Puts the comment in the header where it's more likely to be seen
initially. We can also remove the TODO, given doing nothing or returning
an error is what is generally done for the JIT interface if the JIT
instance isn't valid.
This global belongs in the JitOptions structure, as it's a conditional
setting (A.K.A. option) that changes the behavior of what the JIT does.
Plus it keeps the scope of the variable constrained to the general area
it's intended to be used and nothing further.
Makes the enum values strongly-typed and prevents the identifiers from
polluting the PowerPC namespace. This also cleans up the parameters of
some functions where we were accepting an ambiguous int type and
expecting the correct values to be passed in.
Now those parameters accept a PowerPC::CPUCore type only, making it
immediately obvious which values should be passed in. It also turns out
we were storing these core types into other structures as plain ints,
which have also been corrected.
As this type is used directly with the configuration code, we need to
provide our own overloaded insertion (<<) and extraction (>>) operators
in order to make it compatible with it. These are fairly trivial to
implement, so there's no issue here.
A minor adjustment to TryParse() was required, as our generic function
was doing the following:
N tmp = 0;
which is problematic, as custom types may not be able to have that
assignment performed (e.g. strongly-typed enums), so we change this to:
N tmp;
which is sufficient, as the value is attempted to be initialized
immediately under that statement.
instruction tables
Previously, all of the internals that handled how the instruction tables
are initialized were exposed externally. However, this can all be made
private to each CPU backend.
If each backend has an Init() function, then this is where the instruction
tables should be initialized, it shouldn't be the responsibility of
external code to ensure internal validity.
This allows for getting rid of all the table initialization shenanigans
within JitInterface and PPCTables.
This introduces speculative constants, allowing FIFO writes to be
optimized in more places.
It also clarifies the guarantees of the FIFO optimization, changing
the location of some of the checks and potentially avoiding redundant
checks.
This cleans up some of the code between core and UI for disassembling and dumping code blocks.
Should help the QT UI in bringing up its debug UI since it won't have to deal with this garbage now.
The PowerPC CPU has bits in MSR (DR and IR) which control whether
addresses are translated. We should respect these instead of mixing
physical addresses and translated addresses into the same address space.
This is mostly mass-renaming calls to memory accesses APIs from places
which expect address translation to use a different version from those
which do not expect address translation.
This does very little on its own, but it's the first step to a correct BAT
implementation.
Optimistically assume used GQRs are 0 in blocks that only use one GQR, and
bail at the start of the block and recompile if that assumption fails.
Many games use almost entirely unquantized stores (e.g. Rebel Strike, Sonic
Colors), so this will likely be a big performance improvement across the board
for games with heavy use of paired singles.
- Get rid of ArmMemTools.cpp and rename x64MemTools.cpp to MemTools.cpp.
ArmMemTools was almost identical to the POSIX part of x64MemTools, and
the two differences, (a) lack of sigaltstack, which I added to the
latter recently, and (b) use of r10 to determine the fault address
instead of info->si_addr (meaning it only works for specifically
formatted JIT code), I don't think are necessary. (Plus Android, see
below.)
- Rename Core/PowerPC/JitCommon/JitBackpatch.h to Core/MachineContext.h.
It doesn't contain anything JIT-specific anymore, and e.g. locking
will want to use faulting support regardless of whether any JIT is in
use.
- Get rid of different definitions of SContext for different
architectures under __linux__, since this is POSIX. The exception is
of course Android being shitty; I moved the workaround definition from
ArmMemTools.cpp to here.
- Get rid of #ifdefs around EMM::InstallExceptionHandler and just
provide an empty implementation for unsupported systems (i.e.
_M_GENERIC really). Added const bool g_exception_handlers_supported
for future use; currently exception handlers are only used by the JIT,
whose use implies non-M_GENERIC, but locking will change that.
- Remove an unnecessary typedef.
Detects a situation where the game is writing to the dcache at the address being DMA'd. As we do not have dcache emulation, invalid data is being DMA'd causing audio glitches. The following code detects this and enables the DMA to complete instantly before the invalid data is written.
Added accurate ARAM DMA transfer timing.
Removed the addition of DSP exception checking.
Rather than *MemTools.cpp checking whether the address is in the
emulated range itself (which, as of the next commit, doesn't cover every
kind of access the JIT might want to intercept) and doing PC
replacement, they just pass the access address and context to
jit->HandleFault, which does the rest itself.
Because SContext is now in JitInterface, I wanted JitBackpatch.h (which
defines it) to be lightweight, so I moved TrampolineCache and associated
x64{Analyzer,Emitter} dependencies into its own file. I hate adding new
files in three places, two of which are MSVC...
While I'm at it, edit a misleading comment.