
m_skippedVertices = 0;
for (m_counter = count - 1; m_counter >= 0; m_counter--)
{
m_tcIndex = 0;
m_colIndex = 0;
m_texmtxwrite = m_texmtxread = 0;
for (int i = 0; i < m_numPipelineStages; i++)
m_PipelineStages[i](this);
PRIM_LOG("\n");
}
return count - m_skippedVertices;
}