AudioCommon: Added Granular Synthesis

This commit is contained in:
Sam Belliveau
2025-03-02 20:19:20 -05:00
committed by Jordan Woyak
parent e82f03b825
commit f09ba10daa
51 changed files with 387 additions and 7928 deletions

View File

@ -13,8 +13,8 @@
#include "Common/Logging/Log.h"
#include "Common/Swap.h"
#include "Core/Config/MainSettings.h"
#include "Core/ConfigManager.h"
#include "VideoCommon/PerformanceMetrics.h"
#include "Core/Core.h"
#include "Core/System.h"
static u32 DPL2QualityToFrameBlockSize(AudioCommon::DPL2Quality quality)
{
@ -31,8 +31,8 @@ static u32 DPL2QualityToFrameBlockSize(AudioCommon::DPL2Quality quality)
}
}
Mixer::Mixer(unsigned int BackendSampleRate)
: m_sampleRate(BackendSampleRate), m_stretcher(BackendSampleRate),
Mixer::Mixer(u32 BackendSampleRate)
: m_output_sample_rate(BackendSampleRate),
m_surround_decoder(BackendSampleRate,
DPL2QualityToFrameBlockSize(Config::Get(Config::MAIN_DPL2_QUALITY)))
{
@ -58,177 +58,80 @@ void Mixer::DoState(PointerWrap& p)
}
// Executed from sound stream thread
unsigned int Mixer::MixerFifo::Mix(short* samples, unsigned int numSamples,
bool consider_framelimit, float emulationspeed,
int timing_variance)
void Mixer::MixerFifo::Mix(s16* samples, std::size_t num_samples)
{
unsigned int currentSample = 0;
constexpr u32 half = 0x80000000;
// Cache access in non-volatile variable
// This is the only function changing the read value, so it's safe to
// cache it locally although it's written here.
// The writing pointer will be modified outside, but it will only increase,
// so we will just ignore new written data while interpolating.
// Without this cache, the compiler wouldn't be allowed to optimize the
// interpolation loop.
u32 indexR = m_indexR.load();
u32 indexW = m_indexW.load();
const u64 out_sample_rate = m_mixer->m_output_sample_rate;
u64 in_sample_rate = FIXED_SAMPLE_RATE_DIVIDEND / m_input_sample_rate_divisor;
// render numleft sample pairs to samples[]
// advance indexR with sample position
// remember fractional offset
const float emulation_speed = m_mixer->m_config_emulation_speed;
if (0 < emulation_speed && emulation_speed != 1.0)
in_sample_rate = static_cast<u64>(std::llround(in_sample_rate * emulation_speed));
float aid_sample_rate =
FIXED_SAMPLE_RATE_DIVIDEND / static_cast<float>(m_input_sample_rate_divisor);
if (consider_framelimit && emulationspeed > 0.0f)
const u32 index_jump = (in_sample_rate << GRANULE_BUFFER_FRAC_BITS) / (out_sample_rate);
const StereoPair volume{m_LVolume.load() / 256.0f, m_RVolume.load() / 256.0f};
while (num_samples-- > 0)
{
float numLeft = static_cast<float>(((indexW - indexR) & INDEX_MASK) / 2);
StereoPair sample = Granule::InterpStereoPair(m_front, m_back, m_current_index);
sample *= volume;
u32 low_watermark = (FIXED_SAMPLE_RATE_DIVIDEND * timing_variance) /
(static_cast<u64>(m_input_sample_rate_divisor) * 1000);
low_watermark = std::min(low_watermark, MAX_SAMPLES / 2);
sample.l += samples[0] + m_quantization_error.l;
samples[0] = ToShort(std::lround(sample.l));
m_quantization_error.l = std::clamp(sample.l - samples[0], -1.0f, 1.0f);
m_numLeftI = (numLeft + m_numLeftI * (CONTROL_AVG - 1)) / CONTROL_AVG;
float offset = (m_numLeftI - low_watermark) * CONTROL_FACTOR;
if (offset > MAX_FREQ_SHIFT)
offset = MAX_FREQ_SHIFT;
if (offset < -MAX_FREQ_SHIFT)
offset = -MAX_FREQ_SHIFT;
sample.r += samples[1] + m_quantization_error.r;
samples[1] = ToShort(std::lround(sample.r));
m_quantization_error.r = std::clamp(sample.r - samples[1], -1.0f, 1.0f);
aid_sample_rate = (aid_sample_rate + offset) * emulationspeed;
samples += 2;
m_current_index += index_jump;
if (m_current_index < half)
{
m_front = m_back;
Dequeue(&m_back);
m_current_index += half;
}
}
const u32 ratio = (u32)(65536.0f * aid_sample_rate / (float)m_mixer->m_sampleRate);
s32 lvolume = m_LVolume.load();
s32 rvolume = m_RVolume.load();
const auto read_buffer = [this](auto index) {
return m_little_endian ? m_buffer[index] : Common::swap16(m_buffer[index]);
};
// TODO: consider a higher-quality resampling algorithm.
for (; currentSample < numSamples * 2 && ((indexW - indexR) & INDEX_MASK) > 2; currentSample += 2)
{
u32 indexR2 = indexR + 2; // next sample
s16 l1 = read_buffer(indexR & INDEX_MASK); // current
s16 l2 = read_buffer(indexR2 & INDEX_MASK); // next
int sampleL = ((l1 << 16) + (l2 - l1) * (u16)m_frac) >> 16;
sampleL = (sampleL * lvolume) >> 8;
sampleL += samples[currentSample + 1];
samples[currentSample + 1] = std::clamp(sampleL, -32767, 32767);
s16 r1 = read_buffer((indexR + 1) & INDEX_MASK); // current
s16 r2 = read_buffer((indexR2 + 1) & INDEX_MASK); // next
int sampleR = ((r1 << 16) + (r2 - r1) * (u16)m_frac) >> 16;
sampleR = (sampleR * rvolume) >> 8;
sampleR += samples[currentSample];
samples[currentSample] = std::clamp(sampleR, -32767, 32767);
m_frac += ratio;
indexR += 2 * (u16)(m_frac >> 16);
m_frac &= 0xffff;
}
// Actual number of samples written to the buffer without padding.
unsigned int actual_sample_count = currentSample / 2;
// Padding
short s[2];
s[0] = read_buffer((indexR - 1) & INDEX_MASK);
s[1] = read_buffer((indexR - 2) & INDEX_MASK);
s[0] = (s[0] * rvolume) >> 8;
s[1] = (s[1] * lvolume) >> 8;
for (; currentSample < numSamples * 2; currentSample += 2)
{
int sampleR = std::clamp(s[0] + samples[currentSample + 0], -32767, 32767);
int sampleL = std::clamp(s[1] + samples[currentSample + 1], -32767, 32767);
samples[currentSample + 0] = sampleR;
samples[currentSample + 1] = sampleL;
}
// Flush cached variable
m_indexR.store(indexR);
return actual_sample_count;
}
unsigned int Mixer::Mix(short* samples, unsigned int num_samples)
std::size_t Mixer::Mix(s16* samples, std::size_t num_samples)
{
if (!samples)
return 0;
memset(samples, 0, num_samples * 2 * sizeof(short));
memset(samples, 0, num_samples * 2 * sizeof(s16));
// TODO: Determine how emulation speed will be used in audio
// const float emulation_speed = g_perf_metrics.GetSpeed();
const float emulation_speed = m_config_emulation_speed;
const int timing_variance = m_config_timing_variance;
if (m_config_audio_stretch)
{
unsigned int available_samples =
std::min(m_dma_mixer.AvailableSamples(), m_streaming_mixer.AvailableSamples());
ASSERT_MSG(AUDIO, available_samples <= MAX_SAMPLES,
"Audio stretching would overflow m_scratch_buffer: min({}, {}) -> {} > {} ({})",
m_dma_mixer.AvailableSamples(), m_streaming_mixer.AvailableSamples(),
available_samples, MAX_SAMPLES, num_samples);
m_scratch_buffer.fill(0);
m_dma_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed,
timing_variance);
m_streaming_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed,
timing_variance);
m_wiimote_speaker_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed,
timing_variance);
m_skylander_portal_mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed,
timing_variance);
for (auto& mixer : m_gba_mixers)
{
mixer.Mix(m_scratch_buffer.data(), available_samples, false, emulation_speed,
timing_variance);
}
if (!m_is_stretching)
{
m_stretcher.Clear();
m_is_stretching = true;
}
m_stretcher.ProcessSamples(m_scratch_buffer.data(), available_samples, num_samples);
m_stretcher.GetStretchedSamples(samples, num_samples);
}
else
{
m_dma_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance);
m_streaming_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance);
m_wiimote_speaker_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance);
m_skylander_portal_mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance);
for (auto& mixer : m_gba_mixers)
mixer.Mix(samples, num_samples, true, emulation_speed, timing_variance);
m_is_stretching = false;
}
m_dma_mixer.Mix(samples, num_samples);
m_streaming_mixer.Mix(samples, num_samples);
m_wiimote_speaker_mixer.Mix(samples, num_samples);
m_skylander_portal_mixer.Mix(samples, num_samples);
for (auto& mixer : m_gba_mixers)
mixer.Mix(samples, num_samples);
return num_samples;
}
unsigned int Mixer::MixSurround(float* samples, unsigned int num_samples)
std::size_t Mixer::MixSurround(float* samples, std::size_t num_samples)
{
if (!num_samples)
return 0;
memset(samples, 0, num_samples * SURROUND_CHANNELS * sizeof(float));
size_t needed_frames = m_surround_decoder.QueryFramesNeededForSurroundOutput(num_samples);
std::size_t needed_frames = m_surround_decoder.QueryFramesNeededForSurroundOutput(num_samples);
// Mix() may also use m_scratch_buffer internally, but is safe because it alternates reads
// and writes.
ASSERT_MSG(AUDIO, needed_frames <= MAX_SAMPLES,
constexpr std::size_t max_samples = 0x8000;
ASSERT_MSG(AUDIO, needed_frames <= max_samples,
"needed_frames would overflow m_scratch_buffer: {} -> {} > {}", num_samples,
needed_frames, MAX_SAMPLES);
size_t available_frames = Mix(m_scratch_buffer.data(), static_cast<u32>(needed_frames));
needed_frames, max_samples);
std::array<s16, max_samples> buffer;
std::size_t available_frames = Mix(buffer.data(), static_cast<std::size_t>(needed_frames));
if (available_frames != needed_frames)
{
ERROR_LOG_FMT(AUDIO,
@ -237,71 +140,58 @@ unsigned int Mixer::MixSurround(float* samples, unsigned int num_samples)
return 0;
}
m_surround_decoder.PutFrames(m_scratch_buffer.data(), needed_frames);
m_surround_decoder.PutFrames(buffer.data(), needed_frames);
m_surround_decoder.ReceiveFrames(samples, num_samples);
return num_samples;
}
void Mixer::MixerFifo::PushSamples(const short* samples, unsigned int num_samples)
void Mixer::MixerFifo::PushSamples(const s16* samples, std::size_t num_samples)
{
// Cache access in non-volatile variable
// indexR isn't allowed to cache in the audio throttling loop as it
// needs to get updates to not deadlock.
u32 indexW = m_indexW.load();
// Check if we have enough free space
// indexW == m_indexR results in empty buffer, so indexR must always be smaller than indexW
if (num_samples * 2 + ((indexW - m_indexR.load()) & INDEX_MASK) >= MAX_SAMPLES * 2)
return;
// AyuanX: Actual re-sampling work has been moved to sound thread
// to alleviate the workload on main thread
// and we simply store raw data here to make fast mem copy
int over_bytes = num_samples * 4 - (MAX_SAMPLES * 2 - (indexW & INDEX_MASK)) * sizeof(short);
if (over_bytes > 0)
while (num_samples-- > 0)
{
memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4 - over_bytes);
memcpy(&m_buffer[0], samples + (num_samples * 4 - over_bytes) / sizeof(short), over_bytes);
}
else
{
memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4);
}
const s16 l = m_little_endian ? samples[1] : Common::swap16(samples[1]);
const s16 r = m_little_endian ? samples[0] : Common::swap16(samples[0]);
m_indexW.fetch_add(num_samples * 2);
m_buffer[m_buffer_index] = StereoPair(l, r);
m_buffer_index = (m_buffer_index + 1) & GRANULE_BUFFER_MASK;
samples += 2;
if (m_buffer_index == 0 || m_buffer_index == m_buffer.size() / 2)
Enqueue(Granule(m_buffer, m_buffer_index));
}
}
void Mixer::PushSamples(const short* samples, unsigned int num_samples)
void Mixer::PushSamples(const s16* samples, std::size_t num_samples)
{
m_dma_mixer.PushSamples(samples, num_samples);
if (m_log_dsp_audio)
{
int sample_rate_divisor = m_dma_mixer.GetInputSampleRateDivisor();
const s32 sample_rate_divisor = m_dma_mixer.GetInputSampleRateDivisor();
auto volume = m_dma_mixer.GetVolume();
m_wave_writer_dsp.AddStereoSamplesBE(samples, num_samples, sample_rate_divisor, volume.first,
volume.second);
m_wave_writer_dsp.AddStereoSamplesBE(samples, static_cast<u32>(num_samples),
sample_rate_divisor, volume.first, volume.second);
}
}
void Mixer::PushStreamingSamples(const short* samples, unsigned int num_samples)
void Mixer::PushStreamingSamples(const s16* samples, std::size_t num_samples)
{
m_streaming_mixer.PushSamples(samples, num_samples);
if (m_log_dtk_audio)
{
int sample_rate_divisor = m_streaming_mixer.GetInputSampleRateDivisor();
const s32 sample_rate_divisor = m_streaming_mixer.GetInputSampleRateDivisor();
auto volume = m_streaming_mixer.GetVolume();
m_wave_writer_dtk.AddStereoSamplesBE(samples, num_samples, sample_rate_divisor, volume.first,
volume.second);
m_wave_writer_dtk.AddStereoSamplesBE(samples, static_cast<u32>(num_samples),
sample_rate_divisor, volume.first, volume.second);
}
}
void Mixer::PushWiimoteSpeakerSamples(const short* samples, unsigned int num_samples,
unsigned int sample_rate_divisor)
void Mixer::PushWiimoteSpeakerSamples(const s16* samples, std::size_t num_samples,
u32 sample_rate_divisor)
{
// Max 20 bytes/speaker report, may be 4-bit ADPCM so multiply by 2
static constexpr u32 MAX_SPEAKER_SAMPLES = 20 * 2;
std::array<short, MAX_SPEAKER_SAMPLES * 2> samples_stereo;
static constexpr std::size_t MAX_SPEAKER_SAMPLES = 20 * 2;
std::array<s16, MAX_SPEAKER_SAMPLES * 2> samples_stereo;
ASSERT_MSG(AUDIO, num_samples <= MAX_SPEAKER_SAMPLES,
"num_samples would overflow samples_stereo: {} > {}", num_samples,
@ -310,7 +200,7 @@ void Mixer::PushWiimoteSpeakerSamples(const short* samples, unsigned int num_sam
{
m_wiimote_speaker_mixer.SetInputSampleRateDivisor(sample_rate_divisor);
for (unsigned int i = 0; i < num_samples; ++i)
for (std::size_t i = 0; i < num_samples; ++i)
{
samples_stereo[i * 2] = samples[i];
samples_stereo[i * 2 + 1] = samples[i];
@ -320,12 +210,12 @@ void Mixer::PushWiimoteSpeakerSamples(const short* samples, unsigned int num_sam
}
}
void Mixer::PushSkylanderPortalSamples(const u8* samples, unsigned int num_samples)
void Mixer::PushSkylanderPortalSamples(const u8* samples, std::size_t num_samples)
{
// Skylander samples are always supplied as 64 bytes, 32 x 16 bit samples
// The portal speaker is 1 channel, so duplicate and play as stereo audio
static constexpr u32 MAX_PORTAL_SPEAKER_SAMPLES = 32;
std::array<short, MAX_PORTAL_SPEAKER_SAMPLES * 2> samples_stereo;
static constexpr std::size_t MAX_PORTAL_SPEAKER_SAMPLES = 32;
std::array<s16, MAX_PORTAL_SPEAKER_SAMPLES * 2> samples_stereo;
ASSERT_MSG(AUDIO, num_samples <= MAX_PORTAL_SPEAKER_SAMPLES,
"num_samples is not less or equal to 32: {} > {}", num_samples,
@ -333,7 +223,7 @@ void Mixer::PushSkylanderPortalSamples(const u8* samples, unsigned int num_sampl
if (num_samples <= MAX_PORTAL_SPEAKER_SAMPLES)
{
for (unsigned int i = 0; i < num_samples; ++i)
for (std::size_t i = 0; i < num_samples; ++i)
{
s16 sample = static_cast<u16>(samples[i * 2 + 1]) << 8 | static_cast<u16>(samples[i * 2]);
samples_stereo[i * 2] = sample;
@ -344,37 +234,38 @@ void Mixer::PushSkylanderPortalSamples(const u8* samples, unsigned int num_sampl
}
}
void Mixer::PushGBASamples(int device_number, const short* samples, unsigned int num_samples)
void Mixer::PushGBASamples(std::size_t device_number, const s16* samples, std::size_t num_samples)
{
m_gba_mixers[device_number].PushSamples(samples, num_samples);
}
void Mixer::SetDMAInputSampleRateDivisor(unsigned int rate_divisor)
void Mixer::SetDMAInputSampleRateDivisor(u32 rate_divisor)
{
m_dma_mixer.SetInputSampleRateDivisor(rate_divisor);
}
void Mixer::SetStreamInputSampleRateDivisor(unsigned int rate_divisor)
void Mixer::SetStreamInputSampleRateDivisor(u32 rate_divisor)
{
m_streaming_mixer.SetInputSampleRateDivisor(rate_divisor);
}
void Mixer::SetGBAInputSampleRateDivisors(int device_number, unsigned int rate_divisor)
void Mixer::SetGBAInputSampleRateDivisors(std::size_t device_number, u32 rate_divisor)
{
m_gba_mixers[device_number].SetInputSampleRateDivisor(rate_divisor);
}
void Mixer::SetStreamingVolume(unsigned int lvolume, unsigned int rvolume)
void Mixer::SetStreamingVolume(u32 lvolume, u32 rvolume)
{
m_streaming_mixer.SetVolume(lvolume, rvolume);
m_streaming_mixer.SetVolume(std::clamp<u32>(lvolume, 0x00, 0xff),
std::clamp<u32>(rvolume, 0x00, 0xff));
}
void Mixer::SetWiimoteSpeakerVolume(unsigned int lvolume, unsigned int rvolume)
void Mixer::SetWiimoteSpeakerVolume(u32 lvolume, u32 rvolume)
{
m_wiimote_speaker_mixer.SetVolume(lvolume, rvolume);
}
void Mixer::SetGBAVolume(int device_number, unsigned int lvolume, unsigned int rvolume)
void Mixer::SetGBAVolume(std::size_t device_number, u32 lvolume, u32 rvolume)
{
m_gba_mixers[device_number].SetVolume(lvolume, rvolume);
}
@ -456,8 +347,7 @@ void Mixer::StopLogDSPAudio()
void Mixer::RefreshConfig()
{
m_config_emulation_speed = Config::Get(Config::MAIN_EMULATION_SPEED);
m_config_timing_variance = Config::Get(Config::MAIN_TIMING_VARIANCE);
m_config_audio_stretch = Config::Get(Config::MAIN_AUDIO_STRETCH);
m_audio_fill_gaps = Config::Get(Config::MAIN_AUDIO_FILL_GAPS);
}
void Mixer::MixerFifo::DoState(PointerWrap& p)
@ -467,17 +357,17 @@ void Mixer::MixerFifo::DoState(PointerWrap& p)
p.Do(m_RVolume);
}
void Mixer::MixerFifo::SetInputSampleRateDivisor(unsigned int rate_divisor)
void Mixer::MixerFifo::SetInputSampleRateDivisor(u32 rate_divisor)
{
m_input_sample_rate_divisor = rate_divisor;
}
unsigned int Mixer::MixerFifo::GetInputSampleRateDivisor() const
u32 Mixer::MixerFifo::GetInputSampleRateDivisor() const
{
return m_input_sample_rate_divisor;
}
void Mixer::MixerFifo::SetVolume(unsigned int lvolume, unsigned int rvolume)
void Mixer::MixerFifo::SetVolume(u32 lvolume, u32 rvolume)
{
m_LVolume.store(lvolume + (lvolume >> 7));
m_RVolume.store(rvolume + (rvolume >> 7));
@ -488,11 +378,161 @@ std::pair<s32, s32> Mixer::MixerFifo::GetVolume() const
return std::make_pair(m_LVolume.load(), m_RVolume.load());
}
unsigned int Mixer::MixerFifo::AvailableSamples() const
void Mixer::MixerFifo::Enqueue(const Granule& granule)
{
unsigned int samples_in_fifo = ((m_indexW.load() - m_indexR.load()) & INDEX_MASK) / 2;
if (samples_in_fifo <= 1)
return 0; // Mixer::MixerFifo::Mix always keeps one sample in the buffer.
return (samples_in_fifo - 1) * static_cast<u64>(m_mixer->m_sampleRate) *
m_input_sample_rate_divisor / FIXED_SAMPLE_RATE_DIVIDEND;
const std::size_t head = m_queue_head.load(std::memory_order_relaxed);
std::size_t next_head = (head + 1) % GRANULE_QUEUE_SIZE;
if (next_head == m_queue_tail.load(std::memory_order_acquire))
next_head = (head + GRANULE_QUEUE_SIZE / 2) % GRANULE_QUEUE_SIZE;
m_queue[head] = granule;
m_queue_head.store(next_head, std::memory_order_release);
m_queue_looping.store(false, std::memory_order_relaxed);
}
void Mixer::MixerFifo::Dequeue(Granule* granule)
{
// import numpy as np
// import scipy.signal as signal
// window = np.cumsum(signal.windows.dpss(32, 10))[::-1]
// window /= window.max()
// elements = ", ".join([f"{x:.10f}f" for x in window])
// print(f'constexpr std::array<StereoPair, {len(window)}> FADE_WINDOW = {{ {elements} }};')
constexpr std::array<float, 32> FADE_WINDOW = {
1.0000000000f, 0.9999999932f, 0.9999998472f, 0.9999982765f, 0.9999870876f, 0.9999278274f,
0.9996794215f, 0.9988227502f, 0.9963278433f, 0.9900772448f, 0.9764215513f, 0.9501402658f,
0.9052392639f, 0.8367449916f, 0.7430540364f, 0.6277889467f, 0.5000000000f, 0.3722110533f,
0.2569459636f, 0.1632550084f, 0.0947607361f, 0.0498597342f, 0.0235784487f, 0.0099227552f,
0.0036721567f, 0.0011772498f, 0.0003205785f, 0.0000721726f, 0.0000129124f, 0.0000017235f,
0.0000001528f, 0.0000000068f};
const std::size_t tail = m_queue_tail.load(std::memory_order_relaxed);
std::size_t next_tail = (tail + 1) % GRANULE_QUEUE_SIZE;
if (next_tail == m_queue_head.load(std::memory_order_acquire))
{
// Only fill gaps when running to prevent stutter on pause.
const bool is_running = Core::GetState(Core::System::GetInstance()) == Core::State::Running;
if (m_mixer->m_audio_fill_gaps && is_running)
{
next_tail = (tail + GRANULE_QUEUE_SIZE / 2) % GRANULE_QUEUE_SIZE;
m_queue_looping.store(true, std::memory_order_relaxed);
}
else
{
*granule = Granule();
return;
}
}
if (m_queue_looping.load(std::memory_order_relaxed))
m_queue_fade_index = std::min(m_queue_fade_index + 1, FADE_WINDOW.size() - 1);
else
m_queue_fade_index = 0;
*granule = m_queue[tail];
*granule *= StereoPair(FADE_WINDOW[m_queue_fade_index]);
m_queue_tail.store(next_tail, std::memory_order_release);
}
// Implementation of Granule's constructor
constexpr Mixer::MixerFifo::Granule::Granule(const GranuleBuffer& input,
const std::size_t start_index)
{
// import numpy as np
// import scipy.signal as signal
// window = np.convolve(np.ones(128), signal.windows.dpss(128 + 1, 4))
// window /= (window[:len(window) // 2] + window[len(window) // 2:]).max()
// elements = ", ".join([f"{x:.10f}f" for x in window])
// print(f'constexpr std::array<StereoPair, GRANULE_BUFFER_SIZE> GRANULE_WINDOW = {{ {elements}
// }};')
constexpr std::array<float, GRANULE_BUFFER_SIZE> GRANULE_WINDOW = {
0.0000016272f, 0.0000050749f, 0.0000113187f, 0.0000216492f, 0.0000377350f, 0.0000616906f,
0.0000961509f, 0.0001443499f, 0.0002102045f, 0.0002984010f, 0.0004144844f, 0.0005649486f,
0.0007573262f, 0.0010002765f, 0.0013036694f, 0.0016786636f, 0.0021377783f, 0.0026949534f,
0.0033656000f, 0.0041666352f, 0.0051165029f, 0.0062351752f, 0.0075441359f, 0.0090663409f,
0.0108261579f, 0.0128492811f, 0.0151626215f, 0.0177941726f, 0.0207728499f, 0.0241283062f,
0.0278907219f, 0.0320905724f, 0.0367583739f, 0.0419244083f, 0.0476184323f, 0.0538693708f,
0.0607049996f, 0.0681516192f, 0.0762337261f, 0.0849736833f, 0.0943913952f, 0.1045039915f,
0.1153255250f, 0.1268666867f, 0.1391345431f, 0.1521323012f, 0.1658591025f, 0.1803098534f,
0.1954750915f, 0.2113408944f, 0.2278888303f, 0.2450959552f, 0.2629348550f, 0.2813737361f,
0.3003765625f, 0.3199032396f, 0.3399098438f, 0.3603488941f, 0.3811696664f, 0.4023185434f,
0.4237393998f, 0.4453740162f, 0.4671625177f, 0.4890438330f, 0.5109561670f, 0.5328374823f,
0.5546259838f, 0.5762606002f, 0.5976814566f, 0.6188303336f, 0.6396511059f, 0.6600901562f,
0.6800967604f, 0.6996234375f, 0.7186262639f, 0.7370651450f, 0.7549040448f, 0.7721111697f,
0.7886591056f, 0.8045249085f, 0.8196901466f, 0.8341408975f, 0.8478676988f, 0.8608654569f,
0.8731333133f, 0.8846744750f, 0.8954960085f, 0.9056086048f, 0.9150263167f, 0.9237662739f,
0.9318483808f, 0.9392950004f, 0.9461306292f, 0.9523815677f, 0.9580755917f, 0.9632416261f,
0.9679094276f, 0.9721092781f, 0.9758716938f, 0.9792271501f, 0.9822058274f, 0.9848373785f,
0.9871507189f, 0.9891738421f, 0.9909336591f, 0.9924558641f, 0.9937648248f, 0.9948834971f,
0.9958333648f, 0.9966344000f, 0.9973050466f, 0.9978622217f, 0.9983213364f, 0.9986963306f,
0.9989997235f, 0.9992426738f, 0.9994350514f, 0.9995855156f, 0.9997015990f, 0.9997897955f,
0.9998556501f, 0.9999038491f, 0.9999383094f, 0.9999622650f, 0.9999783508f, 0.9999886813f,
0.9999949251f, 0.9999983728f, 0.9999983728f, 0.9999949251f, 0.9999886813f, 0.9999783508f,
0.9999622650f, 0.9999383094f, 0.9999038491f, 0.9998556501f, 0.9997897955f, 0.9997015990f,
0.9995855156f, 0.9994350514f, 0.9992426738f, 0.9989997235f, 0.9986963306f, 0.9983213364f,
0.9978622217f, 0.9973050466f, 0.9966344000f, 0.9958333648f, 0.9948834971f, 0.9937648248f,
0.9924558641f, 0.9909336591f, 0.9891738421f, 0.9871507189f, 0.9848373785f, 0.9822058274f,
0.9792271501f, 0.9758716938f, 0.9721092781f, 0.9679094276f, 0.9632416261f, 0.9580755917f,
0.9523815677f, 0.9461306292f, 0.9392950004f, 0.9318483808f, 0.9237662739f, 0.9150263167f,
0.9056086048f, 0.8954960085f, 0.8846744750f, 0.8731333133f, 0.8608654569f, 0.8478676988f,
0.8341408975f, 0.8196901466f, 0.8045249085f, 0.7886591056f, 0.7721111697f, 0.7549040448f,
0.7370651450f, 0.7186262639f, 0.6996234375f, 0.6800967604f, 0.6600901562f, 0.6396511059f,
0.6188303336f, 0.5976814566f, 0.5762606002f, 0.5546259838f, 0.5328374823f, 0.5109561670f,
0.4890438330f, 0.4671625177f, 0.4453740162f, 0.4237393998f, 0.4023185434f, 0.3811696664f,
0.3603488941f, 0.3399098438f, 0.3199032396f, 0.3003765625f, 0.2813737361f, 0.2629348550f,
0.2450959552f, 0.2278888303f, 0.2113408944f, 0.1954750915f, 0.1803098534f, 0.1658591025f,
0.1521323012f, 0.1391345431f, 0.1268666867f, 0.1153255250f, 0.1045039915f, 0.0943913952f,
0.0849736833f, 0.0762337261f, 0.0681516192f, 0.0607049996f, 0.0538693708f, 0.0476184323f,
0.0419244083f, 0.0367583739f, 0.0320905724f, 0.0278907219f, 0.0241283062f, 0.0207728499f,
0.0177941726f, 0.0151626215f, 0.0128492811f, 0.0108261579f, 0.0090663409f, 0.0075441359f,
0.0062351752f, 0.0051165029f, 0.0041666352f, 0.0033656000f, 0.0026949534f, 0.0021377783f,
0.0016786636f, 0.0013036694f, 0.0010002765f, 0.0007573262f, 0.0005649486f, 0.0004144844f,
0.0002984010f, 0.0002102045f, 0.0001443499f, 0.0000961509f, 0.0000616906f, 0.0000377350f,
0.0000216492f, 0.0000113187f, 0.0000050749f, 0.0000016272f};
const auto input_middle = input.end() - start_index;
std::ranges::rotate_copy(input, input_middle, m_buffer.begin());
for (std::size_t i = 0; i < m_buffer.size(); ++i)
m_buffer[i] *= StereoPair(GRANULE_WINDOW[i]);
}
Mixer::MixerFifo::StereoPair Mixer::MixerFifo::Granule::InterpStereoPair(const Granule& prev,
const Granule& next,
const u32 frac)
{
const std::size_t prev_index = frac >> Mixer::MixerFifo::GRANULE_BUFFER_FRAC_BITS;
const std::size_t next_index = prev_index - (GRANULE_BUFFER_SIZE / 2);
const u32 frac_t = frac & ((1 << GRANULE_BUFFER_FRAC_BITS) - 1);
const float t1 = frac_t / static_cast<float>(1 << GRANULE_BUFFER_FRAC_BITS);
const float t2 = t1 * t1;
const float t3 = t2 * t1;
// The Granules are pre-windowed, so we can just add them together
StereoPair s0 = prev.m_buffer[(prev_index - 2) & GRANULE_BUFFER_MASK] +
next.m_buffer[(next_index - 2) & GRANULE_BUFFER_MASK];
StereoPair s1 = prev.m_buffer[(prev_index - 1) & GRANULE_BUFFER_MASK] +
next.m_buffer[(next_index - 1) & GRANULE_BUFFER_MASK];
StereoPair s2 = prev.m_buffer[(prev_index + 0) & GRANULE_BUFFER_MASK] +
next.m_buffer[(next_index + 0) & GRANULE_BUFFER_MASK];
StereoPair s3 = prev.m_buffer[(prev_index + 1) & GRANULE_BUFFER_MASK] +
next.m_buffer[(next_index + 1) & GRANULE_BUFFER_MASK];
StereoPair s4 = prev.m_buffer[(prev_index + 2) & GRANULE_BUFFER_MASK] +
next.m_buffer[(next_index + 2) & GRANULE_BUFFER_MASK];
StereoPair s5 = prev.m_buffer[(prev_index + 3) & GRANULE_BUFFER_MASK] +
next.m_buffer[(next_index + 3) & GRANULE_BUFFER_MASK];
s0 *= StereoPair{(+0.0f + 1.0f * t1 - 2.0f * t2 + 1.0f * t3) / 12.0f};
s1 *= StereoPair{(+0.0f - 8.0f * t1 + 15.0f * t2 - 7.0f * t3) / 12.0f};
s2 *= StereoPair{(+3.0f + 0.0f * t1 - 7.0f * t2 + 4.0f * t3) / 3.0f};
s3 *= StereoPair{(+0.0f + 2.0f * t1 + 5.0f * t2 - 4.0f * t3) / 3.0f};
s4 *= StereoPair{(+0.0f - 1.0f * t1 - 6.0f * t2 + 7.0f * t3) / 12.0f};
s5 *= StereoPair{(+0.0f + 0.0f * t1 + 1.0f * t2 - 1.0f * t3) / 12.0f};
return s0 + s1 + s2 + s3 + s4 + s5;
}