JitArm64: Implement frsqrte

This commit is contained in:
JosJuice
2021-05-05 21:10:48 +02:00
parent 85226e09f0
commit 4b3fda7906
8 changed files with 224 additions and 27 deletions

View File

@ -141,6 +141,7 @@ public:
void frspx(UGeckoInstruction inst);
void fctiwzx(UGeckoInstruction inst);
void fresx(UGeckoInstruction inst);
void frsqrtex(UGeckoInstruction inst);
// Paired
void ps_maddXX(UGeckoInstruction inst);
@ -149,6 +150,7 @@ public:
void ps_sel(UGeckoInstruction inst);
void ps_sumX(UGeckoInstruction inst);
void ps_res(UGeckoInstruction inst);
void ps_rsqrte(UGeckoInstruction inst);
// Loadstore paired
void psq_l(UGeckoInstruction inst);
@ -235,6 +237,7 @@ protected:
void GenerateAsm();
void GenerateCommonAsm();
void GenerateFres();
void GenerateFrsqrte();
void GenerateConvertDoubleToSingle();
void GenerateConvertSingleToDouble();
void GenerateFPRF(bool single);

View File

@ -456,6 +456,32 @@ void JitArm64::fresx(UGeckoInstruction inst)
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
}
void JitArm64::frsqrtex(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITFloatingPointOff);
FALLBACK_IF(inst.Rc);
FALLBACK_IF(SConfig::GetInstance().bFPRF && js.op->wantsFPRF);
const u32 b = inst.FB;
const u32 d = inst.FD;
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Lock(ARM64Reg::Q0);
const ARM64Reg VB = fpr.R(b, RegType::LowerPair);
m_float_emit.FMOV(ARM64Reg::X1, EncodeRegToDouble(VB));
m_float_emit.FRSQRTE(ARM64Reg::D0, EncodeRegToDouble(VB));
BL(GetAsmRoutines()->frsqrte);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Unlock(ARM64Reg::Q0);
const ARM64Reg VD = fpr.RW(d, RegType::LowerPair);
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
}
// Since the following float conversion functions are used in non-arithmetic PPC float
// instructions, they must convert floats bitexact and never flush denormals to zero or turn SNaNs
// into QNaNs. This means we can't just use FCVT/FCVTL/FCVTN.

View File

@ -384,3 +384,34 @@ void JitArm64::ps_res(UGeckoInstruction inst)
fpr.FixSinglePrecision(d);
}
void JitArm64::ps_rsqrte(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITPairedOff);
FALLBACK_IF(inst.Rc);
FALLBACK_IF(SConfig::GetInstance().bFPRF && js.op->wantsFPRF);
const u32 b = inst.FB;
const u32 d = inst.FD;
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Lock(ARM64Reg::Q0);
const ARM64Reg VB = fpr.R(b, RegType::Register);
const ARM64Reg VD = fpr.RW(d, RegType::Register);
m_float_emit.FMOV(ARM64Reg::X1, EncodeRegToDouble(VB));
m_float_emit.FRSQRTE(64, ARM64Reg::Q0, EncodeRegToQuad(VB));
BL(GetAsmRoutines()->frsqrte);
m_float_emit.UMOV(64, ARM64Reg::X1, EncodeRegToQuad(VB), 1);
m_float_emit.DUP(64, ARM64Reg::Q0, ARM64Reg::Q0, 1);
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
BL(GetAsmRoutines()->frsqrte);
m_float_emit.INS(64, EncodeRegToQuad(VD), 1, ARM64Reg::X0);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Unlock(ARM64Reg::Q0);
fpr.FixSinglePrecision(d);
}

View File

@ -106,23 +106,23 @@ constexpr std::array<GekkoOPTemplate, 13> table4{{
}};
constexpr std::array<GekkoOPTemplate, 17> table4_2{{
{10, &JitArm64::ps_sumX}, // ps_sum0
{11, &JitArm64::ps_sumX}, // ps_sum1
{12, &JitArm64::ps_mulsX}, // ps_muls0
{13, &JitArm64::ps_mulsX}, // ps_muls1
{14, &JitArm64::ps_maddXX}, // ps_madds0
{15, &JitArm64::ps_maddXX}, // ps_madds1
{18, &JitArm64::fp_arith}, // ps_div
{20, &JitArm64::fp_arith}, // ps_sub
{21, &JitArm64::fp_arith}, // ps_add
{23, &JitArm64::ps_sel}, // ps_sel
{24, &JitArm64::ps_res}, // ps_res
{25, &JitArm64::fp_arith}, // ps_mul
{26, &JitArm64::FallBackToInterpreter}, // ps_rsqrte
{28, &JitArm64::ps_maddXX}, // ps_msub
{29, &JitArm64::ps_maddXX}, // ps_madd
{30, &JitArm64::ps_maddXX}, // ps_nmsub
{31, &JitArm64::ps_maddXX}, // ps_nmadd
{10, &JitArm64::ps_sumX}, // ps_sum0
{11, &JitArm64::ps_sumX}, // ps_sum1
{12, &JitArm64::ps_mulsX}, // ps_muls0
{13, &JitArm64::ps_mulsX}, // ps_muls1
{14, &JitArm64::ps_maddXX}, // ps_madds0
{15, &JitArm64::ps_maddXX}, // ps_madds1
{18, &JitArm64::fp_arith}, // ps_div
{20, &JitArm64::fp_arith}, // ps_sub
{21, &JitArm64::fp_arith}, // ps_add
{23, &JitArm64::ps_sel}, // ps_sel
{24, &JitArm64::ps_res}, // ps_res
{25, &JitArm64::fp_arith}, // ps_mul
{26, &JitArm64::ps_rsqrte}, // ps_rsqrte
{28, &JitArm64::ps_maddXX}, // ps_msub
{29, &JitArm64::ps_maddXX}, // ps_madd
{30, &JitArm64::ps_maddXX}, // ps_nmsub
{31, &JitArm64::ps_maddXX}, // ps_nmadd
}};
constexpr std::array<GekkoOPTemplate, 4> table4_3{{
@ -324,16 +324,16 @@ constexpr std::array<GekkoOPTemplate, 15> table63{{
}};
constexpr std::array<GekkoOPTemplate, 10> table63_2{{
{18, &JitArm64::fp_arith}, // fdivx
{20, &JitArm64::fp_arith}, // fsubx
{21, &JitArm64::fp_arith}, // faddx
{23, &JitArm64::fselx}, // fselx
{25, &JitArm64::fp_arith}, // fmulx
{26, &JitArm64::FallBackToInterpreter}, // frsqrtex
{28, &JitArm64::fp_arith}, // fmsubx
{29, &JitArm64::fp_arith}, // fmaddx
{30, &JitArm64::fp_arith}, // fnmsubx
{31, &JitArm64::fp_arith}, // fnmaddx
{18, &JitArm64::fp_arith}, // fdivx
{20, &JitArm64::fp_arith}, // fsubx
{21, &JitArm64::fp_arith}, // faddx
{23, &JitArm64::fselx}, // fselx
{25, &JitArm64::fp_arith}, // fmulx
{26, &JitArm64::frsqrtex}, // frsqrtex
{28, &JitArm64::fp_arith}, // fmsubx
{29, &JitArm64::fp_arith}, // fmaddx
{30, &JitArm64::fp_arith}, // fnmsubx
{31, &JitArm64::fp_arith}, // fnmaddx
}};
constexpr std::array<JitArm64::Instruction, 64> dynaOpTable = [] {

View File

@ -205,6 +205,10 @@ void JitArm64::GenerateCommonAsm()
GenerateFres();
JitRegister::Register(GetAsmRoutines()->fres, GetCodePtr(), "JIT_fres");
GetAsmRoutines()->frsqrte = GetCodePtr();
GenerateFrsqrte();
JitRegister::Register(GetAsmRoutines()->frsqrte, GetCodePtr(), "JIT_frsqrte");
GetAsmRoutines()->cdts = GetCodePtr();
GenerateConvertDoubleToSingle();
JitRegister::Register(GetAsmRoutines()->cdts, GetCodePtr(), "JIT_cdts");
@ -276,6 +280,71 @@ void JitArm64::GenerateFres()
RET();
}
// Input: X1 contains input, and D0 contains result of running the input through AArch64 FRSQRTE.
// Output in X0 and memory (PPCState). Clobbers X0-X4 and flags.
void JitArm64::GenerateFrsqrte()
{
// The idea behind this implementation: AArch64's frsqrte instruction calculates the exponent and
// sign the same way as PowerPC's frsqrtex does. For the special inputs zero, negative, NaN and
// inf, even the mantissa matches. But the mantissa does not match for most other inputs, so in
// the normal case we calculate the mantissa using the table-based algorithm from the interpreter.
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC);
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
FixupBranch zero = B(CCFlags::CC_EQ);
ANDI2R(ARM64Reg::X2, ARM64Reg::X1, Common::DOUBLE_EXP);
MOVI2R(ARM64Reg::X3, Common::DOUBLE_EXP);
CMP(ARM64Reg::X2, ARM64Reg::X3);
FixupBranch nan_or_inf = B(CCFlags::CC_EQ);
FixupBranch negative = TBNZ(ARM64Reg::X1, 63);
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_FRAC);
FixupBranch normal = CBNZ(ARM64Reg::X2);
// "Normalize" denormal values
CLZ(ARM64Reg::X3, ARM64Reg::X3);
SUB(ARM64Reg::X4, ARM64Reg::X3, 11);
MOVI2R(ARM64Reg::X2, 0x00C0'0000'0000'0000);
LSLV(ARM64Reg::X4, ARM64Reg::X1, ARM64Reg::X4);
SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52));
ANDI2R(ARM64Reg::X3, ARM64Reg::X4, Common::DOUBLE_FRAC - 1);
SetJumpTarget(normal);
LSR(ARM64Reg::X2, ARM64Reg::X2, 48);
ANDI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10);
MOVP2R(ARM64Reg::X1, &Common::frsqrte_expected);
ORR(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X8, ShiftType::LSR, 48));
EORI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10);
ADD(ARM64Reg::X2, ARM64Reg::X1, ARM64Reg::X2, ArithOption(ARM64Reg::X2, ShiftType::LSL, 3));
LDP(IndexType::Signed, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::X2, 0);
UBFX(ARM64Reg::X3, ARM64Reg::X3, 37, 11);
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP);
MSUB(ARM64Reg::W3, ARM64Reg::W3, ARM64Reg::W2, ARM64Reg::W1);
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 26));
RET();
SetJumpTarget(zero);
LDR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
FixupBranch skip_set_zx = TBNZ(ARM64Reg::W4, 26);
ORRI2R(ARM64Reg::W4, ARM64Reg::W4, FPSCR_FX | FPSCR_ZX, ARM64Reg::W2);
STR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
SetJumpTarget(skip_set_zx);
RET();
SetJumpTarget(nan_or_inf);
MOVI2R(ARM64Reg::X3, Common::BitCast<u64>(-std::numeric_limits<double>::infinity()));
CMP(ARM64Reg::X1, ARM64Reg::X3);
FixupBranch nan_or_positive_inf = B(CCFlags::CC_NEQ);
SetJumpTarget(negative);
LDR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
FixupBranch skip_set_vxsqrt = TBNZ(ARM64Reg::W4, 9);
ORRI2R(ARM64Reg::W4, ARM64Reg::W4, FPSCR_FX | FPSCR_VXSQRT, ARM64Reg::W2);
STR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
SetJumpTarget(skip_set_vxsqrt);
SetJumpTarget(nan_or_positive_inf);
RET();
}
// Input in X0, output in W1, clobbers X0-X3 and flags.
void JitArm64::GenerateConvertDoubleToSingle()
{