This fixes a problem I was having where using frame advance with the
debugger open would frequently cause panic alerts about invalid addresses
due to the CPU thread changing MSR.DR while the host thread was trying
to access memory.
To aid in tracking down all the places where we weren't properly locking
the CPU, I've created a new type (in Core.h) that you have to pass as a
reference or pointer to functions that require running as the CPU thread.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
Changed several enums from Memmap.h to be static vars and implemented Get functions to query them. This seems to have boosted speed a bit in some titles? The new variables and some previously statically initialized items are now initialized via Memory::Init() and the new AddressSpace::Init(). s_ram_size_real and the new s_exram_size_real in particular are initialized from new OnionConfig values "MAIN_MEM1_SIZE" and "MAIN_MEM2_SIZE", only if "MAIN_RAM_OVERRIDE_ENABLE" is true.
GUI features have been added to Config > Advanced to adjust the new OnionConfig values.
A check has been added to State::doState to ensure savestates with memory configurations different from the current settings aren't loaded. The STATE_VERSION is now 115.
FIFO Files have been updated from version 4 to version 5, now including the MEM1 and MEM2 sizes from the time of DFF creation. FIFO Logs not using the new features (OnionConfig MAIN_RAM_OVERRIDE_ENABLE is false) are still backwards compatible. FIFO Logs that do use the new features have a MIN_LOADER_VERSION of 5. Thanks to the order of function calls, FIFO logs are able to automatically configure the new OnionConfig settings to match what is needed. This is a bit hacky, though, so I also threw in a failsafe for if the conditions that allow this to work ever go away.
I took the liberty of adding a log message to explain why the core fails to initialize if the MIN_LOADER_VERSION is too great.
Some IOS code has had the function "RAMOverrideForIOSMemoryValues" appended to it to recalculate IOS Memory Values from retail IOSes/apploaders to fit the extended memory sizes. Worry not, if MAIN_RAM_OVERRIDE_ENABLE is false, this function does absolutely nothing.
A hotfix in DolphinQt/MenuBar.cpp has been implemented for RAM Override.
This allows avoiding two copies of the executable data being created in
the following scenario (using pseudocode):
some_function()
{
std::vector<u8> data = ...;
DolReader reader{data};
...
}
In this scenario, if we only use the data for passing it to DolReader,
then we have to perform a copy, as the constructor takes the std::vector
as a constant reference -- you cannot move from a constant reference,
and so we copy data into the DolReader, and perform another copy in the
constructor itself when assigning the data to the m_bytes member
variable. However, we can do better.
Now, the following is allowable as well:
some_function()
{
std::vector<u8> data = ...;
DolReader reader{std::move(data)};
...
}
and now we perform no copy at any point in the reader's construction, as
we just std::move the data all the way through to m_bytes.
In the case where we *do* want to keep the executable data around after
constructing the reader, then we can just pass the vector without
std::move-ing it, and we only perform a copy once (as we'll std::move
said copy into m_bytes). Therefore, we get a more flexible interface
resource-wise out of it.
This lets VolumeDirectory/DirectoryBlob skip implementing
various volume functions like GetGameID, GetBanner, etc.
It also lets us view extracted discs in the game list.
This ends up breaking the boot process for Wii
DirectoryBlobs due to workarounds being removed from the
boot process, but that will be fixed later by adding
proper DirectoryBlob support for things like TMDs.
We now expect the directories to be laid out in a certain
format (based on the format that WIT uses) instead of requiring
the user to set the DVD root and apploader path settings.
They're essentially the same. To achieve this, this commit unifies
DolReader and ElfReader into a common interface for boot executable
readers, so the only remaining difference between ELF and DOL is
how which volume is inserted.
This moves all the byte swapping utilities into a header named Swap.h.
A dedicated header is much more preferable here due to the size of the
code itself. In general usage throughout the codebase, CommonFuncs.h was
generally only included for these functions anyway. These being in their
own header avoids dumping the lesser used utilities into scope. As well
as providing a localized area for more utilities related to byte
swapping in the future (should they be needed). This also makes it nicer
to identify which files depend on the byte swapping utilities in
particular.
Since this is a completely new header, moving the code uncovered a few
indirect includes, as well as making some other inclusions unnecessary.
This implements MIOS's PPC bootstrapping functionality, which enables
users to start a GameCube game from the Wii System Menu.
Because we aren't doing Starlet LLE (and don't have a boot1), we can
just jump to MIOS when the emulated software does an ES_LAUNCH or uses
ioctlv 0x25 to launch BC.
Note that the process is more complex on a real Wii and goes through
several more steps before getting to MIOS:
* The System Menu detects a GameCube disc and launches BC (1-100)
instead of the game. [Dolphin does this too.]
* BC, which is reportedly very similar to boot1, lowers the Hollywood
clock speed to the Flipper's and then launches boot2.
* boot2 sees the lowered clock speed and launches MIOS (1-101) instead
of the System Menu.
MIOS runs instead of IOS in GC mode and has an embedded GC IPL (which
is the code actually responsible for loading the disc game) and a PPC
bootstrap code. To get things working properly, we simply need to load
both to memory, then jump to the bootstrap code at 0x3400.
Obviously, because of the way this works, a real MIOS is required.
* Don't claim to support any features we don't, like relocation
* Actually zero-out BSS sections, as memory might not be already
zeroed.
* Deleted commented out code.
* Removed GetPointer, updated to more modern interface methods.
* Updated pointer types style from "u32 *x" to "u32* x"