Reimplement Bounding Box calculation using the software renderer.

This commit is contained in:
crudelios 2014-09-14 17:52:51 +01:00
parent b7aed97508
commit 2d4b7e3f3f
13 changed files with 602 additions and 672 deletions

View File

@ -14,6 +14,7 @@
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/VideoCommon.h"
@ -73,12 +74,12 @@ void SWBPWritten(int address, int newvalue)
EfbCopy::CopyEfb();
break;
case BPMEM_CLEARBBOX1:
PixelEngine::bbox[0] = newvalue >> 10;
PixelEngine::bbox[1] = newvalue & 0x3ff;
BoundingBox::coords[BoundingBox::LEFT] = newvalue >> 10;
BoundingBox::coords[BoundingBox::RIGHT] = newvalue & 0x3ff;
break;
case BPMEM_CLEARBBOX2:
PixelEngine::bbox[2] = newvalue >> 10;
PixelEngine::bbox[3] = newvalue & 0x3ff;
BoundingBox::coords[BoundingBox::TOP] = newvalue >> 10;
BoundingBox::coords[BoundingBox::BOTTOM] = newvalue & 0x3ff;
break;
case BPMEM_CLEAR_PIXEL_PERF:
// TODO: I didn't test if the value written to this register affects the amount of cleared registers

View File

@ -437,12 +437,6 @@ namespace EfbInterface
{
SetPixelAlphaOnly(offset, dstClrPtr[ALP_C]);
}
// branchless bounding box update
PixelEngine::bbox[0] = std::min(x, PixelEngine::bbox[0]);
PixelEngine::bbox[1] = std::max(x, PixelEngine::bbox[1]);
PixelEngine::bbox[2] = std::min(y, PixelEngine::bbox[2]);
PixelEngine::bbox[3] = std::max(y, PixelEngine::bbox[3]);
}
void SetColor(u16 x, u16 y, u8 *color)

View File

@ -14,6 +14,7 @@
#include "VideoBackends/Software/SWVideoConfig.h"
#include "VideoBackends/Software/Tev.h"
#include "VideoBackends/Software/XFMemLoader.h"
#include "VideoCommon/BoundingBox.h"
#define BLOCK_SIZE 2
@ -130,7 +131,7 @@ inline void Draw(s32 x, s32 y, s32 xi, s32 yi)
if (z < 0 || z > 0x00ffffff)
return;
if (bpmem.UseEarlyDepthTest() && g_SWVideoConfig.bZComploc)
if (!BoundingBox::active && bpmem.UseEarlyDepthTest() && g_SWVideoConfig.bZComploc)
{
// TODO: Test if perf regs are incremented even if test is disabled
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT_ZCOMPLOC);
@ -317,7 +318,7 @@ void DrawTriangleFrontFace(OutputVertexData *v0, OutputVertexData *v1, OutputVer
{
INCSTAT(swstats.thisFrame.numTrianglesDrawn);
if (g_SWVideoConfig.bHwRasterizer)
if (g_SWVideoConfig.bHwRasterizer && !BoundingBox::active)
{
HwRasterizer::DrawTriangleFrontFace(v0, v1, v2);
return;
@ -414,84 +415,254 @@ void DrawTriangleFrontFace(OutputVertexData *v0, OutputVertexData *v1, OutputVer
if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++;
if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++;
// Loop through blocks
for (s32 y = miny; y < maxy; y += BLOCK_SIZE)
// If drawing, rasterize every block
if (!BoundingBox::active)
{
for (s32 x = minx; x < maxx; x += BLOCK_SIZE)
// Loop through blocks
for (s32 y = miny; y < maxy; y += BLOCK_SIZE)
{
// Corners of block
s32 x0 = x << 4;
s32 x1 = (x + BLOCK_SIZE - 1) << 4;
s32 y0 = y << 4;
s32 y1 = (y + BLOCK_SIZE - 1) << 4;
// Evaluate half-space functions
bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0;
bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0;
bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0;
bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0;
int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3);
bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0;
bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0;
bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0;
bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0;
int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3);
bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0;
bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0;
bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0;
bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0;
int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3);
// Skip block when outside an edge
if (a == 0x0 || b == 0x0 || c == 0x0)
continue;
BuildBlock(x, y);
// Accept whole block when totally covered
if (a == 0xF && b == 0xF && c == 0xF)
for (s32 x = minx; x < maxx; x += BLOCK_SIZE)
{
for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
{
for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
{
Draw(x + ix, y + iy, ix, iy);
}
}
}
else // Partially covered block
{
s32 CY1 = C1 + DX12 * y0 - DY12 * x0;
s32 CY2 = C2 + DX23 * y0 - DY23 * x0;
s32 CY3 = C3 + DX31 * y0 - DY31 * x0;
// Corners of block
s32 x0 = x << 4;
s32 x1 = (x + BLOCK_SIZE - 1) << 4;
s32 y0 = y << 4;
s32 y1 = (y + BLOCK_SIZE - 1) << 4;
for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
{
s32 CX1 = CY1;
s32 CX2 = CY2;
s32 CX3 = CY3;
// Evaluate half-space functions
bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0;
bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0;
bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0;
bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0;
int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3);
for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0;
bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0;
bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0;
bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0;
int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3);
bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0;
bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0;
bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0;
bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0;
int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3);
// Skip block when outside an edge
if (a == 0x0 || b == 0x0 || c == 0x0)
continue;
BuildBlock(x, y);
// Accept whole block when totally covered
if (a == 0xF && b == 0xF && c == 0xF)
{
for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
{
if (CX1 > 0 && CX2 > 0 && CX3 > 0)
for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
{
Draw(x + ix, y + iy, ix, iy);
}
CX1 -= FDY12;
CX2 -= FDY23;
CX3 -= FDY31;
}
}
else // Partially covered block
{
s32 CY1 = C1 + DX12 * y0 - DY12 * x0;
s32 CY2 = C2 + DX23 * y0 - DY23 * x0;
s32 CY3 = C3 + DX31 * y0 - DY31 * x0;
CY1 += FDX12;
CY2 += FDX23;
CY3 += FDX31;
for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
{
s32 CX1 = CY1;
s32 CX2 = CY2;
s32 CX3 = CY3;
for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
{
if (CX1 > 0 && CX2 > 0 && CX3 > 0)
{
Draw(x + ix, y + iy, ix, iy);
}
CX1 -= FDY12;
CX2 -= FDY23;
CX3 -= FDY31;
}
CY1 += FDX12;
CY2 += FDX23;
CY3 += FDX31;
}
}
}
}
}
else
{
// If we are only calculating bbox, we only need to find the topmost,
// leftmost, bottom most and rightmost pixels to be drawn.
// So instead of drawing every single one of the triangle's pixels,
// four loops are run: one for the top pixel, one for the left, one for
// the bottom and one for the right. As soon as a pixel that is to be
// drawn is found, the loop breaks. This enables a ~150% speedbost in
// bbox calculation, albeit at the cost of some ugly repetitive code.
const s32 FTOP = miny << 4;
const s32 FLEFT = minx << 4;
const s32 FBOTTOM = maxy << 4;
const s32 FRIGHT = maxx << 4;
// Start checking for bbox top
s32 CY1 = C1 + DX12 * FTOP - DY12 * FLEFT;
s32 CY2 = C2 + DX23 * FTOP - DY23 * FLEFT;
s32 CY3 = C3 + DX31 * FTOP - DY31 * FLEFT;
// Loop
for (s32 y = miny; y <= maxy; ++y)
{
if (y >= BoundingBox::coords[BoundingBox::TOP])
break;
s32 CX1 = CY1;
s32 CX2 = CY2;
s32 CX3 = CY3;
for (s32 x = minx; x <= maxx; ++x)
{
if (CX1 > 0 && CX2 > 0 && CX3 > 0)
{
// Build the new raster block every other pixel
BuildBlock((x & ~(BLOCK_SIZE - 1)), y & ~(BLOCK_SIZE - 1));
Draw(x, y, x & 1, y & 1);
if (y >= BoundingBox::coords[BoundingBox::TOP])
break;
}
CX1 -= FDY12;
CX2 -= FDY23;
CX3 -= FDY31;
}
CY1 += FDX12;
CY2 += FDX23;
CY3 += FDX31;
}
// Checking for bbox left
s32 CX1 = C1 + DX12 * FTOP - DY12 * FLEFT;
s32 CX2 = C2 + DX23 * FTOP - DY23 * FLEFT;
s32 CX3 = C3 + DX31 * FTOP - DY31 * FLEFT;
// Loop
for (s32 x = minx; x <= maxx; ++x)
{
if (x >= BoundingBox::coords[BoundingBox::LEFT])
break;
s32 CY1 = CX1;
s32 CY2 = CX2;
s32 CY3 = CX3;
for (s32 y = miny; y <= maxy; ++y)
{
if (CY1 > 0 && CY2 > 0 && CY3 > 0)
{
// Build the new raster block every other pixel
BuildBlock((x & ~(BLOCK_SIZE - 1)), y & ~(BLOCK_SIZE - 1));
Draw(x, y, x & 1, y & 1);
if (x >= BoundingBox::coords[BoundingBox::LEFT])
break;
}
CY1 += FDX12;
CY2 += FDX23;
CY3 += FDX31;
}
CX1 -= FDY12;
CX2 -= FDY23;
CX3 -= FDY31;
}
// Checking for bbox bottom
CY1 = C1 + DX12 * FBOTTOM - DY12 * FRIGHT;
CY2 = C2 + DX23 * FBOTTOM - DY23 * FRIGHT;
CY3 = C3 + DX31 * FBOTTOM - DY31 * FRIGHT;
// Loop
for (s32 y = maxy; y >= miny; --y)
{
s32 CX1 = CY1;
s32 CX2 = CY2;
s32 CX3 = CY3;
if (y <= BoundingBox::coords[BoundingBox::BOTTOM])
break;
for (s32 x = maxx; x >= minx; --x)
{
if (CX1 > 0 && CX2 > 0 && CX3 > 0)
{
// Build the new raster block every other pixel
BuildBlock((x & ~(BLOCK_SIZE - 1)), y & ~(BLOCK_SIZE - 1));
Draw(x, y, x & 1, y & 1);
if (y <= BoundingBox::coords[BoundingBox::BOTTOM])
break;
}
CX1 += FDY12;
CX2 += FDY23;
CX3 += FDY31;
}
CY1 -= FDX12;
CY2 -= FDX23;
CY3 -= FDX31;
}
// Checking for bbox right
CX1 = C1 + DX12 * FBOTTOM - DY12 * FRIGHT;
CX2 = C2 + DX23 * FBOTTOM - DY23 * FRIGHT;
CX3 = C3 + DX31 * FBOTTOM - DY31 * FRIGHT;
// Loop
for (s32 x = maxx; x >= minx; --x)
{
if (x <= BoundingBox::coords[BoundingBox::RIGHT])
break;
s32 CY1 = CX1;
s32 CY2 = CX2;
s32 CY3 = CX3;
for (s32 y = maxy; y >= miny; --y)
{
if (CY1 > 0 && CY2 > 0 && CY3 > 0)
{
// Build the new raster block every other pixel
BuildBlock((x & ~(BLOCK_SIZE - 1)), y & ~(BLOCK_SIZE - 1));
Draw(x, y, x & 1, y & 1);
if (x <= BoundingBox::coords[BoundingBox::RIGHT])
break;
}
CY1 -= FDX12;
CY2 -= FDX23;
CY3 -= FDX31;
}
CX1 += FDY12;
CX2 += FDY23;
CX3 += FDY31;
}
}
}

View File

@ -13,6 +13,7 @@
#include "VideoBackends/Software/Tev.h"
#include "VideoBackends/Software/TextureSampler.h"
#include "VideoBackends/Software/XFMemLoader.h"
#include "VideoCommon/BoundingBox.h"
#ifdef _DEBUG
#define ALLOW_TEV_DUMPS 1
@ -157,7 +158,7 @@ void Tev::SetRasColor(int colorChan, int swaptable)
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
}
break;
case 5: // alpha bump
case 5: // alpha bump
{
for (s16& comp : RasColor)
{
@ -649,121 +650,138 @@ void Tev::Draw()
if (!TevAlphaTest(output[ALP_C]))
return;
// z texture
if (bpmem.ztex2.op)
// This part is only needed if we are not simply computing bbox
// (i. e., only needed when using the SW renderer)
if (!BoundingBox::active)
{
u32 ztex = bpmem.ztex1.bias;
switch (bpmem.ztex2.type)
// z texture
if (bpmem.ztex2.op)
{
case 0: // 8 bit
ztex += TexColor[ALP_C];
break;
case 1: // 16 bit
ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
break;
case 2: // 24 bit
ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
break;
u32 ztex = bpmem.ztex1.bias;
switch (bpmem.ztex2.type)
{
case 0: // 8 bit
ztex += TexColor[ALP_C];
break;
case 1: // 16 bit
ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
break;
case 2: // 24 bit
ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
break;
}
if (bpmem.ztex2.op == ZTEXTURE_ADD)
ztex += Position[2];
Position[2] = ztex & 0x00ffffff;
}
if (bpmem.ztex2.op == ZTEXTURE_ADD)
ztex += Position[2];
// fog
if (bpmem.fog.c_proj_fsel.fsel)
{
float ze;
Position[2] = ztex & 0x00ffffff;
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF))
s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
//in addition downscale magnitude and zs to 0.24 bits
ze = (bpmem.fog.a.GetA() * 16777215.0f) / (float)denom;
}
else
{
// orthographic
// ze = a*Zs
//in addition downscale zs to 0.24 bits
ze = bpmem.fog.a.GetA() * ((float)Position[2] / 16777215.0f);
}
if (bpmem.fogRange.Base.Enabled)
{
// TODO: This is untested and should definitely be checked against real hw.
// - No idea if offset is really normalized against the viewport width or against the projection matrix or yet something else
// - scaling of the "k" coefficient isn't clear either.
// First, calculate the offset from the viewport center (normalized to 0..1)
float offset = (Position[0] - (bpmem.fogRange.Base.Center - 342)) / (float)xfmem.viewport.wd;
// Based on that, choose the index such that points which are far away from the z-axis use the 10th "k" value and such that central points use the first value.
float floatindex = 9.f - std::abs(offset) * 9.f;
floatindex = (floatindex < 0.f) ? 0.f : (floatindex > 9.f) ? 9.f : floatindex; // TODO: This shouldn't be necessary!
// Get the two closest integer indices, look up the corresponding samples
int indexlower = (int)floor(floatindex);
int indexupper = indexlower + 1;
// Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog is too strong without the factor)
float klower = bpmem.fogRange.K[indexlower/2].GetValue(indexlower%2) * 4.f;
float kupper = bpmem.fogRange.K[indexupper/2].GetValue(indexupper%2) * 4.f;
// linearly interpolate the samples and multiple ze by the resulting adjustment factor
float factor = indexupper - floatindex;
float k = klower * factor + kupper * (1.f - factor);
float x_adjust = sqrt(offset*offset + k*k)/k;
ze *= x_adjust; // NOTE: This is basically dividing by a cosine (hidden behind GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
}
ze -= bpmem.fog.c_proj_fsel.GetC();
// clamp 0 to 1
float fog = (ze<0.0f) ? 0.0f : ((ze>1.0f) ? 1.0f : ze);
switch (bpmem.fog.c_proj_fsel.fsel)
{
case 4: // exp
fog = 1.0f - pow(2.0f, -8.0f * fog);
break;
case 5: // exp2
fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
break;
case 6: // backward exp
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog);
break;
case 7: // backward exp2
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog * fog);
break;
}
// lerp from output to fog color
u32 fogInt = (u32)(fog * 256);
u32 invFog = 256 - fogInt;
output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
}
bool late_ztest = !bpmem.zcontrol.early_ztest || !g_SWVideoConfig.bZComploc;
if (late_ztest && bpmem.zmode.testenable)
{
// TODO: Check against hw if these values get incremented even if depth testing is disabled
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);
if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
return;
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
}
}
// fog
if (bpmem.fog.c_proj_fsel.fsel)
{
float ze;
// branchless bounding box update
BoundingBox::coords[BoundingBox::LEFT] = std::min((u16)Position[0], BoundingBox::coords[BoundingBox::LEFT]);
BoundingBox::coords[BoundingBox::RIGHT] = std::max((u16)Position[0], BoundingBox::coords[BoundingBox::RIGHT]);
BoundingBox::coords[BoundingBox::TOP] = std::min((u16)Position[1], BoundingBox::coords[BoundingBox::TOP]);
BoundingBox::coords[BoundingBox::BOTTOM] = std::max((u16)Position[1], BoundingBox::coords[BoundingBox::BOTTOM]);
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF))
s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
//in addition downscale magnitude and zs to 0.24 bits
ze = (bpmem.fog.a.GetA() * 16777215.0f) / (float)denom;
}
else
{
// orthographic
// ze = a*Zs
//in addition downscale zs to 0.24 bits
ze = bpmem.fog.a.GetA() * ((float)Position[2] / 16777215.0f);
// if we are only calculating the bounding box,
// there's no need to actually draw anything
if (BoundingBox::active)
return;
}
if (bpmem.fogRange.Base.Enabled)
{
// TODO: This is untested and should definitely be checked against real hw.
// - No idea if offset is really normalized against the viewport width or against the projection matrix or yet something else
// - scaling of the "k" coefficient isn't clear either.
// First, calculate the offset from the viewport center (normalized to 0..1)
float offset = (Position[0] - (bpmem.fogRange.Base.Center - 342)) / (float)xfmem.viewport.wd;
// Based on that, choose the index such that points which are far away from the z-axis use the 10th "k" value and such that central points use the first value.
float floatindex = 9.f - std::abs(offset) * 9.f;
floatindex = (floatindex < 0.f) ? 0.f : (floatindex > 9.f) ? 9.f : floatindex; // TODO: This shouldn't be necessary!
// Get the two closest integer indices, look up the corresponding samples
int indexlower = (int)floor(floatindex);
int indexupper = indexlower + 1;
// Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog is too strong without the factor)
float klower = bpmem.fogRange.K[indexlower/2].GetValue(indexlower%2) * 4.f;
float kupper = bpmem.fogRange.K[indexupper/2].GetValue(indexupper%2) * 4.f;
// linearly interpolate the samples and multiple ze by the resulting adjustment factor
float factor = indexupper - floatindex;
float k = klower * factor + kupper * (1.f - factor);
float x_adjust = sqrt(offset*offset + k*k)/k;
ze *= x_adjust; // NOTE: This is basically dividing by a cosine (hidden behind GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
}
ze -= bpmem.fog.c_proj_fsel.GetC();
// clamp 0 to 1
float fog = (ze<0.0f) ? 0.0f : ((ze>1.0f) ? 1.0f : ze);
switch (bpmem.fog.c_proj_fsel.fsel)
{
case 4: // exp
fog = 1.0f - pow(2.0f, -8.0f * fog);
break;
case 5: // exp2
fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
break;
case 6: // backward exp
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog);
break;
case 7: // backward exp2
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog * fog);
break;
}
// lerp from output to fog color
u32 fogInt = (u32)(fog * 256);
u32 invFog = 256 - fogInt;
output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
}
bool late_ztest = !bpmem.zcontrol.early_ztest || !g_SWVideoConfig.bZComploc;
if (late_ztest && bpmem.zmode.testenable)
{
// TODO: Check against hw if these values get incremented even if depth testing is disabled
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);
if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
return;
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
}
#if ALLOW_TEV_DUMPS
if (g_SWVideoConfig.bDumpTevStages)

View File

@ -19,6 +19,7 @@
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoCommon.h"
@ -231,7 +232,7 @@ static void BPWritten(const BPCmd& bp)
// here. Not sure if there's a better spot to put this.
// the number of lines copied is determined by the y scale * source efb height
PixelEngine::bbox_active = false;
BoundingBox::active = false;
float yScale;
if (PE_copy.scale_invert)
@ -378,13 +379,13 @@ static void BPWritten(const BPCmd& bp)
case BPMEM_CLEARBBOX2:
// Don't compute bounding box if this frame is being skipped!
// Wrong but valid values are better than bogus values...
if (g_ActiveConfig.bUseBBox && !g_bSkipCurrentFrame)
if (!g_bSkipCurrentFrame)
{
u8 offset = bp.address & 2;
PixelEngine::bbox[offset] = bp.newvalue & 0x3ff;
PixelEngine::bbox[offset | 1] = bp.newvalue >> 10;
PixelEngine::bbox_active = true;
BoundingBox::coords[offset] = bp.newvalue & 0x3ff;
BoundingBox::coords[offset + 1] = bp.newvalue >> 10;
BoundingBox::active = true;
}
return;
case BPMEM_TEXINVALIDATE:

View File

@ -0,0 +1,150 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "VideoCommon/PixelShaderManager.h"
#include "VideoBackends/Software/SetupUnit.h"
#include "VideoBackends/Software/TransformUnit.h"
#include "VideoBackends/Software/Clipper.h"
#include "VideoBackends/Software/Rasterizer.h"
#include "VideoCommon/BoundingBox.h"
namespace BoundingBox
{
// External vars
bool active = false;
u16 coords[4] = { 0x80, 0xA0, 0x80, 0xA0 };
u8 posMtxIdx;
u8 texMtxIdx[8];
// Internal vars
SetupUnit vtxUnit;
VAT myVat;
u8 * bufferPos;
TVtxDesc vertexDesc;
PortableVertexDeclaration vertexDecl;
// Gets the pointer to the current buffer position
void LOADERDECL SetVertexBufferPosition()
{
bufferPos = VertexManager::s_pCurBufferPointer;
}
// Prepares the bounding box for new primitive data
void Prepare(const VAT & vat, int primitive, const TVtxDesc & vtxDesc, const PortableVertexDeclaration & vtxDecl)
{
if (!active)
return;
myVat = vat;
vertexDesc = vtxDesc;
vertexDecl = vtxDecl;
vtxUnit.Init(primitive);
// Initialize the SW renderer
static bool SWinit = false;
if (!SWinit)
{
Clipper::Init();
Rasterizer::Init();
SWinit = true;
}
// Update SW renderer values
Clipper::SetViewOffset();
Rasterizer::SetScissor();
for (u8 i = 0; i < 4; ++i)
{
Rasterizer::SetTevReg(i, 0, true, (s16)PixelShaderManager::constants.kcolors[i][0]);
Rasterizer::SetTevReg(i, 1, true, (s16)PixelShaderManager::constants.kcolors[i][1]);
Rasterizer::SetTevReg(i, 2, true, (s16)PixelShaderManager::constants.kcolors[i][2]);
Rasterizer::SetTevReg(i, 3, true, (s16)PixelShaderManager::constants.kcolors[i][3]);
Rasterizer::SetTevReg(i, 0, false, (s16)PixelShaderManager::constants.colors[i][0]);
Rasterizer::SetTevReg(i, 1, false, (s16)PixelShaderManager::constants.colors[i][1]);
Rasterizer::SetTevReg(i, 2, false, (s16)PixelShaderManager::constants.colors[i][2]);
Rasterizer::SetTevReg(i, 3, false, (s16)PixelShaderManager::constants.colors[i][3]);
}
}
// Updates the bounding box
void LOADERDECL Update()
{
if (!active)
return;
// Grab vertex input data and transform to output vertex
InputVertexData myVertex;
OutputVertexData * outVertex = vtxUnit.GetVertex();
// Feed vertex position and matrix
myVertex.position = Vec3((const float *)bufferPos);
myVertex.posMtx = vertexDesc.PosMatIdx ? posMtxIdx : MatrixIndexA.PosNormalMtxIdx;
// Transform position
TransformUnit::TransformPosition(&myVertex, outVertex);
if (g_VtxDesc.Normal != NOT_PRESENT)
{
// Feed normal input data and transform
myVat.g0.NormalIndex3;
memcpy((u8 *)myVertex.normal, bufferPos + vertexDecl.normals[0].offset, sizeof(float) * 3 * ((myVat.g0.NormalElements) ? 3 : 1));
TransformUnit::TransformNormal(&myVertex, myVat.g0.NormalElements, outVertex);
}
// Feed color input data
for (int i = 0; i < 2; ++i)
{
if (vertexDecl.colors[i].enable)
{
u32 color;
memcpy((u8 *)&color, bufferPos + vertexDecl.colors[i].offset, sizeof(u32));
*(u32*)myVertex.color[i] = Common::swap32(color);
}
}
// Transform color
TransformUnit::TransformColor(&myVertex, outVertex);
// Feed texture matrices
int idx = 0;
myVertex.texMtx[0] = (vertexDesc.Tex0MatIdx) ? texMtxIdx[idx++] : MatrixIndexA.Tex0MtxIdx;
myVertex.texMtx[1] = (vertexDesc.Tex1MatIdx) ? texMtxIdx[idx++] : MatrixIndexA.Tex1MtxIdx;
myVertex.texMtx[2] = (vertexDesc.Tex2MatIdx) ? texMtxIdx[idx++] : MatrixIndexA.Tex2MtxIdx;
myVertex.texMtx[3] = (vertexDesc.Tex3MatIdx) ? texMtxIdx[idx++] : MatrixIndexA.Tex3MtxIdx;
myVertex.texMtx[4] = (vertexDesc.Tex4MatIdx) ? texMtxIdx[idx++] : MatrixIndexB.Tex4MtxIdx;
myVertex.texMtx[5] = (vertexDesc.Tex5MatIdx) ? texMtxIdx[idx++] : MatrixIndexB.Tex5MtxIdx;
myVertex.texMtx[6] = (vertexDesc.Tex6MatIdx) ? texMtxIdx[idx++] : MatrixIndexB.Tex6MtxIdx;
myVertex.texMtx[7] = (vertexDesc.Tex7MatIdx) ? texMtxIdx[idx++] : MatrixIndexB.Tex7MtxIdx;
// Feed texture coordinate data
for (int i = 0; i < 8; ++i)
{
if (vertexDecl.texcoords[i].enable)
memcpy((u8 *)&myVertex.texCoords[i], bufferPos + vertexDecl.texcoords[i].offset, sizeof(float) * 2);
}
// Transform texture coordinate
TransformUnit::TransformTexCoord(&myVertex, outVertex, false);
// Render the vertex in SW to calculate bbox
vtxUnit.SetupVertex();
}
// Save state
void DoState(PointerWrap &p)
{
p.Do(active);
p.Do(coords);
}
} // namespace BoundingBox

View File

@ -0,0 +1,41 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "VideoCommon/VertexLoader.h"
// Bounding Box manager
namespace BoundingBox
{
// Determines if bounding box is active
extern bool active;
// Bounding box current coordinates
extern u16 coords[4];
enum
{
LEFT = 0,
RIGHT = 1,
TOP = 2,
BOTTOM = 3
};
// Current position matrix index
extern u8 posMtxIdx;
// Texture matrix indexes
extern u8 texMtxIdx[8];
void LOADERDECL SetVertexBufferPosition();
void LOADERDECL Update();
void Prepare(const VAT & vat, int primitive, const TVtxDesc & vtxDesc, const PortableVertexDeclaration & vtxDecl);
// Save state
void DoState(PointerWrap &p);
}; // end of namespace BoundingBox

View File

@ -16,6 +16,7 @@
#include "Core/HW/ProcessorInterface.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/VideoCommon.h"
@ -106,9 +107,6 @@ static int et_SetFinishOnMainThread;
static volatile u32 interruptSetToken = 0;
static volatile u32 interruptSetFinish = 0;
u16 bbox[4];
bool bbox_active;
enum
{
INT_CAUSE_PE_TOKEN = 0x200, // GP Token
@ -128,9 +126,6 @@ void DoState(PointerWrap &p)
p.Do(g_bSignalFinishInterrupt);
p.Do(interruptSetToken);
p.Do(interruptSetFinish);
p.Do(bbox);
p.Do(bbox_active);
}
void UpdateInterrupts();
@ -155,13 +150,6 @@ void Init()
et_SetTokenOnMainThread = CoreTiming::RegisterEvent("SetToken", SetToken_OnMainThread);
et_SetFinishOnMainThread = CoreTiming::RegisterEvent("SetFinish", SetFinish_OnMainThread);
bbox[0] = 0x80;
bbox[1] = 0xA0;
bbox[2] = 0x80;
bbox[3] = 0xA0;
bbox_active = false;
}
void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
@ -244,8 +232,8 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
{
mmio->Register(base | (PE_BBOX_LEFT + 2 * i),
MMIO::ComplexRead<u16>([i](u32) {
bbox_active = false;
return bbox[i];
BoundingBox::active = false;
return BoundingBox::coords[i];
}),
MMIO::InvalidWrite<u16>()
);

View File

@ -18,10 +18,10 @@ enum
PE_ALPHAREAD = 0x08, // Alpha Read
PE_CTRL_REGISTER = 0x0a, // Control
PE_TOKEN_REG = 0x0e, // Token
PE_BBOX_LEFT = 0x10, // Flip Left
PE_BBOX_RIGHT = 0x12, // Flip Right
PE_BBOX_TOP = 0x14, // Flip Top
PE_BBOX_BOTTOM = 0x16, // Flip Bottom
PE_BBOX_LEFT = 0x10, // Bounding Box Left Pixel
PE_BBOX_RIGHT = 0x12, // Bounding Box Right Pixel
PE_BBOX_TOP = 0x14, // Bounding Box Top Pixel
PE_BBOX_BOTTOM = 0x16, // Bounding Box Bottom Pixel
// NOTE: Order not verified
// These indicate the number of quads that are being used as input/output for each particular stage
@ -63,8 +63,4 @@ void SetToken(const u16 _token, const int _bSetTokenAcknowledge);
void SetFinish();
UPEAlphaReadReg GetAlphaReadMode();
// Bounding box functionality. Paper Mario (both) are a couple of the few games that use it.
extern u16 bbox[4];
extern bool bbox_active;
} // end of namespace PixelEngine

View File

@ -14,6 +14,7 @@
#include "VideoCommon/LookUpTables.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/VertexLoader_Color.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
@ -21,8 +22,6 @@
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
//BBox
#include "VideoCommon/XFMemory.h"
#define COMPILED_CODE_SIZE 4096
@ -45,21 +44,6 @@ int colElements[2];
float posScale;
float tcScale[8];
// bbox variables
// bbox must read vertex position, so convert it to this buffer
static float s_bbox_vertex_buffer[3];
static u8 *s_bbox_pCurBufferPointer_orig;
static int s_bbox_primitive;
static struct Point
{
s32 x;
s32 y;
float z;
} s_bbox_points[3];
static u8 s_bbox_currPoint;
static u8 s_bbox_loadedPoints;
static const u8 s_bbox_primitivePoints[8] = { 3, 0, 3, 3, 3, 2, 2, 1 };
static const float fractionTable[32] = {
1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3),
1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7),
@ -75,7 +59,7 @@ using namespace Gen;
static void LOADERDECL PosMtx_ReadDirect_UByte()
{
s_curposmtx = DataReadU8() & 0x3f;
BoundingBox::posMtxIdx = s_curposmtx = DataReadU8() & 0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
@ -85,437 +69,12 @@ static void LOADERDECL PosMtx_Write()
DataWrite<u8>(0);
DataWrite<u8>(0);
DataWrite<u8>(0);
// Resetting current position matrix to default is needed for bbox to behave
s_curposmtx = (u8) g_main_cp_state.matrix_index_a.PosNormalMtxIdx;
}
static void LOADERDECL UpdateBoundingBoxPrepare()
{
if (!PixelEngine::bbox_active)
return;
// set our buffer as videodata buffer, so we will get a copy of the vertex positions
// this is a big hack, but so we can use the same converting function then without bbox
s_bbox_pCurBufferPointer_orig = VertexManager::s_pCurBufferPointer;
VertexManager::s_pCurBufferPointer = (u8*)s_bbox_vertex_buffer;
}
static inline bool UpdateBoundingBoxVars()
{
switch (s_bbox_primitive)
{
// Quads: fill 0,1,2 (check),1 (check, clear, repeat)
case 0:
++s_bbox_loadedPoints;
if (s_bbox_loadedPoints == 3)
{
s_bbox_currPoint = 1;
return true;
}
if (s_bbox_loadedPoints == 4)
{
s_bbox_loadedPoints = 0;
s_bbox_currPoint = 0;
return true;
}
++s_bbox_currPoint;
return false;
// Triangles: 0,1,2 (check, clear, repeat)
case 2:
++s_bbox_loadedPoints;
if (s_bbox_loadedPoints == 3)
{
s_bbox_loadedPoints = 0;
s_bbox_currPoint = 0;
return true;
}
++s_bbox_currPoint;
return false;
// Triangle strip: 0, 1, 2 (check), 0 (check), 1, (check), 2 (check, repeat checking 0, 1, 2)
case 3:
if (++s_bbox_currPoint == 3)
s_bbox_currPoint = 0;
if (s_bbox_loadedPoints == 2)
return true;
++s_bbox_loadedPoints;
return false;
// Triangle fan: 0,1,2 (check), 1 (check), 2 (check, repeat checking 1,2)
case 4:
s_bbox_currPoint ^= s_bbox_currPoint ? 3 : 1;
if (s_bbox_loadedPoints == 2)
return true;
++s_bbox_loadedPoints;
return false;
// Lines: 0,1 (check, clear, repeat)
case 5:
++s_bbox_loadedPoints;
if (s_bbox_loadedPoints == 2)
{
s_bbox_loadedPoints = 0;
s_bbox_currPoint = 0;
return true;
}
++s_bbox_currPoint;
return false;
// Line strip: 0,1 (check), 0 (check), 1 (check, repeat checking 0,1)
case 6:
s_bbox_currPoint ^= 1;
if (s_bbox_loadedPoints == 1)
return true;
++s_bbox_loadedPoints;
return false;
// Points: 0 (check, clear, repeat)
case 7:
return true;
// This should not happen!
default:
return false;
}
}
static void LOADERDECL UpdateBoundingBox()
{
if (!PixelEngine::bbox_active)
return;
// Reset videodata pointer
VertexManager::s_pCurBufferPointer = s_bbox_pCurBufferPointer_orig;
// Copy vertex pointers
memcpy(VertexManager::s_pCurBufferPointer, s_bbox_vertex_buffer, 12);
VertexManager::s_pCurBufferPointer += 12;
// We must transform the just loaded point by the current world and projection matrix - in software
float transformed[3];
float screenPoint[3];
// We need to get the raw projection values for the bounding box calculation
// to work properly. That means, no projection hacks!
const float * const orig_point = s_bbox_vertex_buffer;
const float * const world_matrix = (float*)xfmem.posMatrices + s_curposmtx * 4;
const float * const proj_matrix = xfmem.projection.rawProjection;
// Transform by world matrix
// Only calculate what we need, discard the rest
transformed[0] = orig_point[0] * world_matrix[0] + orig_point[1] * world_matrix[1] + orig_point[2] * world_matrix[2] + world_matrix[3];
transformed[1] = orig_point[0] * world_matrix[4] + orig_point[1] * world_matrix[5] + orig_point[2] * world_matrix[6] + world_matrix[7];
// Transform by projection matrix
switch (xfmem.projection.type)
{
// Perspective projection, we must divide by w
case GX_PERSPECTIVE:
transformed[2] = orig_point[0] * world_matrix[8] + orig_point[1] * world_matrix[9] + orig_point[2] * world_matrix[10] + world_matrix[11];
screenPoint[0] = (transformed[0] * proj_matrix[0] + transformed[2] * proj_matrix[1]) / (-transformed[2]);
screenPoint[1] = (transformed[1] * proj_matrix[2] + transformed[2] * proj_matrix[3]) / (-transformed[2]);
screenPoint[2] = ((transformed[2] * proj_matrix[4] + proj_matrix[5]) * (1.0f - (float) 1e-7)) / (-transformed[2]);
break;
// Orthographic projection
case GX_ORTHOGRAPHIC:
screenPoint[0] = transformed[0] * proj_matrix[0] + proj_matrix[1];
screenPoint[1] = transformed[1] * proj_matrix[2] + proj_matrix[3];
// We don't really have to care about z here
screenPoint[2] = -0.2f;
break;
default:
ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type);
screenPoint[0] = screenPoint[1] = screenPoint[2] = 1;
}
// Convert to screen space and add the point to the list - round like the real hardware
s_bbox_points[s_bbox_currPoint].x = (((s32) (0.5f + (16.0f * (screenPoint[0] * xfmem.viewport.wd + (xfmem.viewport.xOrig - 342.0f))))) + 3) >> 4;
s_bbox_points[s_bbox_currPoint].y = (((s32) (0.5f + (16.0f * (screenPoint[1] * xfmem.viewport.ht + (xfmem.viewport.yOrig - 342.0f))))) + 3) >> 4;
s_bbox_points[s_bbox_currPoint].z = screenPoint[2];
// Update point list for primitive
bool check_bbox = UpdateBoundingBoxVars();
// If we do not have enough points to check the bounding box yet, we are done for now
if (!check_bbox)
return;
// How many points does our primitive have?
const u8 numPoints = s_bbox_primitivePoints[s_bbox_primitive];
// If the primitive is a point, update the bounding box now
if (numPoints == 1)
{
Point & p = s_bbox_points[0];
// Point is out of bounds
if (p.x < 0 || p.x > 607 || p.y < 0 || p.y > 479 || p.z >= 0.0f)
return;
// Point is in bounds. Update bounding box if necessary and return
PixelEngine::bbox[0] = (p.x < PixelEngine::bbox[0]) ? p.x : PixelEngine::bbox[0];
PixelEngine::bbox[1] = (p.x > PixelEngine::bbox[1]) ? p.x : PixelEngine::bbox[1];
PixelEngine::bbox[2] = (p.y < PixelEngine::bbox[2]) ? p.y : PixelEngine::bbox[2];
PixelEngine::bbox[3] = (p.y > PixelEngine::bbox[3]) ? p.y : PixelEngine::bbox[3];
return;
}
// Now comes the fun part. We must clip the triangles/lines to the viewport - also in software
Point & p0 = s_bbox_points[0], &p1 = s_bbox_points[1], &p2 = s_bbox_points[2];
// Check for z-clip. This crude method is required for Mickey's Magical Mirror, at least
if ((p0.z > 0.0f) || (p1.z > 0.0f) || ((numPoints == 3) && (p2.z > 0.0f)))
return;
// Check points for bounds
u8 b0 = ((p0.x > 0) ? 1 : 0) | ((p0.y > 0) ? 2 : 0) | ((p0.x > 607) ? 4 : 0) | ((p0.y > 479) ? 8 : 0);
u8 b1 = ((p1.x > 0) ? 1 : 0) | ((p1.y > 0) ? 2 : 0) | ((p1.x > 607) ? 4 : 0) | ((p1.y > 479) ? 8 : 0);
// Let's be practical... If we only have a line, setting b2 to 3 saves an "if"-clause later on
u8 b2 = 3;
// Otherwise if we have a triangle, we need to check the third point
if (numPoints == 3)
b2 = ((p2.x > 0) ? 1 : 0) | ((p2.y > 0) ? 2 : 0) | ((p2.x > 607) ? 4 : 0) | ((p2.y > 479) ? 8 : 0);
// These are the internal bbox vars
s32 left = 608, right = -1, top = 480, bottom = -1;
// If the polygon is inside viewport, let's update the bounding box and be done with it
if ((b0 == 3) && (b0 == b1) && (b0 == b2))
{
left = std::min(p0.x, p1.x);
top = std::min(p0.y, p1.y);
right = std::max(p0.x, p1.x);
bottom = std::max(p0.y, p1.y);
// Triangle
if (numPoints == 3)
{
left = std::min(left, p2.x);
top = std::min(top, p2.y);
right = std::max(right, p2.x);
bottom = std::max(bottom, p2.y);
}
// Update bounding box
PixelEngine::bbox[0] = (left < PixelEngine::bbox[0]) ? left : PixelEngine::bbox[0];
PixelEngine::bbox[1] = (right > PixelEngine::bbox[1]) ? right : PixelEngine::bbox[1];
PixelEngine::bbox[2] = (top < PixelEngine::bbox[2]) ? top : PixelEngine::bbox[2];
PixelEngine::bbox[3] = (bottom > PixelEngine::bbox[3]) ? bottom : PixelEngine::bbox[3];
return;
}
// If it is not inside, then either it is completely outside, or it needs clipping.
// Check the primitive's lines
u8 i0 = b0 ^ b1;
u8 i1 = (numPoints == 3) ? (b1 ^ b2) : i0;
u8 i2 = (numPoints == 3) ? (b0 ^ b2) : i0;
// Primitive out of bounds - return
if (!(i0 | i1 | i2))
return;
// First point inside viewport - update internal bbox
if (b0 == 3)
{
left = p0.x;
top = p0.y;
right = p0.x;
bottom = p0.y;
}
// Second point inside
if (b1 == 3)
{
left = std::min(p1.x, left);
top = std::min(p1.y, top);
right = std::max(p1.x, right);
bottom = std::max(p1.y, bottom);
}
// Third point inside
if ((b2 == 3) && (numPoints == 3))
{
left = std::min(p2.x, left);
top = std::min(p2.y, top);
right = std::max(p2.x, right);
bottom = std::max(p2.y, bottom);
}
// Triangle equation vars
float m, c;
// Some definitions to help with rounding later on
const float highNum = 89374289734.0f;
const float roundUp = 0.001f;
// Intersection result
s32 s;
// First line intersects
if (i0)
{
m = (p1.x - p0.x) ? ((p1.y - p0.y) / (p1.x - p0.x)) : highNum;
c = p0.y - (m * p0.x);
if (i0 & 1)
{
s = (s32)(c + roundUp);
if (s >= 0 && s <= 479)
left = 0;
top = std::min(s, top);
bottom = std::max(s, bottom);
}
if (i0 & 2)
{
s = (s32)((-c / m) + roundUp);
if (s >= 0 && s <= 607)
top = 0;
left = std::min(s, left);
right = std::max(s, right);
}
if (i0 & 4)
{
s = (s32)((m * 607) + c + roundUp);
if (s >= 0 && s <= 479)
right = 607;
top = std::min(s, top);
bottom = std::max(s, bottom);
}
if (i0 & 8)
{
s = (s32)(((479 - c) / m) + roundUp);
if (s >= 0 && s <= 607)
bottom = 479;
left = std::min(s, left);
right = std::max(s, right);
}
}
// Only check other lines if we are dealing with a triangle
if (numPoints == 3)
{
// Second line intersects
if (i1)
{
m = (p2.x - p1.x) ? ((p2.y - p1.y) / (p2.x - p1.x)) : highNum;
c = p1.y - (m * p1.x);
if (i1 & 1)
{
s = (s32)(c + roundUp);
if (s >= 0 && s <= 479)
left = 0;
top = std::min(s, top);
bottom = std::max(s, bottom);
}
if (i1 & 2)
{
s = (s32)((-c / m) + roundUp);
if (s >= 0 && s <= 607)
top = 0;
left = std::min(s, left);
right = std::max(s, right);
}
if (i1 & 4)
{
s = (s32)((m * 607) + c + roundUp);
if (s >= 0 && s <= 479)
right = 607;
top = std::min(s, top);
bottom = std::max(s, bottom);
}
if (i1 & 8)
{
s = (s32)(((479 - c) / m) + roundUp);
if (s >= 0 && s <= 607)
bottom = 479;
left = std::min(s, left);
right = std::max(s, right);
}
}
// Third line intersects
if (i2)
{
m = (p2.x - p0.x) ? ((p2.y - p0.y) / (p2.x - p0.x)) : highNum;
c = p0.y - (m * p0.x);
if (i2 & 1)
{
s = (s32)(c + roundUp);
if (s >= 0 && s <= 479)
left = 0;
top = std::min(s, top);
bottom = std::max(s, bottom);
}
if (i2 & 2)
{
s = (s32)((-c / m) + roundUp);
if (s >= 0 && s <= 607)
top = 0;
left = std::min(s, left);
right = std::max(s, right);
}
if (i2 & 4)
{
s = (s32)((m * 607) + c + roundUp);
if (s >= 0 && s <= 479)
right = 607;
top = std::min(s, top);
bottom = std::max(s, bottom);
}
if (i2 & 8)
{
s = (s32)(((479 - c) / m) + roundUp);
if (s >= 0 && s <= 607)
bottom = 479;
left = std::min(s, left);
right = std::max(s, right);
}
}
}
// Wrong bounding box values, discard this polygon (it is outside)
if (left > 607 || top > 479 || right < 0 || bottom < 0)
return;
// Trim bounding box to viewport
left = (left < 0) ? 0 : left;
top = (top < 0) ? 0 : top;
right = (right > 607) ? 607 : right;
bottom = (bottom > 479) ? 479 : bottom;
// Update bounding box
PixelEngine::bbox[0] = (left < PixelEngine::bbox[0]) ? left : PixelEngine::bbox[0];
PixelEngine::bbox[1] = (right > PixelEngine::bbox[1]) ? right : PixelEngine::bbox[1];
PixelEngine::bbox[2] = (top < PixelEngine::bbox[2]) ? top : PixelEngine::bbox[2];
PixelEngine::bbox[3] = (bottom > PixelEngine::bbox[3]) ? bottom : PixelEngine::bbox[3];
}
static void LOADERDECL TexMtx_ReadDirect_UByte()
{
s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f;
BoundingBox::texMtxIdx[s_texmtxread] = s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
@ -611,6 +170,10 @@ void VertexLoader::CompileVertexTranslator()
m_numPipelineStages = 0;
#endif
// Get the pointer to this vertex's buffer data for the bounding box
if (g_ActiveConfig.bUseBBox)
WriteCall(BoundingBox::SetVertexBufferPosition);
// Colors
const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
// TextureCoord
@ -643,16 +206,8 @@ void VertexLoader::CompileVertexTranslator()
if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Write vertex position loader
if (g_ActiveConfig.bUseBBox)
{
WriteCall(UpdateBoundingBoxPrepare);
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
WriteCall(UpdateBoundingBox);
}
else
{
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
}
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements);
nat_offset += 12;
m_native_vtx_decl.position.components = 3;
@ -826,6 +381,10 @@ void VertexLoader::CompileVertexTranslator()
}
}
// Update the bounding box
if (g_ActiveConfig.bUseBBox)
WriteCall(BoundingBox::Update);
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_Write);
@ -901,9 +460,7 @@ void VertexLoader::SetupRunVertices(const VAT& vat, int primitive, int const cou
colElements[i] = m_VtxAttr.color[i].Elements;
// Prepare bounding box
s_bbox_primitive = primitive;
s_bbox_currPoint = 0;
s_bbox_loadedPoints = 0;
BoundingBox::Prepare(vat, primitive, m_VtxDesc, m_native_vtx_decl);
}
void VertexLoader::ConvertVertices ( int count )

View File

@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="12.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
@ -36,6 +36,7 @@
<PropertyGroup Label="UserMacros" />
<ItemGroup>
<ClCompile Include="AVIDump.cpp" />
<ClCompile Include="BoundingBox.cpp" />
<ClCompile Include="BPFunctions.cpp" />
<ClCompile Include="BPMemory.cpp" />
<ClCompile Include="BPStructs.cpp" />
@ -80,6 +81,7 @@
</ItemGroup>
<ItemGroup>
<ClInclude Include="AVIDump.h" />
<ClInclude Include="BoundingBox.h" />
<ClInclude Include="BPFunctions.h" />
<ClInclude Include="BPMemory.h" />
<ClInclude Include="BPStructs.h" />
@ -147,4 +149,4 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>
</Project>

View File

@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Base">
@ -140,6 +140,9 @@
<ClCompile Include="TextureDecoder_x64.cpp">
<Filter>Decoding</Filter>
</ClCompile>
<ClCompile Include="BoundingBox.cpp">
<Filter>Util</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="CommandProcessor.h" />
@ -269,8 +272,11 @@
<ClInclude Include="VertexLoaderManager.h">
<Filter>Vertex Loading</Filter>
</ClInclude>
<ClInclude Include="BoundingBox.h">
<Filter>Util</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<Text Include="CMakeLists.txt" />
</ItemGroup>
</Project>
</Project>

View File

@ -14,6 +14,7 @@
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoState.h"
#include "VideoCommon/XFMemory.h"
#include "VideoCommon/BoundingBox.h"
static void DoState(PointerWrap &p)
{
@ -52,6 +53,10 @@ static void DoState(PointerWrap &p)
VertexManager::DoState(p);
p.DoMarker("VertexManager");
BoundingBox::DoState(p);
p.DoMarker("BoundingBox");
// TODO: search for more data that should be saved and add it here
}