JitArm64: Refactor temp reg handling in fp_arith/ps_arith

This commit is contained in:
JosJuice 2022-11-20 23:06:16 +01:00
parent af5596720f
commit 5c41d3b602
2 changed files with 83 additions and 121 deletions

View File

@ -71,6 +71,8 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
const bool use_c = op5 >= 25; // fmul and all kind of fmaddXX const bool use_c = op5 >= 25; // fmul and all kind of fmaddXX
const bool use_b = op5 != 25; // fmul uses no B const bool use_b = op5 != 25; // fmul uses no B
const bool fma = use_b && use_c;
const bool negate_result = (op5 & ~0x1) == 30;
const bool output_is_single = inst.OPCD == 59; const bool output_is_single = inst.OPCD == 59;
const bool inaccurate_fma = op5 > 25 && !Config::Get(Config::SESSION_USE_FMA); const bool inaccurate_fma = op5 > 25 && !Config::Get(Config::SESSION_USE_FMA);
@ -92,43 +94,44 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
const ARM64Reg VA = reg_encoder(fpr.R(a, type)); const ARM64Reg VA = reg_encoder(fpr.R(a, type));
const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG;
ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG;
const ARM64Reg VD = reg_encoder(fpr.RW(d, type_out)); const ARM64Reg VD = reg_encoder(fpr.RW(d, type_out));
ARM64Reg V0Q = ARM64Reg::INVALID_REG; ARM64Reg V0Q = ARM64Reg::INVALID_REG;
ARM64Reg V1Q = ARM64Reg::INVALID_REG;
ARM64Reg rounded_c_reg = VC;
if (round_c) if (round_c)
{ {
ASSERT_MSG(DYNA_REC, !inputs_are_singles, "Tried to apply 25-bit precision to single"); ASSERT_MSG(DYNA_REC, !inputs_are_singles, "Tried to apply 25-bit precision to single");
V1Q = fpr.GetReg();
Force25BitPrecision(reg_encoder(V1Q), VC);
VC = reg_encoder(V1Q);
}
ARM64Reg inaccurate_fma_temp_reg = VD;
if (inaccurate_fma && d == b)
{
V0Q = fpr.GetReg(); V0Q = fpr.GetReg();
rounded_c_reg = reg_encoder(V0Q);
inaccurate_fma_temp_reg = reg_encoder(V0Q); Force25BitPrecision(rounded_c_reg, VC);
} }
ARM64Reg inaccurate_fma_reg = VD;
if (fma && inaccurate_fma && VD == VB)
{
if (V0Q == ARM64Reg::INVALID_REG)
V0Q = fpr.GetReg();
inaccurate_fma_reg = reg_encoder(V0Q);
}
ARM64Reg result_reg = VD;
switch (op5) switch (op5)
{ {
case 18: case 18:
m_float_emit.FDIV(VD, VA, VB); m_float_emit.FDIV(result_reg, VA, VB);
break; break;
case 20: case 20:
m_float_emit.FSUB(VD, VA, VB); m_float_emit.FSUB(result_reg, VA, VB);
break; break;
case 21: case 21:
m_float_emit.FADD(VD, VA, VB); m_float_emit.FADD(result_reg, VA, VB);
break; break;
case 25: case 25:
m_float_emit.FMUL(VD, VA, VC); m_float_emit.FMUL(result_reg, VA, rounded_c_reg);
break; break;
// While it may seem like PowerPC's nmadd/nmsub map to AArch64's nmadd/msub [sic], // While it may seem like PowerPC's nmadd/nmsub map to AArch64's nmadd/msub [sic],
// the subtly different definitions affect how signed zeroes are handled. // the subtly different definitions affect how signed zeroes are handled.
@ -138,39 +141,41 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
case 30: // fnmsub: "D = -(A*C - B)" vs "Vd = -((-Va) + Vn*Vm)" case 30: // fnmsub: "D = -(A*C - B)" vs "Vd = -((-Va) + Vn*Vm)"
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FSUB(VD, inaccurate_fma_temp_reg, VB); m_float_emit.FSUB(result_reg, inaccurate_fma_reg, VB);
} }
else else
{ {
m_float_emit.FNMSUB(VD, VA, VC, VB); m_float_emit.FNMSUB(result_reg, VA, rounded_c_reg, VB);
} }
if (op5 == 30)
m_float_emit.FNEG(VD, VD);
break; break;
case 29: // fmadd: "D = A*C + B" vs "Vd = Va + Vn*Vm" case 29: // fmadd: "D = A*C + B" vs "Vd = Va + Vn*Vm"
case 31: // fnmadd: "D = -(A*C + B)" vs "Vd = -(Va + Vn*Vm)" case 31: // fnmadd: "D = -(A*C + B)" vs "Vd = -(Va + Vn*Vm)"
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FADD(VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(result_reg, inaccurate_fma_reg, VB);
} }
else else
{ {
m_float_emit.FMADD(VD, VA, VC, VB); m_float_emit.FMADD(result_reg, VA, rounded_c_reg, VB);
} }
if (op5 == 31)
m_float_emit.FNEG(VD, VD);
break; break;
default: default:
ASSERT_MSG(DYNA_REC, 0, "fp_arith"); ASSERT_MSG(DYNA_REC, 0, "fp_arith");
break; break;
} }
// PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
// for any of AArch64's FMA instructions, so we negate using a separate instruction.
if (negate_result)
m_float_emit.FNEG(VD, result_reg);
else if (result_reg != VD)
m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
if (V0Q != ARM64Reg::INVALID_REG) if (V0Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V0Q); fpr.Unlock(V0Q);
if (V1Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V1Q);
if (output_is_single) if (output_is_single)
{ {

View File

@ -85,6 +85,9 @@ void JitArm64::ps_arith(UGeckoInstruction inst)
const bool use_c = op5 == 25 || (op5 & ~0x13) == 12; // mul, muls, and all kinds of maddXX const bool use_c = op5 == 25 || (op5 & ~0x13) == 12; // mul, muls, and all kinds of maddXX
const bool use_b = op5 != 25 && (op5 & ~0x1) != 12; // mul and muls don't use B const bool use_b = op5 != 25 && (op5 & ~0x1) != 12; // mul and muls don't use B
const bool fma = use_b && use_c;
const bool negate_result = (op5 & ~0x1) == 30;
const bool msub = op5 == 28 || op5 == 30;
const auto singles_func = [&] { const auto singles_func = [&] {
return fpr.IsSingle(a) && (!use_b || fpr.IsSingle(b)) && (!use_c || fpr.IsSingle(c)); return fpr.IsSingle(a) && (!use_b || fpr.IsSingle(b)) && (!use_c || fpr.IsSingle(c));
@ -99,147 +102,108 @@ void JitArm64::ps_arith(UGeckoInstruction inst)
const ARM64Reg VA = reg_encoder(fpr.R(a, type)); const ARM64Reg VA = reg_encoder(fpr.R(a, type));
const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG;
ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG;
const ARM64Reg VD = reg_encoder(fpr.RW(d, type)); const ARM64Reg VD = reg_encoder(fpr.RW(d, type));
ARM64Reg V0Q = ARM64Reg::INVALID_REG; ARM64Reg V0Q = ARM64Reg::INVALID_REG;
ARM64Reg V0 = ARM64Reg::INVALID_REG;
ARM64Reg V1Q = ARM64Reg::INVALID_REG; ARM64Reg V1Q = ARM64Reg::INVALID_REG;
const auto allocate_v0_if_needed = [&] { ARM64Reg rounded_c_reg = VC;
if (V0Q == ARM64Reg::INVALID_REG)
{
V0Q = fpr.GetReg();
V0 = reg_encoder(V0Q);
}
};
if (round_c) if (round_c)
{ {
ASSERT_MSG(DYNA_REC, !singles, "Tried to apply 25-bit precision to single"); ASSERT_MSG(DYNA_REC, !singles, "Tried to apply 25-bit precision to single");
V1Q = fpr.GetReg(); V0Q = fpr.GetReg();
rounded_c_reg = reg_encoder(V0Q);
Force25BitPrecision(reg_encoder(V1Q), VC); Force25BitPrecision(rounded_c_reg, VC);
VC = reg_encoder(V1Q);
} }
ARM64Reg inaccurate_fma_temp_reg = VD; ARM64Reg inaccurate_fma_reg = VD;
if (inaccurate_fma && d == b) if (fma && inaccurate_fma && VD == VB)
{ {
allocate_v0_if_needed(); if (V0Q == ARM64Reg::INVALID_REG)
inaccurate_fma_temp_reg = V0; V0Q = fpr.GetReg();
inaccurate_fma_reg = reg_encoder(V0Q);
} }
ARM64Reg result_reg = VD; ARM64Reg result_reg = VD;
if (fma && !inaccurate_fma && (msub || VD != VB) && (VD == VA || VD == rounded_c_reg))
{
V1Q = fpr.GetReg();
result_reg = reg_encoder(V1Q);
}
switch (op5) switch (op5)
{ {
case 12: // ps_muls0: d = a * c.ps0 case 12: // ps_muls0: d = a * c.ps0
m_float_emit.FMUL(size, VD, VA, VC, 0); m_float_emit.FMUL(size, result_reg, VA, rounded_c_reg, 0);
break; break;
case 13: // ps_muls1: d = a * c.ps1 case 13: // ps_muls1: d = a * c.ps1
m_float_emit.FMUL(size, VD, VA, VC, 1); m_float_emit.FMUL(size, result_reg, VA, rounded_c_reg, 1);
break; break;
case 14: // ps_madds0: d = a * c.ps0 + b case 14: // ps_madds0: d = a * c.ps0 + b
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC, 0); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg, 0);
m_float_emit.FADD(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD == VB)
{
m_float_emit.FMLA(size, VD, VA, VC, 0);
}
else if (VD != VA && VD != VC)
{
m_float_emit.MOV(VD, VB);
m_float_emit.FMLA(size, VD, VA, VC, 0);
} }
else else
{ {
allocate_v0_if_needed(); if (result_reg != VB)
m_float_emit.MOV(V0, VB); m_float_emit.MOV(result_reg, VB);
m_float_emit.FMLA(size, V0, VA, VC, 0); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg, 0);
result_reg = V0;
} }
break; break;
case 15: // ps_madds1: d = a * c.ps1 + b case 15: // ps_madds1: d = a * c.ps1 + b
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC, 1); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg, 1);
m_float_emit.FADD(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD == VB)
{
m_float_emit.FMLA(size, VD, VA, VC, 1);
}
else if (VD != VA && VD != VC)
{
m_float_emit.MOV(VD, VB);
m_float_emit.FMLA(size, VD, VA, VC, 1);
} }
else else
{ {
allocate_v0_if_needed(); if (result_reg != VB)
m_float_emit.MOV(V0, VB); m_float_emit.MOV(result_reg, VB);
m_float_emit.FMLA(size, V0, VA, VC, 1); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg, 1);
result_reg = V0;
} }
break; break;
case 18: // ps_div case 18: // ps_div
m_float_emit.FDIV(size, VD, VA, VB); m_float_emit.FDIV(size, result_reg, VA, VB);
break; break;
case 20: // ps_sub case 20: // ps_sub
m_float_emit.FSUB(size, VD, VA, VB); m_float_emit.FSUB(size, result_reg, VA, VB);
break; break;
case 21: // ps_add case 21: // ps_add
m_float_emit.FADD(size, VD, VA, VB); m_float_emit.FADD(size, result_reg, VA, VB);
break; break;
case 25: // ps_mul case 25: // ps_mul
m_float_emit.FMUL(size, VD, VA, VC); m_float_emit.FMUL(size, result_reg, VA, rounded_c_reg);
break; break;
case 28: // ps_msub: d = a * c - b case 28: // ps_msub: d = a * c - b
case 30: // ps_nmsub: d = -(a * c - b) case 30: // ps_nmsub: d = -(a * c - b)
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FSUB(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FSUB(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD != VA && VD != VC)
{
m_float_emit.FNEG(size, VD, VB);
m_float_emit.FMLA(size, VD, VA, VC);
} }
else else
{ {
allocate_v0_if_needed(); m_float_emit.FNEG(size, result_reg, VB);
m_float_emit.FNEG(size, V0, VB); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg);
m_float_emit.FMLA(size, V0, VA, VC);
result_reg = V0;
} }
break; break;
case 29: // ps_madd: d = a * c + b case 29: // ps_madd: d = a * c + b
case 31: // ps_nmadd: d = -(a * c + b) case 31: // ps_nmadd: d = -(a * c + b)
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FADD(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD == VB)
{
m_float_emit.FMLA(size, VD, VA, VC);
}
else if (VD != VA && VD != VC)
{
m_float_emit.MOV(VD, VB);
m_float_emit.FMLA(size, VD, VA, VC);
} }
else else
{ {
allocate_v0_if_needed(); if (result_reg != VB)
m_float_emit.MOV(V0, VB); m_float_emit.MOV(result_reg, VB);
m_float_emit.FMLA(size, V0, VA, VC); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg);
result_reg = V0;
} }
break; break;
default: default:
@ -247,19 +211,12 @@ void JitArm64::ps_arith(UGeckoInstruction inst)
break; break;
} }
switch (op5) // PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
{ // for any of AArch64's FMA instructions, so we negate using a separate instruction.
case 30: // ps_nmsub if (negate_result)
case 31: // ps_nmadd
// PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
// for any of AArch64's FMA instructions, so we negate using a separate instruction.
m_float_emit.FNEG(size, VD, result_reg); m_float_emit.FNEG(size, VD, result_reg);
break; else if (result_reg != VD)
default: m_float_emit.MOV(VD, result_reg);
if (result_reg != VD)
m_float_emit.MOV(VD, result_reg);
break;
}
if (V0Q != ARM64Reg::INVALID_REG) if (V0Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V0Q); fpr.Unlock(V0Q);