PerformanceTracker: Use SPSCQueue and atomic to eliminate need for a mutex. Clean up some math.

This commit is contained in:
Jordan Woyak
2025-03-05 03:26:34 -06:00
parent c763961112
commit 46e0952e97
3 changed files with 93 additions and 113 deletions

View File

@ -6,12 +6,12 @@
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <mutex>
#include <implot.h>
#include "Common/CommonTypes.h"
#include "Common/FileUtil.h"
#include "Common/MathUtil.h"
#include "Core/Core.h"
#include "VideoCommon/VideoConfig.h"
@ -21,14 +21,11 @@ static constexpr u64 MAX_QUALITY_GRAPH_SIZE = 1UL << 8;
PerformanceTracker::PerformanceTracker(const std::optional<std::string> log_name,
const std::optional<DT> sample_window_duration)
: m_on_state_changed_handle{Core::AddOnStateChangedCallback([this](Core::State state) {
if (state == Core::State::Paused)
SetPaused(true);
else if (state == Core::State::Running)
SetPaused(false);
})},
m_log_name{log_name}, m_sample_window_duration{sample_window_duration}
: m_log_name{log_name}, m_sample_window_duration{sample_window_duration}
{
m_on_state_changed_handle =
Core::AddOnStateChangedCallback([this](Core::State state) { m_is_last_time_sane = false; });
Reset();
}
@ -39,112 +36,110 @@ PerformanceTracker::~PerformanceTracker()
void PerformanceTracker::Reset()
{
std::unique_lock lock{m_mutex};
m_raw_dts.Clear();
m_dt_queue.clear();
m_dt_total = DT::zero();
m_dt_queue.clear();
m_last_raw_dt = DT::zero();
m_last_time = Clock::now();
m_hz_avg = 0.0;
m_dt_avg = DT::zero();
m_dt_std = std::nullopt;
m_dt_std = DT::zero();
m_is_last_time_sane = false;
}
void PerformanceTracker::Count()
{
std::unique_lock lock{m_mutex};
const TimePoint current_time{Clock::now()};
if (m_paused)
const DT diff{current_time - m_last_time};
m_last_time = current_time;
if (!m_is_last_time_sane)
{
m_is_last_time_sane = true;
return;
}
const DT window{GetSampleWindow()};
m_last_raw_dt = diff;
m_raw_dts.Push(diff);
}
const TimePoint time{Clock::now()};
const DT diff{time - m_last_time};
void PerformanceTracker::UpdateStats()
{
DT diff{};
while (m_raw_dts.Pop(diff))
HandleRawDt(diff);
m_last_time = time;
// Update Std Dev
MathUtil::RunningVariance<double> variance;
for (auto dt : m_dt_queue)
variance.Push(DT_s(dt).count());
m_dt_std = std::chrono::duration_cast<DT>(DT_s(variance.PopulationStandardDeviation()));
}
void PerformanceTracker::HandleRawDt(DT diff)
{
if (m_dt_queue.size() == MAX_DT_QUEUE_SIZE)
PopBack();
PushFront(diff);
if (m_dt_queue.size() == MAX_DT_QUEUE_SIZE)
PopBack();
const DT window{GetSampleWindow()};
while (m_dt_total - m_dt_queue.back() >= window)
PopBack();
// Simple Moving Average Throughout the Window
m_dt_avg = m_dt_total / m_dt_queue.size();
const double hz = DT_s(1.0) / m_dt_avg;
const DT dt_avg = m_dt_total / m_dt_queue.size();
const double hz = DT_s(1.0) / dt_avg;
m_dt_avg = dt_avg;
// Exponential Moving Average
const DT_s rc = SAMPLE_RC_RATIO * std::min(window, m_dt_total);
const double a = 1.0 - std::exp(-(DT_s(diff) / rc));
// Sometimes euler averages can break when the average is inf/nan
if (std::isfinite(m_hz_avg))
m_hz_avg += a * (hz - m_hz_avg);
const auto hz_avg = m_hz_avg.load();
if (std::isfinite(hz_avg))
m_hz_avg = hz_avg + a * (hz - hz_avg);
else
m_hz_avg = hz;
m_dt_std = std::nullopt;
LogRenderTimeToFile(diff);
}
DT PerformanceTracker::GetSampleWindow() const
{
// This reads a constant value and thus does not need a mutex
return m_sample_window_duration.value_or(
duration_cast<DT>(DT_us{std::max(1, g_ActiveConfig.iPerfSampleUSec)}));
}
double PerformanceTracker::GetHzAvg() const
{
std::shared_lock lock{m_mutex};
return m_hz_avg;
}
DT PerformanceTracker::GetDtAvg() const
{
std::shared_lock lock{m_mutex};
return m_dt_avg;
}
DT PerformanceTracker::GetDtStd() const
{
std::unique_lock lock{m_mutex};
if (m_dt_std)
return *m_dt_std;
if (m_dt_queue.empty())
return *(m_dt_std = DT::zero());
double total = 0.0;
for (auto dt : m_dt_queue)
{
double diff = DT_s(dt - m_dt_avg).count();
total += diff * diff;
}
// This is a weighted standard deviation
return *(m_dt_std = std::chrono::duration_cast<DT>(DT_s(std::sqrt(total / m_dt_queue.size()))));
return m_dt_std;
}
DT PerformanceTracker::GetLastRawDt() const
{
std::shared_lock lock{m_mutex};
if (m_dt_queue.empty())
return DT::zero();
return m_dt_queue.front();
return m_last_raw_dt;
}
void PerformanceTracker::ImPlotPlotLines(const char* label) const
{
static std::array<float, MAX_DT_QUEUE_SIZE + 2> x, y;
std::shared_lock lock{m_mutex};
// "quality" graph uses twice as many points.
static_assert(MAX_QUALITY_GRAPH_SIZE * 2 <= MAX_DT_QUEUE_SIZE);
static std::array<float, MAX_DT_QUEUE_SIZE + 1> x, y;
if (m_dt_queue.empty())
return;
@ -152,38 +147,32 @@ void PerformanceTracker::ImPlotPlotLines(const char* label) const
// Decides if there are too many points to plot using rectangles
const bool quality = m_dt_queue.size() < MAX_QUALITY_GRAPH_SIZE;
const DT update_time = Clock::now() - m_last_time;
const float predicted_frame_time = DT_ms(std::max(update_time, m_dt_queue.front())).count();
std::size_t points = 0;
if (quality)
{
x[points] = 0.f;
y[points] = predicted_frame_time;
++points;
}
x[points] = DT_ms(update_time).count();
y[points] = predicted_frame_time;
++points;
for (auto dt : m_dt_queue)
{
const float frame_time_ms = DT_ms(dt).count();
std::size_t point_index = 0;
const auto add_point = [&](DT dt, DT shift_x, float prev_ms) {
const float ms = DT_ms{dt}.count();
if (quality)
{
x[points] = x[points - 1];
y[points] = frame_time_ms;
++points;
x[point_index] = prev_ms;
y[point_index] = ms;
++point_index;
}
x[points] = x[points - 1] + frame_time_ms;
y[points] = frame_time_ms;
++points;
}
x[point_index] = prev_ms + DT_ms{shift_x}.count();
y[point_index] = ms;
++point_index;
};
ImPlot::PlotLine(label, x.data(), y.data(), static_cast<int>(points));
// Rightmost point.
const auto update_time = Clock::now() - m_last_time;
const auto predicted_frame_time = std::max(update_time, m_dt_queue.front());
add_point(predicted_frame_time, DT{}, 0);
// Other points, right to left.
for (auto dt : m_dt_queue)
add_point(dt, dt, x[point_index - 1]);
ImPlot::PlotLine(label, x.data(), y.data(), static_cast<int>(point_index));
}
void PerformanceTracker::PushFront(DT value)
@ -211,18 +200,3 @@ void PerformanceTracker::LogRenderTimeToFile(DT val)
m_bench_file << std::fixed << std::setprecision(8) << DT_ms(val).count() << std::endl;
}
void PerformanceTracker::SetPaused(bool paused)
{
std::unique_lock lock{m_mutex};
m_paused = paused;
if (m_paused)
{
m_last_time = TimePoint::max();
}
else
{
m_last_time = Clock::now();
}
}