diff --git a/Data/Sys/Shaders/default_pre_post_process.glsl b/Data/Sys/Shaders/default_pre_post_process.glsl index 91bec1a42e..1f5ea2a201 100644 --- a/Data/Sys/Shaders/default_pre_post_process.glsl +++ b/Data/Sys/Shaders/default_pre_post_process.glsl @@ -1,3 +1,5 @@ +/***** COLOR CORRECTION *****/ + // Color Space references: // https://www.unravel.com.au/understanding-color-spaces @@ -36,6 +38,8 @@ float3 LinearTosRGBGamma(float3 color) return color; } +/***** COLOR SAMPLING *****/ + // Non filtered gamma corrected sample (nearest neighbor) float4 QuickSample(float3 uvw, float gamma) { @@ -43,20 +47,24 @@ float4 QuickSample(float3 uvw, float gamma) color.rgb = pow(color.rgb, float3(gamma)); return color; } - float4 QuickSample(float2 uv, float w, float gamma) { return QuickSample(float3(uv, w), gamma); } +float4 QuickSampleByPixel(float2 xy, float w, float gamma) +{ + float3 uvw = float3(xy * GetInvResolution(), w); + return QuickSample(uvw, gamma); +} + +/***** Bilinear Interpolation *****/ float4 BilinearSample(float3 uvw, float gamma) { // This emulates the (bi)linear filtering done directly from GPUs HW. // Note that GPUs might natively filter red green and blue differently, but we don't do it. // They might also use different filtering between upscaling and downscaling. - float2 source_size = GetResolution(); - float2 inverted_source_size = GetInvResolution(); float2 pixel = (uvw.xy * source_size) - 0.5; // Try to find the matching pixel top left corner // Find the integer and floating point parts @@ -64,15 +72,84 @@ float4 BilinearSample(float3 uvw, float gamma) float2 frac_pixel = fract(pixel); // Take 4 samples around the original uvw - float4 c11 = QuickSample((int_pixel + float2(0.5, 0.5)) * inverted_source_size, uvw.z, gamma); - float4 c21 = QuickSample((int_pixel + float2(1.5, 0.5)) * inverted_source_size, uvw.z, gamma); - float4 c12 = QuickSample((int_pixel + float2(0.5, 1.5)) * inverted_source_size, uvw.z, gamma); - float4 c22 = QuickSample((int_pixel + float2(1.5, 1.5)) * inverted_source_size, uvw.z, gamma); + float4 c11 = QuickSampleByPixel(int_pixel + float2(0.5, 0.5), uvw.z, gamma); + float4 c21 = QuickSampleByPixel(int_pixel + float2(1.5, 0.5), uvw.z, gamma); + float4 c12 = QuickSampleByPixel(int_pixel + float2(0.5, 1.5), uvw.z, gamma); + float4 c22 = QuickSampleByPixel(int_pixel + float2(1.5, 1.5), uvw.z, gamma); // Blend the 4 samples by their weight return lerp(lerp(c11, c21, frac_pixel.x), lerp(c12, c22, frac_pixel.x), frac_pixel.y); } +/***** Bicubic Interpolation *****/ + +// Formula derived from: +// https://en.wikipedia.org/wiki/Mitchell%E2%80%93Netravali_filters#Definition +// Values from: +// https://guideencodemoe-mkdocs.readthedocs.io/encoding/resampling/#mitchell-netravali-bicubic +// Other references: +// https://www.codeproject.com/Articles/236394/Bi-Cubic-and-Bi-Linear-Interpolation-with-GLSL +// https://github.com/ValveSoftware/gamescope/pull/740 +// https://stackoverflow.com/questions/13501081/efficient-bicubic-filtering-code-in-glsl +#define CUBIC_COEFF_GEN(B, C) \ + (mat4(/* t^0 */ ((B) / 6.0), (-(B) / 3.0 + 1.0), ((B) / 6.0), (0.0), \ + /* t^1 */ (-(B) / 2.0 - (C)), (0.0), ((B) / 2.0 + (C)), (0.0), \ + /* t^2 */ ((B) / 2.0 + 2.0 * (C)), (2.0 * (B) + (C)-3.0), \ + (-5.0 * (B) / 2.0 - 2.0 * (C) + 3.0), (-(C)), \ + /* t^3 */ (-(B) / 6.0 - (C)), (-3.0 * (B) / 2.0 - (C) + 2.0), \ + (3.0 * (B) / 2.0 + (C)-2.0), ((B) / 6.0 + (C)))) + +float4 CubicCoeffs(float t, mat4 coeffs) +{ + return coeffs * float4(1.0, t, t * t, t * t * t); +} + +float4 CubicMix(float4 c0, float4 c1, float4 c2, float4 c3, float4 coeffs) +{ + return c0 * coeffs[0] + c1 * coeffs[1] + c2 * coeffs[2] + c3 * coeffs[3]; +} + +// By Sam Belliveau. Public Domain license. +// Simple 16 tap, gamma correct, implementation of bicubic filtering. +float4 BicubicSample(float3 uvw, float gamma, mat4 coeffs) +{ + float2 pixel = (uvw.xy * GetResolution()) - 0.5; + float2 int_pixel = floor(pixel); + float2 frac_pixel = fract(pixel); + + float4 c00 = QuickSampleByPixel(int_pixel + float2(-0.5, -0.5), uvw.z, gamma); + float4 c10 = QuickSampleByPixel(int_pixel + float2(+0.5, -0.5), uvw.z, gamma); + float4 c20 = QuickSampleByPixel(int_pixel + float2(+1.5, -0.5), uvw.z, gamma); + float4 c30 = QuickSampleByPixel(int_pixel + float2(+2.5, -0.5), uvw.z, gamma); + + float4 c01 = QuickSampleByPixel(int_pixel + float2(-0.5, +0.5), uvw.z, gamma); + float4 c11 = QuickSampleByPixel(int_pixel + float2(+0.5, +0.5), uvw.z, gamma); + float4 c21 = QuickSampleByPixel(int_pixel + float2(+1.5, +0.5), uvw.z, gamma); + float4 c31 = QuickSampleByPixel(int_pixel + float2(+2.5, +0.5), uvw.z, gamma); + + float4 c02 = QuickSampleByPixel(int_pixel + float2(-0.5, +1.5), uvw.z, gamma); + float4 c12 = QuickSampleByPixel(int_pixel + float2(+0.5, +1.5), uvw.z, gamma); + float4 c22 = QuickSampleByPixel(int_pixel + float2(+1.5, +1.5), uvw.z, gamma); + float4 c32 = QuickSampleByPixel(int_pixel + float2(+2.5, +1.5), uvw.z, gamma); + + float4 c03 = QuickSampleByPixel(int_pixel + float2(-0.5, +2.5), uvw.z, gamma); + float4 c13 = QuickSampleByPixel(int_pixel + float2(+0.5, +2.5), uvw.z, gamma); + float4 c23 = QuickSampleByPixel(int_pixel + float2(+1.5, +2.5), uvw.z, gamma); + float4 c33 = QuickSampleByPixel(int_pixel + float2(+2.5, +2.5), uvw.z, gamma); + + float4 cx = CubicCoeffs(frac_pixel.x, coeffs); + float4 cy = CubicCoeffs(frac_pixel.y, coeffs); + + float4 x0 = CubicMix(c00, c10, c20, c30, cx); + float4 x1 = CubicMix(c01, c11, c21, c31, cx); + float4 x2 = CubicMix(c02, c12, c22, c32, cx); + float4 x3 = CubicMix(c03, c13, c23, c33, cx); + + return CubicMix(x0, x1, x2, x3, cy); +} + +/***** Sharp Bilinear Filtering *****/ + // Based on https://github.com/libretro/slang-shaders/blob/master/interpolation/shaders/sharp-bilinear.slang // by Themaister, Public Domain license // Does a bilinear stretch, with a preapplied Nx nearest-neighbor scale, @@ -99,23 +176,24 @@ float4 SharpBilinearSample(float3 uvw, float gamma) return BilinearSample(uvw, gamma); } +/***** Area Sampling *****/ + // By Sam Belliveau. Public Domain license. // Effectively a more accurate sharp bilinear filter when upscaling, // that also works as a mathematically perfect downscale filter. // https://entropymine.com/imageworsener/pixelmixing/ // https://github.com/obsproject/obs-studio/pull/1715 // https://legacy.imagemagick.org/Usage/filter/ -float4 BoxResample(float3 uvw, float gamma) +float4 AreaSampling(float3 uvw, float gamma) { // Determine the sizes of the source and target images. float2 source_size = GetResolution(); - float2 inv_source_size = GetInvResolution(); - float2 inv_target_size = GetInvWindowResolution(); + float2 inverted_target_size = GetInvWindowResolution(); // Determine the range of the source image that the target pixel will cover. // We shift by one output pixel because that's a prerequisite of the algorithm. - float2 range = source_size * inv_target_size; - float2 beg = (uvw.xy - inv_target_size) * source_size; + float2 range = source_size * inverted_target_size; + float2 beg = (uvw.xy - inverted_target_size) * source_size; float2 end = beg + range; // Compute the top-left and bottom-right corners of the pixel box. @@ -141,11 +219,11 @@ float4 BoxResample(float3 uvw, float gamma) const float offset = 0.5; // Accumulate corner pixels. - avg_color += area_nw * QuickSample(float2(f_beg.x + offset, f_beg.y + offset) * inv_source_size, uvw.z, gamma); - avg_color += area_ne * QuickSample(float2(f_end.x + offset, f_beg.y + offset) * inv_source_size, uvw.z, gamma); - avg_color += area_sw * QuickSample(float2(f_beg.x + offset, f_end.y + offset) * inv_source_size, uvw.z, gamma); - avg_color += area_se * QuickSample(float2(f_end.x + offset, f_end.y + offset) * inv_source_size, uvw.z, gamma); - + avg_color += area_nw * QuickSampleByPixel(float2(f_beg.x + offset, f_beg.y + offset), uvw.z, gamma); + avg_color += area_ne * QuickSampleByPixel(float2(f_end.x + offset, f_beg.y + offset), uvw.z, gamma); + avg_color += area_sw * QuickSampleByPixel(float2(f_beg.x + offset, f_end.y + offset), uvw.z, gamma); + avg_color += area_se * QuickSampleByPixel(float2(f_end.x + offset, f_end.y + offset), uvw.z, gamma); + // Determine the size of the pixel box. int x_range = int(f_end.x - f_beg.x + 0.5); int y_range = int(f_end.y - f_beg.y + 0.5); @@ -165,8 +243,8 @@ float4 BoxResample(float3 uvw, float gamma) if (ix < x_range) { float x = f_beg.x + 1.0 + float(ix); - avg_color += area_n * QuickSample(float2(x + offset, f_beg.y + offset) * inv_source_size, uvw.z, gamma); - avg_color += area_s * QuickSample(float2(x + offset, f_end.y + offset) * inv_source_size, uvw.z, gamma); + avg_color += area_n * QuickSampleByPixel(float2(x + offset, f_beg.y + offset), uvw.z, gamma); + avg_color += area_s * QuickSampleByPixel(float2(x + offset, f_end.y + offset), uvw.z, gamma); } } @@ -177,15 +255,15 @@ float4 BoxResample(float3 uvw, float gamma) { float y = f_beg.y + 1.0 + float(iy); - avg_color += area_w * QuickSample(float2(f_beg.x + offset, y + offset) * inv_source_size, uvw.z, gamma); - avg_color += area_e * QuickSample(float2(f_end.x + offset, y + offset) * inv_source_size, uvw.z, gamma); + avg_color += area_w * QuickSampleByPixel(float2(f_beg.x + offset, y + offset), uvw.z, gamma); + avg_color += area_e * QuickSampleByPixel(float2(f_end.x + offset, y + offset), uvw.z, gamma); for (int ix = 0; ix < max_iterations; ++ix) { if (ix < x_range) { float x = f_beg.x + 1.0 + float(ix); - avg_color += QuickSample(float2(x + offset, y + offset) * inv_source_size, uvw.z, gamma); + avg_color += QuickSampleByPixel(float2(x + offset, y + offset), uvw.z, gamma); } } } @@ -200,154 +278,7 @@ float4 BoxResample(float3 uvw, float gamma) return avg_color / (area_corners + area_edges + area_center); } -float4 Cubic(float v) -{ - float4 n = float4(1.0, 2.0, 3.0, 4.0) - v; - float4 s = n * n * n; - float x = s.x; - float y = s.y - 4.0 * s.x; - float z = s.z - 4.0 * s.y + 6.0 * s.x; - float w = 6.0 - x - y - z; - return float4(x, y, z, w) * (1.0 / 6.0); -} - -// https://stackoverflow.com/questions/13501081/efficient-bicubic-filtering-code-in-glsl -float4 BicubicSample(float3 uvw, float2 in_source_resolution, float2 in_inverted_source_resolution, float gamma) -{ - float2 pixel = (uvw.xy * in_source_resolution) - 0.5; - float2 int_pixel = floor(pixel); - float2 frac_pixel = fract(pixel); - - float4 xcubic = Cubic(frac_pixel.x); - float4 ycubic = Cubic(frac_pixel.y); - - float4 c = float4(int_pixel.x - 0.5, int_pixel.x + 1.5, int_pixel.y - 0.5, int_pixel.y + 1.5); - float4 s = float4(xcubic.x + xcubic.y, xcubic.z + xcubic.w, ycubic.x + ycubic.y, ycubic.z + ycubic.w); - float4 offset = c + float4(xcubic.y, xcubic.w, ycubic.y, ycubic.w) / s; - - offset *= float4(in_inverted_source_resolution.x, in_inverted_source_resolution.x, in_inverted_source_resolution.y, in_inverted_source_resolution.y); - - float4 sample0 = QuickSample(offset.xz, uvw.z, gamma); - float4 sample1 = QuickSample(offset.yz, uvw.z, gamma); - float4 sample2 = QuickSample(offset.xw, uvw.z, gamma); - float4 sample3 = QuickSample(offset.yw, uvw.z, gamma); - - float sx = s.x / (s.x + s.y); - float sy = s.z / (s.z + s.w); - - return lerp(lerp(sample3, sample2, sx), lerp(sample1, sample0, sx), sy); -} - -float4 CubicHermite(float4 A, float4 B, float4 C, float4 D, float t) -{ - float t2 = t * t; - float t3 = t * t * t; - float4 a = (-A / 2.0) + ((3.0 * B) / 2.0) - ((3.0 * C) / 2.0) + (D / 2.0); - float4 b = A - ((5.0 * B) / 2.0 ) + (2.0 * C) - (D / 2.0); - float4 c = (-A / 2.0) + (C / 2.0); - float4 d = B; - - return (a * t3) + (b * t2) + (c * t) + d; -} - -float4 BicubicHermiteSample(float3 uvw, float2 in_source_resolution, float2 in_inverted_source_resolution, float gamma) -{ - float2 pixel = (uvw.xy * in_source_resolution) + 0.5; - float2 frac_pixel = fract(pixel); - float2 uv = (floor(pixel) * in_inverted_source_resolution) - (in_inverted_source_resolution / 2.0); - - float2 inverted_source_resolution_double = in_inverted_source_resolution * 2.0; - - float4 c00 = QuickSample(uv + float2(-in_inverted_source_resolution.x, -in_inverted_source_resolution.y), uvw.z, gamma); - float4 c10 = QuickSample(uv + float2( 0.0, -in_inverted_source_resolution.y), uvw.z, gamma); - float4 c20 = QuickSample(uv + float2( in_inverted_source_resolution.x, -in_inverted_source_resolution.y), uvw.z, gamma); - float4 c30 = QuickSample(uv + float2( inverted_source_resolution_double.x, -in_inverted_source_resolution.y), uvw.z, gamma); - - float4 c01 = QuickSample(uv + float2(-in_inverted_source_resolution.x, 0.0), uvw.z, gamma); - float4 c11 = QuickSample(uv + float2( 0.0, 0.0), uvw.z, gamma); - float4 c21 = QuickSample(uv + float2( in_inverted_source_resolution.x, 0.0), uvw.z, gamma); - float4 c31 = QuickSample(uv + float2( inverted_source_resolution_double.x, 0.0), uvw.z, gamma); - - float4 c02 = QuickSample(uv + float2(-in_inverted_source_resolution.x, in_inverted_source_resolution.y), uvw.z, gamma); - float4 c12 = QuickSample(uv + float2( 0.0, in_inverted_source_resolution.y), uvw.z, gamma); - float4 c22 = QuickSample(uv + float2( in_inverted_source_resolution.x, in_inverted_source_resolution.y), uvw.z, gamma); - float4 c32 = QuickSample(uv + float2( inverted_source_resolution_double.x, in_inverted_source_resolution.y), uvw.z, gamma); - - float4 c03 = QuickSample(uv + float2(-in_inverted_source_resolution.x, inverted_source_resolution_double.y), uvw.z, gamma); - float4 c13 = QuickSample(uv + float2( 0.0, inverted_source_resolution_double.y), uvw.z, gamma); - float4 c23 = QuickSample(uv + float2( in_inverted_source_resolution.x, inverted_source_resolution_double.y), uvw.z, gamma); - float4 c33 = QuickSample(uv + float2( inverted_source_resolution_double.x, inverted_source_resolution_double.y), uvw.z, gamma); - - float4 cp0x = CubicHermite(c00, c10, c20, c30, frac_pixel.x); - float4 cp1x = CubicHermite(c01, c11, c21, c31, frac_pixel.x); - float4 cp2x = CubicHermite(c02, c12, c22, c32, frac_pixel.x); - float4 cp3x = CubicHermite(c03, c13, c23, c33, frac_pixel.x); - - return CubicHermite(cp0x, cp1x, cp2x, cp3x, frac_pixel.y); -} - -float CatmullRom(float B, float C, float x) -{ - float f = x; - - if (f < 0.0) - f = -f; - - if (f < 1.0) - { - return ((12 - 9 * B - 6 * C) * (f * f * f) + - (-18 + 12 * B + 6 * C) * (f * f) + - (6 - 2 * B)) / 6.0; - } - else if (f >= 1.0 && f < 2.0) - { - return ((-B - 6 * C) * (f * f * f) - + (6 * B + 30 * C) * (f * f) + - ( - (12 * B) - 48 * C) * f + - 8 * B + 24 * C) / 6.0; - } - else - { - return 0.0; - } -} - -// https://www.codeproject.com/Articles/236394/Bi-Cubic-and-Bi-Linear-Interpolation-with-GLSL -// https://github.com/ValveSoftware/gamescope/pull/740 -float4 BicubicCatmullRomSample(float3 uvw, float2 in_source_resolution, float2 in_inverted_source_resolution, float gamma) -{ - const float offset = 0.5; - float2 pixel = (uvw.xy * in_source_resolution) - offset; - float2 int_pixel = floor(pixel); - float2 frac_pixel = fract(pixel); - float2 int_uvw = (int_pixel + offset) * in_inverted_source_resolution; - - // B and C can be any value between 0 and 1, - // though they are meant to be 0 and 0.5 for Catmull-Rom. - // https://en.wikipedia.org/wiki/Mitchell%E2%80%93Netravali_filters - // https://guideencodemoe-mkdocs.readthedocs.io/encoding/resampling/ - const float B = 0.0; - const float C = 0.5; - - // Take 16 (4x4) samples, each with a different weight. - // This loop can be replaced with any other bicubic formula (e.g. Hermite). - float4 color_sum = float4(0.0, 0.0, 0.0, 0.0); - float4 color_denominator = float4(0.0, 0.0, 0.0, 0.0); - for (int m = -1; m <= 2; m++) - { - for (int n = -1; n <= 2; n++) - { - float4 color = QuickSample(int_uvw + (float2(m, n) * in_inverted_source_resolution), uvw.z, gamma); - float f1 = CatmullRom(B, C, float(m) - frac_pixel.x); - float f2 = CatmullRom(B, C, -float(n) + frac_pixel.y); - float4 cooef1 = float4(f1, f1, f1, f1); - float4 cooef2 = float4(f2, f2, f2, f2); - color_sum += color * (cooef2 * cooef1); - color_denominator += cooef2 * cooef1; - } - } - return color_sum / color_denominator; -} +/***** Main Functions *****/ // Returns an accurate (gamma corrected) sample of a gamma space space texture. // Outputs in linear space for simplicity. @@ -360,29 +291,33 @@ float4 LinearGammaCorrectedSample(float gamma) { color = BilinearSample(uvw, gamma); } - else if (resampling_method == 2) // "Simple" Bicubic + else if (resampling_method == 2) // Bicubic: B-Spline { - color = BicubicSample(uvw, GetResolution(), GetInvResolution(), gamma); + color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(1.0, 0.0)); } - else if (resampling_method == 3) // Hermite + else if (resampling_method == 3) // Bicubic: Mitchell-Netravali { - color = BicubicHermiteSample(uvw, GetResolution(), GetInvResolution(), gamma); + color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(1.0 / 3.0, 1.0 / 3.0)); } - else if (resampling_method == 4) // Catmull-Rom + else if (resampling_method == 4) // Bicubic: Catmull-Rom { - color = BicubicCatmullRomSample(uvw, GetResolution(), GetInvResolution(), gamma); + color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(0.0, 0.5)); } - else if (resampling_method == 5) // Nearest Neighbor - { - color = QuickSample(uvw, gamma); - } - else if (resampling_method == 6) // Sharp Bilinear + else if (resampling_method == 5) // Sharp Bilinear { color = SharpBilinearSample(uvw, gamma); } - else if (resampling_method == 7) // BoxSampling + else if (resampling_method == 6) // Area Sampling { - color = BoxResample(uvw, gamma); + color = AreaSampling(uvw, gamma); + } + else if (resampling_method == 7) // Nearest Neighbor + { + color = QuickSample(uvw, gamma); + } + else if (resampling_method == 8) // Bicubic: Hermite + { + color = BicubicSample(uvw, gamma, CUBIC_COEFF_GEN(0.0, 0.0)); } return color; diff --git a/Source/Core/DolphinQt/Config/Graphics/EnhancementsWidget.cpp b/Source/Core/DolphinQt/Config/Graphics/EnhancementsWidget.cpp index ee525ef001..f181780749 100644 --- a/Source/Core/DolphinQt/Config/Graphics/EnhancementsWidget.cpp +++ b/Source/Core/DolphinQt/Config/Graphics/EnhancementsWidget.cpp @@ -110,18 +110,16 @@ void EnhancementsWidget::CreateWidgets() static_cast(OutputResamplingMode::Default)); m_output_resampling_combo->addItem(tr("Bilinear"), static_cast(OutputResamplingMode::Bilinear)); - m_output_resampling_combo->addItem(tr("Bicubic"), - static_cast(OutputResamplingMode::Bicubic)); - m_output_resampling_combo->addItem(tr("Hermite"), - static_cast(OutputResamplingMode::Hermite)); - m_output_resampling_combo->addItem(tr("Catmull-Rom"), + m_output_resampling_combo->addItem(tr("Bicubic: B-Spline"), + static_cast(OutputResamplingMode::BSpline)); + m_output_resampling_combo->addItem(tr("Bicubic: Mitchell-Netravali"), + static_cast(OutputResamplingMode::MitchellNetravali)); + m_output_resampling_combo->addItem(tr("Bicubic: Catmull-Rom"), static_cast(OutputResamplingMode::CatmullRom)); - m_output_resampling_combo->addItem(tr("Nearest Neighbor"), - static_cast(OutputResamplingMode::NearestNeighbor)); m_output_resampling_combo->addItem(tr("Sharp Bilinear"), static_cast(OutputResamplingMode::SharpBilinear)); - m_output_resampling_combo->addItem(tr("Box Resampling"), - static_cast(OutputResamplingMode::BoxResampling)); + m_output_resampling_combo->addItem(tr("Area Sampling"), + static_cast(OutputResamplingMode::AreaSampling)); m_configure_color_correction = new ToolTipPushButton(tr("Configure")); @@ -491,18 +489,37 @@ void EnhancementsWidget::AddDescriptions() "scaling filter selected by the game.

Any option except 'Default' will alter the look " "of the game's textures and might cause issues in a small number of " "games.

If unsure, select 'Default'."); - static const char TR_OUTPUT_RESAMPLING_DESCRIPTION[] = QT_TR_NOOP( - "Affects how the game output image is upscaled or downscaled to the window resolution.
" - "\"Default\" will rely on the GPU internal bilinear sampler which isn't gamma corrected." - "
\"Bilinear\" (gamma corrected) is a good compromise between quality and performance." - "
\"Bicubic\" is smoother than \"Bilinear\"." - "
\"Hermite\" might offer the best quality when upscaling," - " at a slightly bigger perform cost.
\"Catmull-Rom\" is best for downscaling." - "
\"Nearest Neighbor\" doesn't do any resampling, select if you like a pixelated look." - "
\"Sharp Bilinear\" works best with 2D games at low resolutions, use if you like a sharp" - " look." - "
\"Box Resampling\" is most expensive but also most accurate downscaling method." - "
If unsure, select 'Default'."); + static const char TR_OUTPUT_RESAMPLING_DESCRIPTION[] = + QT_TR_NOOP("Affects how the game output is scaled to the window resolution." + "
The performance mostly depends on the number of samples each method uses." + "
Compared to SSAA, resampling is useful in case the output window" + "
resolution isn't a multiplier of the native emulation resolution." + + "

Default - [fastest]" + "
Internal GPU bilinear sampler which is not gamma corrected." + "
This setting might be ignored if gamma correction is forced on." + + "

Bilinear - [4 samples]" + "
Gamma corrected linear interpolation between pixels." + + "

Bicubic - [16 samples]" + "
Gamma corrected cubic interpolation between pixels." + "
Good when rescaling between close resolutions. i.e 1080p and 1440p." + "
Comes in various flavors:" + "
B-Spline: Blurry, but avoids all lobing artifacts" + "
Mitchell-Netravali: Good middle ground between blurry and lobing" + "
Catmull-Rom: Sharper, but can cause lobing artifacts" + + "

Sharp Bilinear - [1-4 samples]" + "
Similarly to \"Nearest Neighbor\", it maintains a sharp look," + "
but also does some blending to avoid shimmering." + "
Works best with 2D games at low resolutions." + + "

Area Sampling - [up to 324 samples]" + "
Weights pixels by the percentage of area they occupy. Gamma corrected." + "
Best for down scaling by more than 2x." + + "

If unsure, select 'Default'."); static const char TR_COLOR_CORRECTION_DESCRIPTION[] = QT_TR_NOOP("A group of features to make the colors more accurate, matching the color space " "Wii and GC games were meant for."); diff --git a/Source/Core/VideoCommon/VideoConfig.h b/Source/Core/VideoCommon/VideoConfig.h index dcdc631a40..6e34a43934 100644 --- a/Source/Core/VideoCommon/VideoConfig.h +++ b/Source/Core/VideoCommon/VideoConfig.h @@ -56,12 +56,11 @@ enum class OutputResamplingMode : int { Default, Bilinear, - Bicubic, - Hermite, + BSpline, + MitchellNetravali, CatmullRom, - NearestNeighbor, SharpBilinear, - BoxResampling, + AreaSampling, }; enum class ColorCorrectionRegion : int