JIT: add basic register allocation heuristics

Should be at least a bit better than the previous LRU approach. Currently
has two basic components: whether a register is dirty (dirty registers need
to be stored, so clobbering them hurts more) and how many other registers will
be used between now and the next time a register gets used.

Also don't pre-load values that don't need to be in registers.
This commit is contained in:
Fiora 2014-10-09 16:11:10 -07:00
parent 9d57cf59d3
commit 7ba9a8537b
6 changed files with 134 additions and 69 deletions

View File

@ -603,6 +603,7 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
js.compilerPC = ops[i].address;
js.op = &ops[i];
js.instructionNumber = i;
js.instructionsLeft = (code_block.m_num_instructions - 1) - i;
const GekkoOPInfo *opinfo = ops[i].opinfo;
js.downcountAmount += opinfo->numCycles;
@ -737,7 +738,7 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
for (int k = 0; k < 3 && gpr.NumFreeRegisters() >= 2; k++)
{
int reg = ops[i].regsIn[k];
if (reg >= 0 && (ops[i].gprInUse & (1 << reg)) && !gpr.R(reg).IsImm())
if (reg >= 0 && (ops[i].gprInReg & (1 << reg)) && !gpr.R(reg).IsImm())
gpr.BindToRegister(reg, true, false);
}
for (int k = 0; k < 4 && fpr.NumFreeRegisters() >= 2; k++)

View File

@ -11,7 +11,7 @@
using namespace Gen;
using namespace PowerPC;
RegCache::RegCache() : emit(nullptr), cur_use_quantum(0)
RegCache::RegCache() : emit(nullptr)
{
}
@ -29,7 +29,6 @@ void RegCache::Start()
regs[i].location = GetDefaultLocation(i);
regs[i].away = false;
regs[i].locked = false;
regs[i].last_used_quantum = 0;
}
// todo: sort to find the most popular regs
@ -96,6 +95,82 @@ void RegCache::UnlockAllX()
xreg.locked = false;
}
u32 GPRRegCache::GetRegUtilization()
{
return jit->js.op->gprInReg;
}
u32 FPURegCache::GetRegUtilization()
{
return jit->js.op->gprInReg;
}
u32 GPRRegCache::CountRegsIn(size_t preg, u32 lookahead)
{
u32 regsUsed = 0;
for (u32 i = 1; i < lookahead; i++)
{
for (int j = 0; j < 3; j++)
if (jit->js.op[i].regsIn[j] >= 0)
regsUsed |= 1 << jit->js.op[i].regsIn[j];
for (int j = 0; j < 3; j++)
if (jit->js.op[i].regsIn[j] == preg)
return regsUsed;
}
return regsUsed;
}
u32 FPURegCache::CountRegsIn(size_t preg, u32 lookahead)
{
u32 regsUsed = 0;
for (u32 i = 1; i < lookahead; i++)
{
for (int j = 0; j < 4; j++)
if (jit->js.op[i].fregsIn[j] >= 0)
regsUsed |= 1 << jit->js.op[i].fregsIn[j];
for (int j = 0; j < 4; j++)
if (jit->js.op[i].fregsIn[j] == preg)
return regsUsed;
}
return regsUsed;
}
// Estimate roughly how bad it would be to de-allocate this register. Higher score
// means more bad.
float RegCache::ScoreRegister(X64Reg xr)
{
size_t preg = xregs[xr].ppcReg;
float score = 0;
// If it's not dirty, we don't need a store to write it back to the register file, so
// bias a bit against dirty registers. Testing shows that a bias of 2 seems roughly
// right: 3 causes too many extra clobbers, while 1 saves very few clobbers relative
// to the number of extra stores it causes.
if (xregs[xr].dirty)
score += 2;
// If the register isn't actually needed in a physical register for a later instruction,
// writing it back to the register file isn't quite as bad.
if (GetRegUtilization() & (1 << preg))
{
u32 regsUsed = 0;
// Don't look too far ahead; we don't want to have quadratic compilation times for
// enormous block sizes!
// This actually improves register allocation a tiny bit; I'm not sure why.
u32 lookahead = std::min(jit->js.instructionsLeft, 64);
// Count how many other registers are going to be used before we need this one again.
u32 regs_in = CountRegsIn(preg, lookahead);
u32 regs_in_count = 0;
for (int i = 0; i < 32; i++)
regs_in_count += !!(regs_in & (1 << i));
// Totally ad-hoc heuristic to bias based on how many other registers we'll need
// before this one gets used again.
score += 1 + 2 * (5 - log2f(1 + (float)regs_in_count));
}
return score;
}
X64Reg RegCache::GetFreeXReg()
{
size_t aCount;
@ -108,45 +183,31 @@ X64Reg RegCache::GetFreeXReg()
return (X64Reg)xr;
}
}
// Okay, not found :( Force grab one!
// First, see if we have any registers that are only going to be used for a float store.
// These go through GPRs, so the cost of tossing them back into memory is lower than anything else.
// Okay, not found; run the register allocator heuristic and figure out which register we should
// clobber.
float min_score = std::numeric_limits<float>::max();
X64Reg best_xreg = INVALID_REG;
size_t best_preg = 0;
for (size_t i = 0; i < aCount; i++)
{
X64Reg xr = (X64Reg)aOrder[i];
if (xregs[xr].locked)
X64Reg xreg = (X64Reg)aOrder[i];
size_t preg = xregs[xreg].ppcReg;
if (xregs[xreg].locked || regs[preg].locked)
continue;
size_t preg = xregs[xr].ppcReg;
if (!regs[preg].locked && !(jit->js.op->fprInXmm & (1 << preg)))
float score = ScoreRegister(xreg);
if (score < min_score)
{
StoreFromRegister(preg);
return xr;
min_score = score;
best_xreg = xreg;
best_preg = preg;
}
}
//TODO - add a pass to grab xregs whose ppcreg is not used in the next 3 instructions
u32 last_used = 0xFFFFFFFF;
X64Reg last_used_xr = INVALID_REG;
size_t last_used_preg = 0;
for (size_t i = 0; i < aCount; i++)
if (best_xreg != INVALID_REG)
{
X64Reg xr = (X64Reg)aOrder[i];
if (xregs[xr].locked)
continue;
size_t preg = xregs[xr].ppcReg;
if (!regs[preg].locked && regs[preg].last_used_quantum < last_used)
{
last_used = regs[preg].last_used_quantum;
last_used_xr = xr;
last_used_preg = preg;
}
}
if (last_used_xr != INVALID_REG)
{
StoreFromRegister(last_used_preg);
return last_used_xr;
StoreFromRegister(best_preg);
return best_xreg;
}
//Still no dice? Die!
@ -197,7 +258,6 @@ void RegCache::DiscardRegContentsIfCached(size_t preg)
xregs[xr].ppcReg = INVALID_REG;
regs[preg].away = false;
regs[preg].location = GetDefaultLocation(preg);
regs[preg].last_used_quantum = 0;
}
}
@ -279,7 +339,6 @@ void RegCache::BindToRegister(size_t i, bool doLoad, bool makeDirty)
}
regs[i].away = true;
regs[i].location = ::Gen::R(xr);
regs[i].last_used_quantum = ++cur_use_quantum;
}
else
{
@ -322,7 +381,6 @@ void RegCache::StoreFromRegister(size_t i, FlushMode mode)
{
regs[i].location = newLoc;
regs[i].away = false;
regs[i].last_used_quantum = 0;
}
}
}
@ -378,8 +436,6 @@ void RegCache::Flush(FlushMode mode)
}
}
}
cur_use_quantum = 0;
}
int RegCache::NumFreeRegisters()

View File

@ -20,7 +20,6 @@ struct PPCCachedReg
Gen::OpArg location;
bool away; // value not in source register
bool locked;
u32 last_used_quantum;
};
struct X64CachedReg
@ -44,9 +43,12 @@ protected:
virtual const int *GetAllocationOrder(size_t& count) = 0;
virtual u32 GetRegUtilization() = 0;
virtual u32 CountRegsIn(size_t preg, u32 lookahead) = 0;
Gen::XEmitter *emit;
u32 cur_use_quantum;
float ScoreRegister(Gen::X64Reg xreg);
public:
RegCache();
@ -134,6 +136,8 @@ public:
Gen::OpArg GetDefaultLocation(size_t reg) const override;
const int* GetAllocationOrder(size_t& count) override;
void SetImmediate32(size_t preg, u32 immValue);
u32 GetRegUtilization();
u32 CountRegsIn(size_t preg, u32 lookahead);
};
@ -144,4 +148,6 @@ public:
void LoadRegister(size_t preg, Gen::X64Reg newLoc) override;
const int* GetAllocationOrder(size_t& count) override;
Gen::OpArg GetDefaultLocation(size_t reg) const override;
u32 GetRegUtilization();
u32 CountRegsIn(size_t preg, u32 lookahead);
};

View File

@ -74,6 +74,7 @@ protected:
u32 blockStart;
UGeckoInstruction next_inst; // for easy peephole opt.
int instructionNumber;
int instructionsLeft;
int downcountAmount;
u32 numLoadStoreInst;
u32 numFloatingPointInst;

View File

@ -796,57 +796,56 @@ u32 PPCAnalyzer::Analyze(u32 address, CodeBlock *block, CodeBuffer *buffer, u32
// Scan for flag dependencies; assume the next block (or any branch that can leave the block)
// wants flags, to be safe.
bool wantsCR0 = true;
bool wantsCR1 = true;
bool wantsFPRF = true;
bool wantsCA = true;
u32 fregInUse = 0;
u32 regInUse = 0;
u32 fregInXmm = 0;
bool wantsCR0 = true, wantsCR1 = true, wantsFPRF = true, wantsCA = true;
u32 fprInUse = 0, gprInUse = 0, gprInReg = 0, fprInXmm = 0;
for (int i = block->m_num_instructions - 1; i >= 0; i--)
{
bool opWantsCR0 = code[i].wantsCR0;
bool opWantsCR1 = code[i].wantsCR1;
bool opWantsCR0 = code[i].wantsCR0;
bool opWantsCR1 = code[i].wantsCR1;
bool opWantsFPRF = code[i].wantsFPRF;
bool opWantsCA = code[i].wantsCA;
code[i].wantsCR0 = wantsCR0 || code[i].canEndBlock;
code[i].wantsCR1 = wantsCR1 || code[i].canEndBlock;
bool opWantsCA = code[i].wantsCA;
code[i].wantsCR0 = wantsCR0 || code[i].canEndBlock;
code[i].wantsCR1 = wantsCR1 || code[i].canEndBlock;
code[i].wantsFPRF = wantsFPRF || code[i].canEndBlock;
code[i].wantsCA = wantsCA || code[i].canEndBlock;
wantsCR0 |= opWantsCR0 || code[i].canEndBlock;
wantsCR1 |= opWantsCR1 || code[i].canEndBlock;
code[i].wantsCA = wantsCA || code[i].canEndBlock;
wantsCR0 |= opWantsCR0 || code[i].canEndBlock;
wantsCR1 |= opWantsCR1 || code[i].canEndBlock;
wantsFPRF |= opWantsFPRF || code[i].canEndBlock;
wantsCA |= opWantsCA || code[i].canEndBlock;
wantsCR0 &= !code[i].outputCR0 || opWantsCR0;
wantsCR1 &= !code[i].outputCR1 || opWantsCR1;
wantsCA |= opWantsCA || code[i].canEndBlock;
wantsCR0 &= !code[i].outputCR0 || opWantsCR0;
wantsCR1 &= !code[i].outputCR1 || opWantsCR1;
wantsFPRF &= !code[i].outputFPRF || opWantsFPRF;
wantsCA &= !code[i].outputCA || opWantsCA;
code[i].gprInUse = regInUse;
code[i].fprInUse = fregInUse;
code[i].fprInXmm = fregInXmm;
wantsCA &= !code[i].outputCA || opWantsCA;
code[i].gprInUse = gprInUse;
code[i].fprInUse = fprInUse;
code[i].gprInReg = gprInReg;
code[i].fprInXmm = fprInXmm;
// TODO: if there's no possible endblocks or exceptions in between, tell the regcache
// we can throw away a register if it's going to be overwritten later.
for (int j = 0; j < 3; j++)
if (code[i].regsIn[j] >= 0)
regInUse |= 1 << code[i].regsIn[j];
{
gprInUse |= 1 << code[i].regsIn[j];
gprInReg |= 1 << code[i].regsIn[j];
}
for (int j = 0; j < 4; j++)
if (code[i].fregsIn[j] >= 0)
{
fregInUse |= 1 << code[i].fregsIn[j];
fprInUse |= 1 << code[i].fregsIn[j];
if (strncmp(code[i].opinfo->opname, "stfd", 4))
fregInXmm |= 1 << code[i].fregsIn[j];
fprInXmm |= 1 << code[i].fregsIn[j];
}
// For now, we need to count output registers as "used" though; otherwise the flush
// will result in a redundant store (e.g. store to regcache, then store again to
// the same location later).
for (int j = 0; j < 2; j++)
if (code[i].regsOut[j] >= 0)
regInUse |= 1 << code[i].regsOut[j];
gprInUse |= 1 << code[i].regsOut[j];
if (code[i].fregOut >= 0)
{
fregInUse |= 1 << code[i].fregOut;
fprInUse |= 1 << code[i].fregOut;
if (strncmp(code[i].opinfo->opname, "stfd", 4))
fregInXmm |= 1 << code[i].fregOut;
fprInXmm |= 1 << code[i].fregOut;
}
}
return address;

View File

@ -43,8 +43,10 @@ struct CodeOp //16B
bool canEndBlock;
bool skip; // followed BL-s for example
// which registers are still needed after this instruction in this block
u32 gprInUse;
u32 fprInUse;
u32 gprInUse;
// just because a register is in use doesn't mean we actually need or want it in an x86 register.
u32 gprInReg;
// we do double stores from GPRs, so we don't want to load a PowerPC floating point register into
// an XMM only to move it again to a GPR afterwards.
u32 fprInXmm;