Move most backend functionality to VideoCommon

This commit is contained in:
Stenzek
2019-02-15 11:59:50 +10:00
parent 933f3ba008
commit f039149198
182 changed files with 8334 additions and 15917 deletions

View File

@ -15,7 +15,9 @@
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureConversionShader.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#define WRITE p += sprintf
@ -59,21 +61,10 @@ u16 GetEncodedSampleCount(EFBCopyFormat format)
static void WriteHeader(char*& p, APIType ApiType)
{
if (ApiType == APIType::OpenGL)
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
{
// left, top, of source rectangle within source texture
// width of the destination rectangle, scale_factor (1 or 2)
WRITE(p, "uniform int4 position;\n");
WRITE(p, "uniform float y_scale;\n");
WRITE(p, "uniform float gamma_rcp;\n");
WRITE(p, "uniform float2 clamp_tb;\n");
WRITE(p, "uniform float3 filter_coefficients;\n");
WRITE(p, "#define samp0 samp9\n");
WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
}
else if (ApiType == APIType::Vulkan)
{
WRITE(p, "UBO_BINDING(std140, 1) uniform PSBlock {\n");
WRITE(p, " int4 position;\n");
WRITE(p, " float y_scale;\n");
@ -81,8 +72,9 @@ static void WriteHeader(char*& p, APIType ApiType)
WRITE(p, " float2 clamp_tb;\n");
WRITE(p, " float3 filter_coefficients;\n");
WRITE(p, "};\n");
WRITE(p, "VARYING_LOCATION(0) in float3 v_tex0;\n");
WRITE(p, "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n");
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n");
}
else // D3D
{
@ -147,7 +139,7 @@ static void WriteSampleFunction(char*& p, const EFBCopyParams& params, APIType A
else
{
// Handle D3D depth inversion.
if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
WRITE(p, "1.0 - (");
else
WRITE(p, "(");
@ -225,7 +217,9 @@ static void WriteSwizzler(char*& p, const EFBCopyParams& params, EFBCopyFormat f
else // D3D
{
WRITE(p, "void main(\n");
WRITE(p, " out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
WRITE(p, " in float3 v_tex0 : TEXCOORD0,\n");
WRITE(p, " in float4 rawpos : SV_Position,\n");
WRITE(p, " out float4 ocol0 : SV_Target)\n");
WRITE(p, "{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(rawpos.xy);\n");
@ -846,38 +840,65 @@ const char* GenerateEncodingShader(const EFBCopyParams& params, APIType api_type
// NOTE: In these uniforms, a row refers to a row of blocks, not texels.
static const char decoding_shader_header[] = R"(
#ifdef VULKAN
#if defined(PALETTE_FORMAT_IA8) || defined(PALETTE_FORMAT_RGB565) || defined(PALETTE_FORMAT_RGB5A3)
#define HAS_PALETTE 1
#endif
layout(std140, push_constant) uniform PushConstants {
uvec2 dst_size;
uvec2 src_size;
uint src_offset;
uint src_row_stride;
uint palette_offset;
} push_constants;
#define u_dst_size (push_constants.dst_size)
#define u_src_size (push_constants.src_size)
#define u_src_offset (push_constants.src_offset)
#define u_src_row_stride (push_constants.src_row_stride)
#define u_palette_offset (push_constants.palette_offset)
#ifdef API_D3D
cbuffer UBO : register(b0) {
#else
UBO_BINDING(std140, 1) uniform UBO {
#endif
uint2 u_dst_size;
uint2 u_src_size;
uint u_src_offset;
uint u_src_row_stride;
uint u_palette_offset;
};
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
#ifdef API_D3D
IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
Buffer<uint4> s_input_buffer : register(t0);
#ifdef HAS_PALETTE
Buffer<uint4> s_palette_buffer : register(t1);
#endif
RWTexture2DArray<unorm float4> output_image : register(u0);
// Helpers for reading/writing.
#define texelFetch(buffer, pos) buffer.Load(pos)
#define imageStore(image, coords, value) image[coords] = value
#define GROUP_MEMORY_BARRIER_WITH_SYNC GroupMemoryBarrierWithGroupSync();
#define GROUP_SHARED groupshared
#define DEFINE_MAIN(lx, ly) \
[numthreads(lx, ly, 1)] \
void main(uint3 gl_WorkGroupID : SV_GroupId, \
uint3 gl_LocalInvocationID : SV_GroupThreadID, \
uint3 gl_GlobalInvocationID : SV_DispatchThreadID)
uint bitfieldExtract(uint val, int off, int size)
{
// This built-in function is only support in OpenGL 4.0+ and ES 3.1+\n"
// Microsoft's HLSL compiler automatically optimises this to a bitfield extract instruction.
uint mask = uint((1 << size) - 1);
return uint(val >> off) & mask;
}
#else
uniform uvec2 u_dst_size;
uniform uvec2 u_src_size;
uniform uint u_src_offset;
uniform uint u_src_row_stride;
uniform uint u_palette_offset;
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
#ifdef HAS_PALETTE
TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
#endif
IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
SAMPLER_BINDING(9) uniform usamplerBuffer s_input_buffer;
SAMPLER_BINDING(10) uniform usamplerBuffer s_palette_buffer;
#define GROUP_MEMORY_BARRIER_WITH_SYNC memoryBarrierShared(); barrier();
#define GROUP_SHARED shared
layout(rgba8, binding = 0) uniform writeonly image2DArray output_image;
#define DEFINE_MAIN(lx, ly) \
layout(local_size_x = lx, local_size_y = ly) in; \
void main()
#endif
@ -908,10 +929,10 @@ uint Convert6To8(uint v)
return (v << 2) | (v >> 4);
}
uint GetTiledTexelOffset(uvec2 block_size, uvec2 coords)
uint GetTiledTexelOffset(uint2 block_size, uint2 coords)
{
uvec2 block = coords / block_size;
uvec2 offset = coords % block_size;
uint2 block = coords / block_size;
uint2 offset = coords % block_size;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * (block_size.x * block_size.y);
@ -920,16 +941,16 @@ uint GetTiledTexelOffset(uvec2 block_size, uvec2 coords)
return buffer_pos;
}
uvec4 GetPaletteColor(uint index)
uint4 GetPaletteColor(uint index)
{
// Fetch and swap BE to LE.
uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x);
uvec4 color;
uint4 color;
#if defined(PALETTE_FORMAT_IA8)
uint a = bitfieldExtract(val, 8, 8);
uint i = bitfieldExtract(val, 0, 8);
color = uvec4(i, i, i, a);
color = uint4(i, i, i, a);
#elif defined(PALETTE_FORMAT_RGB565)
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
@ -953,29 +974,27 @@ uvec4 GetPaletteColor(uint index)
}
#else
// Not used.
color = uvec4(0, 0, 0, 0);
color = uint4(0, 0, 0, 0);
#endif
return color;
}
vec4 GetPaletteColorNormalized(uint index)
float4 GetPaletteColorNormalized(uint index)
{
uvec4 color = GetPaletteColor(index);
return vec4(color) / 255.0;
uint4 color = GetPaletteColor(index);
return float4(color) / 255.0;
}
)";
static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
{TextureFormat::I4,
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
@ -996,108 +1015,98 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
else
i = Convert4To8((val & 0x0Fu));
uvec4 color = uvec4(i, i, i, i);
vec4 norm_color = vec4(color) / 255.0;
uint4 color = uint4(i, i, i, i);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA4,
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint i = Convert4To8((val & 0x0Fu));
uint a = Convert4To8((val >> 4));
uvec4 color = uvec4(i, i, i, a);
vec4 norm_color = vec4(color) / 255.0;
uint4 color = uint4(i, i, i, a);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::I8,
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
uint i = texelFetch(s_input_buffer, int(buffer_pos)).x;
uvec4 color = uvec4(i, i, i, i);
vec4 norm_color = vec4(color) / 255.0;
uint4 color = uint4(i, i, i, i);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA8,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint a = (val & 0xFFu);
uint i = (val >> 8);
uvec4 color = uvec4(i, i, i, a);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
uint4 color = uint4(i, i, i, a);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB565,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
uvec4 color;
uint4 color;
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB5A3,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
uvec4 color;
uint4 color;
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
@ -1113,19 +1122,17 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGBA8,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
// We can't use the normal calculation function, as these are packed as the AR channels
@ -1144,18 +1151,18 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x;
uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x;
uvec4 color;
uint4 color;
color.a = (val1 & 0xFFu);
color.r = (val1 >> 8);
color.g = (val2 & 0xFFu);
color.b = (val2 >> 8);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::CMPR,
{BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
{TEXEL_BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
R"(
// In the compute version of this decoder, we flatten the blocks to a one-dimension array.
// Each group is subdivided into 16, and the first thread in each group fetches the DXT data.
@ -1167,17 +1174,15 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
#define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y)
#define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE)
layout(local_size_x = GROUP_SIZE, local_size_y = 1) in;
shared uvec2 shared_temp[BLOCKS_PER_GROUP];
uint DXTBlend(uint v1, uint v2)
{
// 3/8 blend, which is close to 1/3
return ((v1 * 3u + v2 * 5u) >> 3);
}
void main()
GROUP_SHARED uint2 shared_temp[BLOCKS_PER_GROUP];
DEFINE_MAIN(GROUP_SIZE, 8)
{
uint local_thread_id = gl_LocalInvocationID.x;
uint block_in_group = local_thread_id / BLOCK_SIZE;
@ -1188,7 +1193,7 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
// from the block size of the overall texture (4 vs 8). We can however use a multiply and
// subtraction to avoid the modulo for calculating the block's X coordinate.
uint blocks_wide = u_src_size.x / BLOCK_SIZE_X;
uvec2 block_coords;
uint2 block_coords;
block_coords.y = block_index / blocks_wide;
block_coords.x = block_index - (block_coords.y * blocks_wide);
@ -1196,8 +1201,8 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
if (thread_in_block == 0u)
{
// Calculate tiled block coordinates.
uvec2 tile_block_coords = block_coords / 2u;
uvec2 subtile_block_coords = block_coords % 2u;
uint2 tile_block_coords = block_coords / 2u;
uint2 subtile_block_coords = block_coords % 2u;
uint buffer_pos = u_src_offset;
buffer_pos += tile_block_coords.y * u_src_row_stride;
buffer_pos += tile_block_coords.x * 4u;
@ -1205,16 +1210,15 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
buffer_pos += subtile_block_coords.x;
// Read the entire DXT block to shared memory.
uvec2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy;
uint2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy;
shared_temp[block_in_group] = raw_data;
}
// Ensure store is completed before the remaining threads in the block continue.
memoryBarrierShared();
barrier();
GROUP_MEMORY_BARRIER_WITH_SYNC;
// Unpack colors and swap BE to LE.
uvec2 raw_data = shared_temp[block_in_group];
uint2 raw_data = shared_temp[block_in_group];
uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8);
uint c1 = swapped & 0xFFFFu;
uint c2 = swapped >> 16;
@ -1230,18 +1234,18 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
// Determine the four colors the block can use.
// It's quicker to just precalculate all four colors rather than branching on the index.
// NOTE: These must be masked with 0xFF. This is done at the normalization stage below.
uvec4 color0, color1, color2, color3;
color0 = uvec4(red1, green1, blue1, 255u);
color1 = uvec4(red2, green2, blue2, 255u);
uint4 color0, color1, color2, color3;
color0 = uint4(red1, green1, blue1, 255u);
color1 = uint4(red2, green2, blue2, 255u);
if (c1 > c2)
{
color2 = uvec4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
color3 = uvec4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
color2 = uint4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
color3 = uint4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
}
else
{
color2 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
color3 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
color2 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
color3 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
}
// Calculate the texel coordinates that we will write to.
@ -1257,7 +1261,7 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
// Select the un-normalized color from the precalculated color array.
// Using a switch statement here removes the need for dynamic indexing of an array.
uvec4 color;
uint4 color;
switch (index)
{
case 0u: color = color0; break;
@ -1268,19 +1272,17 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
}
// Normalize and write to the output image.
vec4 norm_color = vec4(color & 0xFFu) / 255.0;
imageStore(output_image, ivec3(ivec2(uvec2(global_x, global_y)), 0), norm_color);
float4 norm_color = float4(color & 0xFFu) / 255.0;
imageStore(output_image, int3(int2(uint2(global_x, global_y)), 0), norm_color);
}
)"}},
{TextureFormat::C4,
{BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C4)), 8, 8,
false,
{TEXEL_BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C4)),
8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
@ -1296,58 +1298,52 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
// Select high nibble for odd texels, low for even.
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu);
vec4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C8,
{BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C8)), 8, 8,
false,
{TEXEL_BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C8)),
8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
uint index = texelFetch(s_input_buffer, int(buffer_pos)).x;
vec4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C14X2,
{BUFFER_FORMAT_R16_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8,
8, false,
{TEXEL_BUFFER_FORMAT_R16_UINT,
static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 coords = gl_GlobalInvocationID.xy;
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu;
vec4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
// We do the inverse BT.601 conversion for YCbCr to RGB
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
{TextureFormat::XFB,
{BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false,
{TEXEL_BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
DEFINE_MAIN(8, 8)
{
uvec2 uv = gl_GlobalInvocationID.xy;
uint2 uv = gl_GlobalInvocationID.xy;
int buffer_pos = int(u_src_offset + (uv.y * u_src_row_stride) + (uv.x / 2u));
vec4 yuyv = vec4(texelFetch(s_input_buffer, buffer_pos));
float4 yuyv = float4(texelFetch(s_input_buffer, buffer_pos));
float y = mix(yuyv.r, yuyv.b, (uv.x & 1u) == 1u);
@ -1355,33 +1351,21 @@ static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
float uComp = yuyv.g - 128.0;
float vComp = yuyv.a - 128.0;
vec4 rgb = vec4(yComp + (1.596 * vComp),
float4 rgb = float4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
255.0);
vec4 rgba_norm = rgb / 255.0;
imageStore(output_image, ivec3(ivec2(uv), 0), rgba_norm);
float4 rgba_norm = rgb / 255.0;
imageStore(output_image, int3(int2(uv), 0), rgba_norm);
}
)"}}};
static const std::array<u32, BUFFER_FORMAT_COUNT> s_buffer_bytes_per_texel = {{
1, // BUFFER_FORMAT_R8_UINT
2, // BUFFER_FORMAT_R16_UINT
8, // BUFFER_FORMAT_R32G32_UINT
4, // BUFFER_FORMAT_RGBA8_UINT
}};
const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format)
{
auto iter = s_decoding_shader_info.find(format);
return iter != s_decoding_shader_info.end() ? &iter->second : nullptr;
}
u32 GetBytesPerBufferElement(BufferFormat buffer_format)
{
return s_buffer_bytes_per_texel[buffer_format];
}
std::pair<u32, u32> GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height)
{
// Flatten to a single dimension?
@ -1419,4 +1403,126 @@ std::string GenerateDecodingShader(TextureFormat format, TLUTFormat palette_form
return ss.str();
}
std::string GeneratePaletteConversionShader(TLUTFormat palette_format, APIType api_type)
{
std::stringstream ss;
ss << R"(
int Convert3To8(int v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
int Convert4To8(int v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
int Convert5To8(int v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
int Convert6To8(int v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
})";
switch (palette_format)
{
case TLUTFormat::IA8:
ss << R"(
float4 DecodePixel(int val)
{
int i = val & 0xFF;
int a = val >> 8;
return float4(i, i, i, a) / 255.0;
})";
break;
case TLUTFormat::RGB565:
ss << R"(
float4 DecodePixel(int val)
{
int r, g, b, a;
r = Convert5To8((val >> 11) & 0x1f);
g = Convert6To8((val >> 5) & 0x3f);
b = Convert5To8((val) & 0x1f);
a = 0xFF;
return float4(r, g, b, a) / 255.0;
})";
break;
case TLUTFormat::RGB5A3:
ss << R"(
float4 DecodePixel(int val)
{
int r,g,b,a;
if ((val&0x8000) > 0)
{
r=Convert5To8((val>>10) & 0x1f);
g=Convert5To8((val>>5 ) & 0x1f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
}
else
{
a=Convert3To8((val>>12) & 0x7);
r=Convert4To8((val>>8 ) & 0xf);
g=Convert4To8((val>>4 ) & 0xf);
b=Convert4To8((val ) & 0xf);
}
return float4(r, g, b, a) / 255.0;
})";
break;
default:
PanicAlert("Unknown format");
break;
}
ss << "\n";
if (api_type == APIType::D3D)
{
ss << "Buffer<uint> tex0 : register(t0);\n";
ss << "Texture2DArray tex1 : register(t1);\n";
ss << "SamplerState samp1 : register(s1);\n";
ss << "cbuffer PSBlock : register(b0) {\n";
}
else
{
ss << "TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp0;\n";
ss << "SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n";
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
}
ss << " float multiplier;\n";
ss << " int texel_buffer_offset;\n";
ss << "};\n";
if (api_type == APIType::D3D)
{
ss << "void main(in float3 v_tex0 : TEXCOORD0, out float4 ocol0 : SV_Target) {\n";
ss << " int src = int(round(tex1.Sample(samp1, v_tex0).r * multiplier));\n";
ss << " src = int(tex0.Load(src + texel_buffer_offset).r);\n";
}
else
{
ss << "VARYING_LOCATION(0) in float3 v_tex0;\n";
ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n";
ss << "void main() {\n";
ss << " float3 coords = v_tex0;\n";
ss << " int src = int(round(texture(samp1, coords).r * multiplier));\n";
ss << " src = int(texelFetch(samp0, src + texel_buffer_offset).r);\n";
}
ss << " src = ((src << 8) & 0xFF00) | (src >> 8);\n";
ss << " ocol0 = DecodePixel(src);\n";
ss << "}\n";
return ss.str();
}
} // namespace TextureConversionShaderTiled