UnitTests: rewrite vertex loader tests

The position attribute now has complete coverage.
This commit is contained in:
Tillmann Karras 2015-03-12 11:27:22 +01:00
parent 486370829a
commit 49ae99ffc9

View File

@ -1,13 +1,18 @@
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <unordered_set> #include <unordered_set>
#include "Common/Common.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/VertexLoaderBase.h"
// Needs to be included later because it defines a TEST macro that conflicts
// with a TEST method definition in x64Emitter.h.
#include <gtest/gtest.h> // NOLINT #include <gtest/gtest.h> // NOLINT
#include "Common/Common.h"
#include "Common/MathUtil.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/VertexLoaderBase.h"
TEST(VertexLoaderUID, UniqueEnough) TEST(VertexLoaderUID, UniqueEnough)
{ {
std::unordered_set<VertexLoaderUID> uids; std::unordered_set<VertexLoaderUID> uids;
@ -38,181 +43,209 @@ protected:
void SetUp() override void SetUp() override
{ {
memset(&input_memory[0], 0, sizeof(input_memory)); memset(input_memory, 0, sizeof(input_memory));
memset(&output_memory[0], 0, sizeof(input_memory)); memset(output_memory, 0xFF, sizeof(input_memory));
memset(&m_vtx_desc, 0, sizeof(m_vtx_desc)); memset(&m_vtx_desc, 0, sizeof(m_vtx_desc));
memset(&m_vtx_attr, 0, sizeof(m_vtx_attr)); memset(&m_vtx_attr, 0, sizeof(m_vtx_attr));
m_loader = nullptr;
ResetPointers(); ResetPointers();
} }
// Pushes a value to the input stream. void CreateAndCheckSizes(size_t input_size, size_t output_size = 3 * sizeof(float))
{
m_loader.reset(VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr));
ASSERT_EQ((int)input_size, m_loader->m_VertexSize);
ASSERT_EQ((int)output_size, m_loader->m_native_vtx_decl.stride);
}
template <typename T> template <typename T>
void Input(T val) void Input(T val)
{ {
// Converts *to* big endian, not from. // Write swapped.
*(T*)(&input_memory[m_input_pos]) = Common::FromBigEndian(val); m_src.Write<T, true>(val);
m_input_pos += sizeof(val);
} }
// Reads a value from the output stream. void ExpectOut(float val)
template <typename T>
T Output()
{ {
T out = *(T*)&output_memory[m_output_pos]; // Read unswapped.
m_output_pos += sizeof(out); MathUtil::IntFloat expected(val), actual(m_dst.Read<float, false>());
return out; if (!actual.f || actual.f != actual.f)
EXPECT_EQ(expected.i, actual.i);
else
EXPECT_EQ(expected.f, actual.f);
} }
// Combination of EXPECT_EQ and Output. void RunVertices(int count, int expected_count = -1)
template <typename T>
void ExpectOut(T val)
{ {
EXPECT_EQ(val, Output<T>()); if (expected_count == -1)
expected_count = count;
ResetPointers();
int actual_count = m_loader->RunVertices(m_src, m_dst, count, GX_DRAW_POINTS);
EXPECT_EQ(actual_count, expected_count);
} }
void ResetPointers() void ResetPointers()
{ {
m_input_pos = m_output_pos = 0; m_src = DataReader(input_memory, input_memory + sizeof(input_memory));
src = DataReader(input_memory, input_memory + sizeof(input_memory)); m_dst = DataReader(output_memory, output_memory + sizeof(output_memory));
dst = DataReader(output_memory, output_memory + sizeof(output_memory));
} }
u32 m_input_pos, m_output_pos; DataReader m_src;
DataReader src; DataReader m_dst;
DataReader dst;
TVtxDesc m_vtx_desc; TVtxDesc m_vtx_desc;
VAT m_vtx_attr; VAT m_vtx_attr;
std::unique_ptr<VertexLoaderBase> m_loader;
}; };
TEST_F(VertexLoaderTest, PositionDirectFloatXYZ) class VertexLoaderParamTest : public VertexLoaderTest, public ::testing::WithParamInterface<std::tuple<int, int, int, int>> {};
extern int gtest_AllCombinationsVertexLoaderParamTest_dummy_;
INSTANTIATE_TEST_CASE_P(
AllCombinations, VertexLoaderParamTest,
::testing::Combine(
::testing::Values(DIRECT, INDEX8, INDEX16),
::testing::Values(FORMAT_UBYTE, FORMAT_BYTE, FORMAT_USHORT, FORMAT_SHORT, FORMAT_FLOAT),
::testing::Values(0, 1), // elements
::testing::Values(0, 1, 31) // frac
)
);
TEST_P(VertexLoaderParamTest, PositionAll)
{ {
m_vtx_desc.Position = 1; // Direct int addr, format, elements, frac;
m_vtx_attr.g0.PosElements = 1; // XYZ std::tie(addr, format, elements, frac) = GetParam();
m_vtx_attr.g0.PosFormat = 4; // Float this->m_vtx_desc.Position = addr;
this->m_vtx_attr.g0.PosFormat = format;
this->m_vtx_attr.g0.PosElements = elements;
this->m_vtx_attr.g0.PosFrac = frac;
this->m_vtx_attr.g0.ByteDequant = true;
elements += 2;
VertexLoaderBase* loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr); std::vector<float> values = {
std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::denorm_min(),
std::numeric_limits<float>::min(),
std::numeric_limits<float>::max(),
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity(),
-0x8000, -0x80, -1, -0, 0, 1, 123, 0x7F, 0xFF, 0x7FFF, 0xFFFF, 12345678,
};
ASSERT_EQ(0u, values.size() % 2);
ASSERT_EQ(0u, values.size() % 3);
ASSERT_EQ(3 * sizeof(float), (u32)loader->m_native_vtx_decl.stride); int count = (int)values.size() / elements;
ASSERT_EQ(3 * sizeof(float), (u32)loader->m_VertexSize); u32 elem_size = 1 << (format / 2);
size_t input_size = elements * elem_size;
// Write some vertices. if (addr & MASK_INDEXED)
Input(0.0f); Input(0.0f); Input(0.0f);
Input(1.0f); Input(0.0f); Input(0.0f);
Input(0.0f); Input(1.0f); Input(0.0f);
Input(0.0f); Input(0.0f); Input(1.0f);
// Convert 4 points. "7" -> primitive are points.
int count = loader->RunVertices(src, dst, 4, 7);
src.Skip(4 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride);
delete loader;
ExpectOut(0.0f); ExpectOut(0.0f); ExpectOut(0.0f);
ExpectOut(1.0f); ExpectOut(0.0f); ExpectOut(0.0f);
ExpectOut(0.0f); ExpectOut(1.0f); ExpectOut(0.0f);
ExpectOut(0.0f); ExpectOut(0.0f); ExpectOut(1.0f);
// Test that scale does nothing for floating point inputs.
Input(1.0f); Input(2.0f); Input(4.0f);
m_vtx_attr.g0.PosFrac = 1;
loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
count = loader->RunVertices(src, dst, 1, 7);
src.Skip(1 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride);
ExpectOut(1.0f); ExpectOut(2.0f); ExpectOut(4.0f);
delete loader;
}
TEST_F(VertexLoaderTest, PositionDirectU16XY)
{
m_vtx_desc.Position = 1; // Direct
m_vtx_attr.g0.PosElements = 0; // XY
m_vtx_attr.g0.PosFormat = 2; // U16
VertexLoaderBase* loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
ASSERT_EQ(3 * sizeof(float), (u32)loader->m_native_vtx_decl.stride);
ASSERT_EQ(2 * sizeof(u16), (u32)loader->m_VertexSize);
// Write some vertices.
Input<u16>(0); Input<u16>(0);
Input<u16>(1); Input<u16>(2);
Input<u16>(256); Input<u16>(257);
Input<u16>(65535); Input<u16>(65534);
Input<u16>(12345); Input<u16>(54321);
// Convert 5 points. "7" -> primitive are points.
int count = loader->RunVertices(src, dst, 5, 7);
src.Skip(5 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride);
delete loader;
ExpectOut(0.0f); ExpectOut(0.0f); ExpectOut(0.0f);
ExpectOut(1.0f); ExpectOut(2.0f); ExpectOut(0.0f);
ExpectOut(256.0f); ExpectOut(257.0f); ExpectOut(0.0f);
ExpectOut(65535.0f); ExpectOut(65534.0f); ExpectOut(0.0f);
ExpectOut(12345.0f); ExpectOut(54321.0f); ExpectOut(0.0f);
// Test that scale works on U16 inputs.
Input<u16>(42); Input<u16>(24);
m_vtx_attr.g0.PosFrac = 1;
m_vtx_attr.g0.ByteDequant = 1;
loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
count = loader->RunVertices(src, dst, 1, 7);
src.Skip(1 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride);
ExpectOut(21.0f); ExpectOut(12.0f); ExpectOut(0.0f);
delete loader;
}
TEST_F(VertexLoaderTest, PositionDirectFloatXYZSpeed)
{
m_vtx_desc.Position = 1; // Direct
m_vtx_attr.g0.PosElements = 1; // XYZ
m_vtx_attr.g0.PosFormat = 4; // Float
VertexLoaderBase* loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
ASSERT_EQ(3 * sizeof(float), (u32)loader->m_native_vtx_decl.stride);
ASSERT_EQ(3 * sizeof(float), (u32)loader->m_VertexSize);
for (int i = 0; i < 1000; ++i)
{ {
ResetPointers(); input_size = addr - 1;
int count = loader->RunVertices(src, dst, 100000, 7); for (int i = 0; i < count; i++)
src.Skip(100000 * loader->m_VertexSize); if (addr == INDEX8)
dst.Skip(count * loader->m_native_vtx_decl.stride); Input<u8>(i);
else
Input<u16>(i);
cached_arraybases[ARRAY_POSITION] = m_src.GetPointer();
g_main_cp_state.array_strides[ARRAY_POSITION] = elements * elem_size;
}
CreateAndCheckSizes(input_size);
for (float value : values)
{
switch (format)
{
case FORMAT_UBYTE: Input((u8)value); break;
case FORMAT_BYTE: Input((s8)value); break;
case FORMAT_USHORT: Input((u16)value); break;
case FORMAT_SHORT: Input((s16)value); break;
case FORMAT_FLOAT: Input(value); break;
}
}
RunVertices(count);
float scale = 1.f / (1u << (format == FORMAT_FLOAT ? 0 : frac));
for (auto iter = values.begin(); iter != values.end();)
{
float f, g;
switch (format)
{
case FORMAT_UBYTE: f = (u8)*iter++; g = (u8)*iter++; break;
case FORMAT_BYTE: f = (s8)*iter++; g = (s8)*iter++; break;
case FORMAT_USHORT: f = (u16)*iter++; g = (u16)*iter++; break;
case FORMAT_SHORT: f = (s16)*iter++; g = (s16)*iter++; break;
case FORMAT_FLOAT: f = *iter++; g = *iter++; break;
}
ExpectOut(f * scale);
ExpectOut(g * scale);
if (elements == 2)
m_dst.Skip(sizeof(float));
} }
delete loader;
} }
TEST_F(VertexLoaderTest, PositionDirectU16XYSpeed) TEST_F(VertexLoaderTest, PositionIndex16FloatXY)
{ {
m_vtx_desc.Position = 1; // Direct m_vtx_desc.Position = INDEX16;
m_vtx_attr.g0.PosElements = 0; // XY m_vtx_attr.g0.PosFormat = FORMAT_FLOAT;
m_vtx_attr.g0.PosFormat = 2; // U16 CreateAndCheckSizes(sizeof(u16));
Input<u16>(1); Input<u16>(0);
cached_arraybases[ARRAY_POSITION] = m_src.GetPointer();
g_main_cp_state.array_strides[ARRAY_POSITION] = sizeof(float); // ;)
Input(1.f); Input(2.f); Input(3.f);
RunVertices(2);
ExpectOut(2); ExpectOut(3); m_dst.Skip(sizeof(float));
ExpectOut(1); ExpectOut(2); m_dst.Skip(sizeof(float));
}
VertexLoaderBase* loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr); class VertexLoaderSpeedTest : public VertexLoaderTest, public ::testing::WithParamInterface<std::tuple<int, int>> {};
extern int gtest_FormatsAndElementsVertexLoaderSpeedTest_dummy_;
ASSERT_EQ(3 * sizeof(float), (u32)loader->m_native_vtx_decl.stride); INSTANTIATE_TEST_CASE_P(
ASSERT_EQ(2 * sizeof(u16), (u32)loader->m_VertexSize); FormatsAndElements, VertexLoaderSpeedTest,
::testing::Combine(
::testing::Values(FORMAT_UBYTE, FORMAT_BYTE, FORMAT_USHORT, FORMAT_SHORT, FORMAT_FLOAT),
::testing::Values(0, 1) // elements
)
);
TEST_P(VertexLoaderSpeedTest, PositionDirectAll)
{
int format, elements;
std::tie(format, elements) = GetParam();
const char* map[] = { "u8", "s8", "u16", "s16", "float" };
printf("format: %s, elements: %d\n", map[format], elements);
m_vtx_desc.Position = DIRECT;
m_vtx_attr.g0.PosFormat = format;
m_vtx_attr.g0.PosElements = elements;
elements += 2;
size_t elem_size = 1 << (format / 2);
CreateAndCheckSizes(elements * elem_size);
for (int i = 0; i < 1000; ++i) for (int i = 0; i < 1000; ++i)
{ RunVertices(100000);
ResetPointers(); }
int count = loader->RunVertices(src, dst, 100000, 7);
src.Skip(100000 * loader->m_VertexSize); TEST_P(VertexLoaderSpeedTest, TexCoordSingleElement)
dst.Skip(count * loader->m_native_vtx_decl.stride); {
} int format, elements;
delete loader; std::tie(format, elements) = GetParam();
const char* map[] = { "u8", "s8", "u16", "s16", "float" };
printf("format: %s, elements: %d\n", map[format], elements);
m_vtx_desc.Position = DIRECT;
m_vtx_attr.g0.PosFormat = FORMAT_BYTE;
m_vtx_desc.Tex0Coord = DIRECT;
m_vtx_attr.g0.Tex0CoordFormat = format;
m_vtx_attr.g0.Tex0CoordElements = elements;
elements += 1;
size_t elem_size = 1 << (format / 2);
CreateAndCheckSizes(2 * sizeof(s8) + elements * elem_size,
2 * sizeof(float) + elements * sizeof(float));
for (int i = 0; i < 1000; ++i)
RunVertices(100000);
} }
TEST_F(VertexLoaderTest, LargeFloatVertexSpeed) TEST_F(VertexLoaderTest, LargeFloatVertexSpeed)
{ {
// Enables most attributes in floating point direct mode to test speed. // Enables most attributes in floating point indexed mode to test speed.
m_vtx_desc.PosMatIdx = 1; m_vtx_desc.PosMatIdx = 1;
m_vtx_desc.Tex0MatIdx = 1; m_vtx_desc.Tex0MatIdx = 1;
m_vtx_desc.Tex1MatIdx = 1; m_vtx_desc.Tex1MatIdx = 1;
@ -222,54 +255,54 @@ TEST_F(VertexLoaderTest, LargeFloatVertexSpeed)
m_vtx_desc.Tex5MatIdx = 1; m_vtx_desc.Tex5MatIdx = 1;
m_vtx_desc.Tex6MatIdx = 1; m_vtx_desc.Tex6MatIdx = 1;
m_vtx_desc.Tex7MatIdx = 1; m_vtx_desc.Tex7MatIdx = 1;
m_vtx_desc.Position = 1; m_vtx_desc.Position = INDEX16;
m_vtx_desc.Normal = 1; m_vtx_desc.Normal = INDEX16;
m_vtx_desc.Color0 = 1; m_vtx_desc.Color0 = INDEX16;
m_vtx_desc.Color1 = 1; m_vtx_desc.Color1 = INDEX16;
m_vtx_desc.Tex0Coord = 1; m_vtx_desc.Tex0Coord = INDEX16;
m_vtx_desc.Tex1Coord = 1; m_vtx_desc.Tex1Coord = INDEX16;
m_vtx_desc.Tex2Coord = 1; m_vtx_desc.Tex2Coord = INDEX16;
m_vtx_desc.Tex3Coord = 1; m_vtx_desc.Tex3Coord = INDEX16;
m_vtx_desc.Tex4Coord = 1; m_vtx_desc.Tex4Coord = INDEX16;
m_vtx_desc.Tex5Coord = 1; m_vtx_desc.Tex5Coord = INDEX16;
m_vtx_desc.Tex6Coord = 1; m_vtx_desc.Tex6Coord = INDEX16;
m_vtx_desc.Tex7Coord = 1; m_vtx_desc.Tex7Coord = INDEX16;
m_vtx_attr.g0.PosElements = 1; // XYZ m_vtx_attr.g0.PosElements = 1; // XYZ
m_vtx_attr.g0.PosFormat = 4; // Float m_vtx_attr.g0.PosFormat = FORMAT_FLOAT;
m_vtx_attr.g0.NormalElements = 1; // NBT m_vtx_attr.g0.NormalElements = 1; // NBT
m_vtx_attr.g0.NormalFormat = 4; // Float m_vtx_attr.g0.NormalFormat = FORMAT_FLOAT;
m_vtx_attr.g0.Color0Elements = 1; // Has Alpha m_vtx_attr.g0.Color0Elements = 1; // Has Alpha
m_vtx_attr.g0.Color0Comp = 5; // RGBA8888 m_vtx_attr.g0.Color0Comp = FORMAT_32B_8888;
m_vtx_attr.g0.Color1Elements = 1; // Has Alpha m_vtx_attr.g0.Color1Elements = 1; // Has Alpha
m_vtx_attr.g0.Color1Comp = 5; // RGBA8888 m_vtx_attr.g0.Color1Comp = FORMAT_32B_8888;
m_vtx_attr.g0.Tex0CoordElements = 1; // ST m_vtx_attr.g0.Tex0CoordElements = 1; // ST
m_vtx_attr.g0.Tex0CoordFormat = 4; // Float m_vtx_attr.g0.Tex0CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g1.Tex1CoordElements = 1; // ST m_vtx_attr.g1.Tex1CoordElements = 1; // ST
m_vtx_attr.g1.Tex1CoordFormat = 4; // Float m_vtx_attr.g1.Tex1CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g1.Tex2CoordElements = 1; // ST m_vtx_attr.g1.Tex2CoordElements = 1; // ST
m_vtx_attr.g1.Tex2CoordFormat = 4; // Float m_vtx_attr.g1.Tex2CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g1.Tex3CoordElements = 1; // ST m_vtx_attr.g1.Tex3CoordElements = 1; // ST
m_vtx_attr.g1.Tex3CoordFormat = 4; // Float m_vtx_attr.g1.Tex3CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g1.Tex4CoordElements = 1; // ST m_vtx_attr.g1.Tex4CoordElements = 1; // ST
m_vtx_attr.g1.Tex4CoordFormat = 4; // Float m_vtx_attr.g1.Tex4CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g2.Tex5CoordElements = 1; // ST m_vtx_attr.g2.Tex5CoordElements = 1; // ST
m_vtx_attr.g2.Tex5CoordFormat = 4; // Float m_vtx_attr.g2.Tex5CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g2.Tex6CoordElements = 1; // ST m_vtx_attr.g2.Tex6CoordElements = 1; // ST
m_vtx_attr.g2.Tex6CoordFormat = 4; // Float m_vtx_attr.g2.Tex6CoordFormat = FORMAT_FLOAT;
m_vtx_attr.g2.Tex7CoordElements = 1; // ST m_vtx_attr.g2.Tex7CoordElements = 1; // ST
m_vtx_attr.g2.Tex7CoordFormat = 4; // Float m_vtx_attr.g2.Tex7CoordFormat = FORMAT_FLOAT;
VertexLoaderBase* loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr); CreateAndCheckSizes(33, 156);
for (int i = 0; i < 16; i++)
{
cached_arraybases[i] = m_src.GetPointer();
g_main_cp_state.array_strides[i] = 129;
}
// This test is only done 100x in a row since it's ~20x slower using the // This test is only done 100x in a row since it's ~20x slower using the
// current vertex loader implementation. // current vertex loader implementation.
for (int i = 0; i < 100; ++i) for (int i = 0; i < 100; ++i)
{ RunVertices(100000);
ResetPointers();
int count = loader->RunVertices(src, dst, 100000, 7);
src.Skip(100000 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride);
}
delete loader;
} }