Merge pull request #9695 from JosJuice/jitarm64-fres

JitArm64: Implement fres and frsqrte
This commit is contained in:
Mai M
2021-05-20 10:23:49 -04:00
committed by GitHub
12 changed files with 474 additions and 40 deletions

View File

@ -2310,6 +2310,12 @@ void ARM64FloatEmitter::EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitScalar2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
Write32((1 << 30) | (U << 29) | (0b11110001 << 21) | (size << 22) | (opcode << 12) | (1 << 11) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__);
@ -3102,6 +3108,15 @@ void ARM64FloatEmitter::FSQRT(ARM64Reg Rd, ARM64Reg Rn)
EmitScalar1Source(0, 0, IsDouble(Rd), 3, Rd, Rn);
}
void ARM64FloatEmitter::FRECPE(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar2RegMisc(0, 2 | IsDouble(Rd), 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::FRSQRTE(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar2RegMisc(1, 2 | IsDouble(Rd), 0x1D, Rd, Rn);
}
// Scalar - 2 Source
void ARM64FloatEmitter::FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{

View File

@ -996,6 +996,8 @@ public:
void FNEG(ARM64Reg Rd, ARM64Reg Rn);
void FSQRT(ARM64Reg Rd, ARM64Reg Rn);
void FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top = false); // Also generalized move between GPR/FP
void FRECPE(ARM64Reg Rd, ARM64Reg Rn);
void FRSQRTE(ARM64Reg Rd, ARM64Reg Rn);
// Scalar - 2 Source
void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
@ -1145,6 +1147,7 @@ private:
ARM64Reg Rm);
void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn);
void EmitScalar2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt,
ARM64Reg Rn);

View File

@ -140,6 +140,8 @@ public:
void fcmpX(UGeckoInstruction inst);
void frspx(UGeckoInstruction inst);
void fctiwzx(UGeckoInstruction inst);
void fresx(UGeckoInstruction inst);
void frsqrtex(UGeckoInstruction inst);
// Paired
void ps_maddXX(UGeckoInstruction inst);
@ -147,6 +149,8 @@ public:
void ps_mulsX(UGeckoInstruction inst);
void ps_sel(UGeckoInstruction inst);
void ps_sumX(UGeckoInstruction inst);
void ps_res(UGeckoInstruction inst);
void ps_rsqrte(UGeckoInstruction inst);
// Loadstore paired
void psq_l(UGeckoInstruction inst);
@ -232,6 +236,8 @@ protected:
// AsmRoutines
void GenerateAsm();
void GenerateCommonAsm();
void GenerateFres();
void GenerateFrsqrte();
void GenerateConvertDoubleToSingle();
void GenerateConvertSingleToDouble();
void GenerateFPRF(bool single);

View File

@ -24,8 +24,16 @@ void JitArm64::SetFPRFIfNeeded(bool single, ARM64Reg reg)
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
reg = single ? EncodeRegToSingle(reg) : EncodeRegToDouble(reg);
m_float_emit.FMOV(single ? ARM64Reg::W0 : ARM64Reg::X0, reg);
const ARM64Reg routine_input_reg = single ? ARM64Reg::W0 : ARM64Reg::X0;
if (IsVector(reg))
{
m_float_emit.FMOV(routine_input_reg, single ? EncodeRegToSingle(reg) : EncodeRegToDouble(reg));
}
else if (reg != routine_input_reg)
{
MOV(routine_input_reg, reg);
}
BL(single ? GetAsmRoutines()->fprf_single : GetAsmRoutines()->fprf_double);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
@ -430,6 +438,60 @@ void JitArm64::fctiwzx(UGeckoInstruction inst)
"Register allocation turned singles into doubles in the middle of fctiwzx");
}
void JitArm64::fresx(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITFloatingPointOff);
FALLBACK_IF(inst.Rc);
const u32 b = inst.FB;
const u32 d = inst.FD;
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Lock(ARM64Reg::Q0);
const ARM64Reg VB = fpr.R(b, RegType::LowerPair);
m_float_emit.FMOV(ARM64Reg::X1, EncodeRegToDouble(VB));
m_float_emit.FRECPE(ARM64Reg::D0, EncodeRegToDouble(VB));
BL(GetAsmRoutines()->fres);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Unlock(ARM64Reg::Q0);
const ARM64Reg VD = fpr.RW(d, RegType::Duplicated);
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
SetFPRFIfNeeded(false, ARM64Reg::X0);
}
void JitArm64::frsqrtex(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITFloatingPointOff);
FALLBACK_IF(inst.Rc);
const u32 b = inst.FB;
const u32 d = inst.FD;
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Lock(ARM64Reg::Q0);
const ARM64Reg VB = fpr.R(b, RegType::LowerPair);
m_float_emit.FMOV(ARM64Reg::X1, EncodeRegToDouble(VB));
m_float_emit.FRSQRTE(ARM64Reg::D0, EncodeRegToDouble(VB));
BL(GetAsmRoutines()->frsqrte);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Unlock(ARM64Reg::Q0);
const ARM64Reg VD = fpr.RW(d, RegType::LowerPair);
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
SetFPRFIfNeeded(false, ARM64Reg::X0);
}
// Since the following float conversion functions are used in non-arithmetic PPC float
// instructions, they must convert floats bitexact and never flush denormals to zero or turn SNaNs
// into QNaNs. This means we can't just use FCVT/FCVTL/FCVTN.

View File

@ -353,3 +353,67 @@ void JitArm64::ps_sumX(UGeckoInstruction inst)
SetFPRFIfNeeded(true, VD);
}
void JitArm64::ps_res(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITPairedOff);
FALLBACK_IF(inst.Rc);
const u32 b = inst.FB;
const u32 d = inst.FD;
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Lock(ARM64Reg::Q0);
const ARM64Reg VB = fpr.R(b, RegType::Register);
const ARM64Reg VD = fpr.RW(d, RegType::Register);
m_float_emit.FMOV(ARM64Reg::X1, EncodeRegToDouble(VB));
m_float_emit.FRECPE(64, ARM64Reg::Q0, EncodeRegToQuad(VB));
BL(GetAsmRoutines()->fres);
m_float_emit.UMOV(64, ARM64Reg::X1, EncodeRegToQuad(VB), 1);
m_float_emit.DUP(64, ARM64Reg::Q0, ARM64Reg::Q0, 1);
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
BL(GetAsmRoutines()->fres);
m_float_emit.INS(64, EncodeRegToQuad(VD), 1, ARM64Reg::X0);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Unlock(ARM64Reg::Q0);
fpr.FixSinglePrecision(d);
SetFPRFIfNeeded(true, VD);
}
void JitArm64::ps_rsqrte(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITPairedOff);
FALLBACK_IF(inst.Rc);
const u32 b = inst.FB;
const u32 d = inst.FD;
gpr.Lock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Lock(ARM64Reg::Q0);
const ARM64Reg VB = fpr.R(b, RegType::Register);
const ARM64Reg VD = fpr.RW(d, RegType::Register);
m_float_emit.FMOV(ARM64Reg::X1, EncodeRegToDouble(VB));
m_float_emit.FRSQRTE(64, ARM64Reg::Q0, EncodeRegToQuad(VB));
BL(GetAsmRoutines()->frsqrte);
m_float_emit.UMOV(64, ARM64Reg::X1, EncodeRegToQuad(VB), 1);
m_float_emit.DUP(64, ARM64Reg::Q0, ARM64Reg::Q0, 1);
m_float_emit.FMOV(EncodeRegToDouble(VD), ARM64Reg::X0);
BL(GetAsmRoutines()->frsqrte);
m_float_emit.INS(64, EncodeRegToQuad(VD), 1, ARM64Reg::X0);
gpr.Unlock(ARM64Reg::W0, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W4, ARM64Reg::W30);
fpr.Unlock(ARM64Reg::Q0);
fpr.FixSinglePrecision(d);
SetFPRFIfNeeded(true, VD);
}

View File

@ -106,23 +106,23 @@ constexpr std::array<GekkoOPTemplate, 13> table4{{
}};
constexpr std::array<GekkoOPTemplate, 17> table4_2{{
{10, &JitArm64::ps_sumX}, // ps_sum0
{11, &JitArm64::ps_sumX}, // ps_sum1
{12, &JitArm64::ps_mulsX}, // ps_muls0
{13, &JitArm64::ps_mulsX}, // ps_muls1
{14, &JitArm64::ps_maddXX}, // ps_madds0
{15, &JitArm64::ps_maddXX}, // ps_madds1
{18, &JitArm64::fp_arith}, // ps_div
{20, &JitArm64::fp_arith}, // ps_sub
{21, &JitArm64::fp_arith}, // ps_add
{23, &JitArm64::ps_sel}, // ps_sel
{24, &JitArm64::FallBackToInterpreter}, // ps_res
{25, &JitArm64::fp_arith}, // ps_mul
{26, &JitArm64::FallBackToInterpreter}, // ps_rsqrte
{28, &JitArm64::ps_maddXX}, // ps_msub
{29, &JitArm64::ps_maddXX}, // ps_madd
{30, &JitArm64::ps_maddXX}, // ps_nmsub
{31, &JitArm64::ps_maddXX}, // ps_nmadd
{10, &JitArm64::ps_sumX}, // ps_sum0
{11, &JitArm64::ps_sumX}, // ps_sum1
{12, &JitArm64::ps_mulsX}, // ps_muls0
{13, &JitArm64::ps_mulsX}, // ps_muls1
{14, &JitArm64::ps_maddXX}, // ps_madds0
{15, &JitArm64::ps_maddXX}, // ps_madds1
{18, &JitArm64::fp_arith}, // ps_div
{20, &JitArm64::fp_arith}, // ps_sub
{21, &JitArm64::fp_arith}, // ps_add
{23, &JitArm64::ps_sel}, // ps_sel
{24, &JitArm64::ps_res}, // ps_res
{25, &JitArm64::fp_arith}, // ps_mul
{26, &JitArm64::ps_rsqrte}, // ps_rsqrte
{28, &JitArm64::ps_maddXX}, // ps_msub
{29, &JitArm64::ps_maddXX}, // ps_madd
{30, &JitArm64::ps_maddXX}, // ps_nmsub
{31, &JitArm64::ps_maddXX}, // ps_nmadd
}};
constexpr std::array<GekkoOPTemplate, 4> table4_3{{
@ -293,15 +293,15 @@ constexpr std::array<GekkoOPTemplate, 107> table31{{
}};
constexpr std::array<GekkoOPTemplate, 9> table59{{
{18, &JitArm64::fp_arith}, // fdivsx
{20, &JitArm64::fp_arith}, // fsubsx
{21, &JitArm64::fp_arith}, // faddsx
{24, &JitArm64::FallBackToInterpreter}, // fresx
{25, &JitArm64::fp_arith}, // fmulsx
{28, &JitArm64::fp_arith}, // fmsubsx
{29, &JitArm64::fp_arith}, // fmaddsx
{30, &JitArm64::fp_arith}, // fnmsubsx
{31, &JitArm64::fp_arith}, // fnmaddsx
{18, &JitArm64::fp_arith}, // fdivsx
{20, &JitArm64::fp_arith}, // fsubsx
{21, &JitArm64::fp_arith}, // faddsx
{24, &JitArm64::fresx}, // fresx
{25, &JitArm64::fp_arith}, // fmulsx
{28, &JitArm64::fp_arith}, // fmsubsx
{29, &JitArm64::fp_arith}, // fmaddsx
{30, &JitArm64::fp_arith}, // fnmsubsx
{31, &JitArm64::fp_arith}, // fnmaddsx
}};
constexpr std::array<GekkoOPTemplate, 15> table63{{
@ -324,16 +324,16 @@ constexpr std::array<GekkoOPTemplate, 15> table63{{
}};
constexpr std::array<GekkoOPTemplate, 10> table63_2{{
{18, &JitArm64::fp_arith}, // fdivx
{20, &JitArm64::fp_arith}, // fsubx
{21, &JitArm64::fp_arith}, // faddx
{23, &JitArm64::fselx}, // fselx
{25, &JitArm64::fp_arith}, // fmulx
{26, &JitArm64::FallBackToInterpreter}, // frsqrtex
{28, &JitArm64::fp_arith}, // fmsubx
{29, &JitArm64::fp_arith}, // fmaddx
{30, &JitArm64::fp_arith}, // fnmsubx
{31, &JitArm64::fp_arith}, // fnmaddx
{18, &JitArm64::fp_arith}, // fdivx
{20, &JitArm64::fp_arith}, // fsubx
{21, &JitArm64::fp_arith}, // faddx
{23, &JitArm64::fselx}, // fselx
{25, &JitArm64::fp_arith}, // fmulx
{26, &JitArm64::frsqrtex}, // frsqrtex
{28, &JitArm64::fp_arith}, // fmsubx
{29, &JitArm64::fp_arith}, // fmaddx
{30, &JitArm64::fp_arith}, // fnmsubx
{31, &JitArm64::fp_arith}, // fnmaddx
}};
constexpr std::array<JitArm64::Instruction, 64> dynaOpTable = [] {

View File

@ -2,7 +2,10 @@
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <limits>
#include "Common/Arm64Emitter.h"
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/FloatUtils.h"
#include "Common/JitRegister.h"
@ -198,6 +201,14 @@ void JitArm64::GenerateAsm()
void JitArm64::GenerateCommonAsm()
{
GetAsmRoutines()->fres = GetCodePtr();
GenerateFres();
JitRegister::Register(GetAsmRoutines()->fres, GetCodePtr(), "JIT_fres");
GetAsmRoutines()->frsqrte = GetCodePtr();
GenerateFrsqrte();
JitRegister::Register(GetAsmRoutines()->frsqrte, GetCodePtr(), "JIT_frsqrte");
GetAsmRoutines()->cdts = GetCodePtr();
GenerateConvertDoubleToSingle();
JitRegister::Register(GetAsmRoutines()->cdts, GetCodePtr(), "JIT_cdts");
@ -215,6 +226,125 @@ void JitArm64::GenerateCommonAsm()
GenerateQuantizedLoadStores();
}
// Input: X1 contains input, and D0 contains result of running the input through AArch64 FRECPE.
// Output in X0 and memory (PPCState). Clobbers X0-X4 and flags.
void JitArm64::GenerateFres()
{
// The idea behind this implementation: AArch64's frecpe instruction calculates the exponent and
// sign the same way as PowerPC's fresx does. For the special inputs zero, NaN and infinity,
// even the mantissa matches. But the mantissa does not match for most other inputs, so in the
// normal case we calculate the mantissa using the table-based algorithm from the interpreter.
UBFX(ARM64Reg::X2, ARM64Reg::X1, 52, 11); // Grab the exponent
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
CMP(ARM64Reg::X2, 895);
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_SIGN);
FixupBranch small_exponent = B(CCFlags::CC_LO);
MOVI2R(ARM64Reg::X4, 1148LL);
CMP(ARM64Reg::X2, ARM64Reg::X4);
FixupBranch large_exponent = B(CCFlags::CC_HI);
UBFX(ARM64Reg::X2, ARM64Reg::X1, 47, 5); // Grab upper part of mantissa
MOVP2R(ARM64Reg::X3, &Common::fres_expected);
ADD(ARM64Reg::X2, ARM64Reg::X3, ARM64Reg::X2, ArithOption(ARM64Reg::X2, ShiftType::LSL, 3));
LDP(IndexType::Signed, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::X2, 0);
UBFX(ARM64Reg::X1, ARM64Reg::X1, 37, 10); // Grab lower part of mantissa
MOVI2R(ARM64Reg::W4, 1);
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP);
MADD(ARM64Reg::W1, ARM64Reg::W3, ARM64Reg::W1, ARM64Reg::W4);
SUB(ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W1, ArithOption(ARM64Reg::W1, ShiftType::LSR, 1));
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X1, ArithOption(ARM64Reg::X1, ShiftType::LSL, 29));
RET();
SetJumpTarget(small_exponent);
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC);
FixupBranch zero = B(CCFlags::CC_EQ);
MOVI2R(ARM64Reg::X4,
Common::BitCast<u64>(static_cast<double>(std::numeric_limits<float>::max())));
ORR(ARM64Reg::X0, ARM64Reg::X3, ARM64Reg::X4);
RET();
SetJumpTarget(zero);
LDR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
FixupBranch skip_set_zx = TBNZ(ARM64Reg::W4, 26);
ORRI2R(ARM64Reg::W4, ARM64Reg::W4, FPSCR_FX | FPSCR_ZX, ARM64Reg::W2);
STR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
SetJumpTarget(skip_set_zx);
RET();
SetJumpTarget(large_exponent);
MOVI2R(ARM64Reg::X4, 0x7FF);
CMP(ARM64Reg::X2, ARM64Reg::X4);
CSEL(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X3, CCFlags::CC_EQ);
RET();
}
// Input: X1 contains input, and D0 contains result of running the input through AArch64 FRSQRTE.
// Output in X0 and memory (PPCState). Clobbers X0-X4 and flags.
void JitArm64::GenerateFrsqrte()
{
// The idea behind this implementation: AArch64's frsqrte instruction calculates the exponent and
// sign the same way as PowerPC's frsqrtex does. For the special inputs zero, negative, NaN and
// inf, even the mantissa matches. But the mantissa does not match for most other inputs, so in
// the normal case we calculate the mantissa using the table-based algorithm from the interpreter.
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC);
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
FixupBranch zero = B(CCFlags::CC_EQ);
ANDI2R(ARM64Reg::X2, ARM64Reg::X1, Common::DOUBLE_EXP);
MOVI2R(ARM64Reg::X3, Common::DOUBLE_EXP);
CMP(ARM64Reg::X2, ARM64Reg::X3);
FixupBranch nan_or_inf = B(CCFlags::CC_EQ);
FixupBranch negative = TBNZ(ARM64Reg::X1, 63);
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_FRAC);
FixupBranch normal = CBNZ(ARM64Reg::X2);
// "Normalize" denormal values
CLZ(ARM64Reg::X3, ARM64Reg::X3);
SUB(ARM64Reg::X4, ARM64Reg::X3, 11);
MOVI2R(ARM64Reg::X2, 0x00C0'0000'0000'0000);
LSLV(ARM64Reg::X4, ARM64Reg::X1, ARM64Reg::X4);
SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52));
ANDI2R(ARM64Reg::X3, ARM64Reg::X4, Common::DOUBLE_FRAC - 1);
SetJumpTarget(normal);
LSR(ARM64Reg::X2, ARM64Reg::X2, 48);
ANDI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10);
MOVP2R(ARM64Reg::X1, &Common::frsqrte_expected);
ORR(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X8, ShiftType::LSR, 48));
EORI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10);
ADD(ARM64Reg::X2, ARM64Reg::X1, ARM64Reg::X2, ArithOption(ARM64Reg::X2, ShiftType::LSL, 3));
LDP(IndexType::Signed, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::X2, 0);
UBFX(ARM64Reg::X3, ARM64Reg::X3, 37, 11);
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP);
MSUB(ARM64Reg::W3, ARM64Reg::W3, ARM64Reg::W2, ARM64Reg::W1);
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 26));
RET();
SetJumpTarget(zero);
LDR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
FixupBranch skip_set_zx = TBNZ(ARM64Reg::W4, 26);
ORRI2R(ARM64Reg::W4, ARM64Reg::W4, FPSCR_FX | FPSCR_ZX, ARM64Reg::W2);
STR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
SetJumpTarget(skip_set_zx);
RET();
SetJumpTarget(nan_or_inf);
MOVI2R(ARM64Reg::X3, Common::BitCast<u64>(-std::numeric_limits<double>::infinity()));
CMP(ARM64Reg::X1, ARM64Reg::X3);
FixupBranch nan_or_positive_inf = B(CCFlags::CC_NEQ);
SetJumpTarget(negative);
LDR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
FixupBranch skip_set_vxsqrt = TBNZ(ARM64Reg::W4, 9);
ORRI2R(ARM64Reg::W4, ARM64Reg::W4, FPSCR_FX | FPSCR_VXSQRT, ARM64Reg::W2);
STR(IndexType::Unsigned, ARM64Reg::W4, PPC_REG, PPCSTATE_OFF(fpscr));
SetJumpTarget(skip_set_vxsqrt);
SetJumpTarget(nan_or_positive_inf);
RET();
}
// Input in X0, output in W1, clobbers X0-X3 and flags.
void JitArm64::GenerateConvertDoubleToSingle()
{