// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/VertexManagerBase.h" #include #include #include #include "Common/BitSet.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MathUtil.h" #include "Core/ConfigManager.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/BoundingBox.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/GeometryShaderManager.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/OpcodeDecoding.h" #include "VideoCommon/PerfQueryBase.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" std::unique_ptr g_vertex_manager; // GX primitive -> RenderState primitive, no primitive restart constexpr std::array primitive_from_gx{{ PrimitiveType::Triangles, // GX_DRAW_QUADS PrimitiveType::Triangles, // GX_DRAW_QUADS_2 PrimitiveType::Triangles, // GX_DRAW_TRIANGLES PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_STRIP PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_FAN PrimitiveType::Lines, // GX_DRAW_LINES PrimitiveType::Lines, // GX_DRAW_LINE_STRIP PrimitiveType::Points, // GX_DRAW_POINTS }}; // GX primitive -> RenderState primitive, using primitive restart constexpr std::array primitive_from_gx_pr{{ PrimitiveType::TriangleStrip, // GX_DRAW_QUADS PrimitiveType::TriangleStrip, // GX_DRAW_QUADS_2 PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLES PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_STRIP PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_FAN PrimitiveType::Lines, // GX_DRAW_LINES PrimitiveType::Lines, // GX_DRAW_LINE_STRIP PrimitiveType::Points, // GX_DRAW_POINTS }}; // Due to the BT.601 standard which the GameCube is based on being a compromise // between PAL and NTSC, neither standard gets square pixels. They are each off // by ~9% in opposite directions. // Just in case any game decides to take this into account, we do both these // tests with a large amount of slop. static bool AspectIs4_3(float width, float height) { float aspect = fabsf(width / height); return fabsf(aspect - 4.0f / 3.0f) < 4.0f / 3.0f * 0.11; // within 11% of 4:3 } static bool AspectIs16_9(float width, float height) { float aspect = fabsf(width / height); return fabsf(aspect - 16.0f / 9.0f) < 16.0f / 9.0f * 0.11; // within 11% of 16:9 } VertexManagerBase::VertexManagerBase() : m_cpu_vertex_buffer(MAXVBUFFERSIZE), m_cpu_index_buffer(MAXIBUFFERSIZE) { } VertexManagerBase::~VertexManagerBase() = default; bool VertexManagerBase::Initialize() { return true; } u32 VertexManagerBase::GetRemainingSize() const { return static_cast(m_end_buffer_pointer - m_cur_buffer_pointer); } DataReader VertexManagerBase::PrepareForAdditionalData(int primitive, u32 count, u32 stride, bool cullall) { // Flush all EFB pokes. Since the buffer is shared, we can't draw pokes+primitives concurrently. g_framebuffer_manager->FlushEFBPokes(); // The SSE vertex loader can write up to 4 bytes past the end u32 const needed_vertex_bytes = count * stride + 4; // We can't merge different kinds of primitives, so we have to flush here PrimitiveType new_primitive_type = g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? primitive_from_gx_pr[primitive] : primitive_from_gx[primitive]; if (m_current_primitive_type != new_primitive_type) { Flush(); // Have to update the rasterization state for point/line cull modes. m_current_primitive_type = new_primitive_type; SetRasterizationStateChanged(); } // Check for size in buffer, if the buffer gets full, call Flush() if (!m_is_flushed && (count > IndexGenerator::GetRemainingIndices() || count > GetRemainingIndices(primitive) || needed_vertex_bytes > GetRemainingSize())) { Flush(); if (count > IndexGenerator::GetRemainingIndices()) ERROR_LOG(VIDEO, "Too little remaining index values. Use 32-bit or reset them on flush."); if (count > GetRemainingIndices(primitive)) ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all indices! " "Increase MAXIBUFFERSIZE or we need primitive breaking after all."); if (needed_vertex_bytes > GetRemainingSize()) ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all vertices! " "Increase MAXVBUFFERSIZE or we need primitive breaking after all."); } m_cull_all = cullall; // need to alloc new buffer if (m_is_flushed) { if (cullall) { // This buffer isn't getting sent to the GPU. Just allocate it on the cpu. m_cur_buffer_pointer = m_base_buffer_pointer = m_cpu_vertex_buffer.data(); m_end_buffer_pointer = m_base_buffer_pointer + m_cpu_vertex_buffer.size(); IndexGenerator::Start(m_cpu_index_buffer.data()); } else { ResetBuffer(stride); } m_is_flushed = false; } return DataReader(m_cur_buffer_pointer, m_end_buffer_pointer); } void VertexManagerBase::FlushData(u32 count, u32 stride) { m_cur_buffer_pointer += count * stride; } u32 VertexManagerBase::GetRemainingIndices(int primitive) { u32 index_len = MAXIBUFFERSIZE - IndexGenerator::GetIndexLen(); if (g_Config.backend_info.bSupportsPrimitiveRestart) { switch (primitive) { case OpcodeDecoder::GX_DRAW_QUADS: case OpcodeDecoder::GX_DRAW_QUADS_2: return index_len / 5 * 4; case OpcodeDecoder::GX_DRAW_TRIANGLES: return index_len / 4 * 3; case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP: return index_len / 1 - 1; case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN: return index_len / 6 * 4 + 1; case OpcodeDecoder::GX_DRAW_LINES: return index_len; case OpcodeDecoder::GX_DRAW_LINE_STRIP: return index_len / 2 + 1; case OpcodeDecoder::GX_DRAW_POINTS: return index_len; default: return 0; } } else { switch (primitive) { case OpcodeDecoder::GX_DRAW_QUADS: case OpcodeDecoder::GX_DRAW_QUADS_2: return index_len / 6 * 4; case OpcodeDecoder::GX_DRAW_TRIANGLES: return index_len; case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP: return index_len / 3 + 2; case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN: return index_len / 3 + 2; case OpcodeDecoder::GX_DRAW_LINES: return index_len; case OpcodeDecoder::GX_DRAW_LINE_STRIP: return index_len / 2 + 1; case OpcodeDecoder::GX_DRAW_POINTS: return index_len; default: return 0; } } } std::pair VertexManagerBase::ResetFlushAspectRatioCount() { std::pair val = std::make_pair(m_flush_count_4_3, m_flush_count_anamorphic); m_flush_count_4_3 = 0; m_flush_count_anamorphic = 0; return val; } void VertexManagerBase::ResetBuffer(u32 vertex_stride) { m_base_buffer_pointer = m_cpu_vertex_buffer.data(); m_cur_buffer_pointer = m_cpu_vertex_buffer.data(); m_end_buffer_pointer = m_base_buffer_pointer + m_cpu_vertex_buffer.size(); IndexGenerator::Start(m_cpu_index_buffer.data()); } void VertexManagerBase::CommitBuffer(u32 num_vertices, u32 vertex_stride, u32 num_indices, u32* out_base_vertex, u32* out_base_index) { *out_base_vertex = 0; *out_base_index = 0; } void VertexManagerBase::DrawCurrentBatch(u32 base_index, u32 num_indices, u32 base_vertex) { // If bounding box is enabled, we need to flush any changes first, then invalidate what we have. if (::BoundingBox::active && g_ActiveConfig.bBBoxEnable && g_ActiveConfig.backend_info.bSupportsBBox) { g_renderer->BBoxFlush(); } g_renderer->DrawIndexed(base_index, num_indices, base_vertex); } void VertexManagerBase::UploadUniforms() { } void VertexManagerBase::InvalidateConstants() { VertexShaderManager::dirty = true; GeometryShaderManager::dirty = true; PixelShaderManager::dirty = true; } void VertexManagerBase::UploadUtilityUniforms(const void* uniforms, u32 uniforms_size) { } void VertexManagerBase::UploadUtilityVertices(const void* vertices, u32 vertex_stride, u32 num_vertices, const u16* indices, u32 num_indices, u32* out_base_vertex, u32* out_base_index) { // The GX vertex list should be flushed before any utility draws occur. ASSERT(m_is_flushed); // Copy into the buffers usually used for GX drawing. ResetBuffer(std::max(vertex_stride, 1u)); if (vertices) { const u32 copy_size = vertex_stride * num_vertices; ASSERT((m_cur_buffer_pointer + copy_size) <= m_end_buffer_pointer); std::memcpy(m_cur_buffer_pointer, vertices, copy_size); m_cur_buffer_pointer += copy_size; } if (indices) IndexGenerator::AddExternalIndices(indices, num_indices, num_vertices); CommitBuffer(num_vertices, vertex_stride, num_indices, out_base_vertex, out_base_index); } u32 VertexManagerBase::GetTexelBufferElementSize(TexelBufferFormat buffer_format) { // R8 - 1, R16 - 2, RGBA8 - 4, R32G32 - 8 return 1u << static_cast(buffer_format); } bool VertexManagerBase::UploadTexelBuffer(const void* data, u32 data_size, TexelBufferFormat format, u32* out_offset) { return false; } bool VertexManagerBase::UploadTexelBuffer(const void* data, u32 data_size, TexelBufferFormat format, u32* out_offset, const void* palette_data, u32 palette_size, TexelBufferFormat palette_format, u32* palette_offset) { return false; } void VertexManagerBase::LoadTextures() { BitSet32 usedtextures; for (u32 i = 0; i < bpmem.genMode.numtevstages + 1u; ++i) if (bpmem.tevorders[i / 2].getEnable(i & 1)) usedtextures[bpmem.tevorders[i / 2].getTexMap(i & 1)] = true; if (bpmem.genMode.numindstages > 0) for (unsigned int i = 0; i < bpmem.genMode.numtevstages + 1u; ++i) if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages) usedtextures[bpmem.tevindref.getTexMap(bpmem.tevind[i].bt)] = true; for (unsigned int i : usedtextures) g_texture_cache->Load(i); g_texture_cache->BindTextures(); } void VertexManagerBase::Flush() { if (m_is_flushed) return; m_is_flushed = true; // loading a state will invalidate BP, so check for it g_video_backend->CheckInvalidState(); #if defined(_DEBUG) || defined(DEBUGFAST) PRIM_LOG("frame%d:\n texgen=%u, numchan=%u, dualtex=%u, ztex=%u, cole=%u, alpe=%u, ze=%u", g_ActiveConfig.iSaveTargetId, xfmem.numTexGen.numTexGens, xfmem.numChan.numColorChans, xfmem.dualTexTrans.enabled, bpmem.ztex2.op.Value(), bpmem.blendmode.colorupdate.Value(), bpmem.blendmode.alphaupdate.Value(), bpmem.zmode.updateenable.Value()); for (u32 i = 0; i < xfmem.numChan.numColorChans; ++i) { LitChannel* ch = &xfmem.color[i]; PRIM_LOG("colchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i, ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(), ch->diffusefunc.Value(), ch->attnfunc.Value()); ch = &xfmem.alpha[i]; PRIM_LOG("alpchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i, ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(), ch->diffusefunc.Value(), ch->attnfunc.Value()); } for (u32 i = 0; i < xfmem.numTexGen.numTexGens; ++i) { TexMtxInfo tinfo = xfmem.texMtxInfo[i]; if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP) tinfo.hex &= 0x7ff; if (tinfo.texgentype != XF_TEXGEN_REGULAR) tinfo.projection = 0; PRIM_LOG("txgen%u: proj=%u, input=%u, gentype=%u, srcrow=%u, embsrc=%u, emblght=%u, " "postmtx=%u, postnorm=%u", i, tinfo.projection.Value(), tinfo.inputform.Value(), tinfo.texgentype.Value(), tinfo.sourcerow.Value(), tinfo.embosssourceshift.Value(), tinfo.embosslightshift.Value(), xfmem.postMtxInfo[i].index.Value(), xfmem.postMtxInfo[i].normalize.Value()); } PRIM_LOG("pixel: tev=%u, ind=%u, texgen=%u, dstalpha=%u, alphatest=0x%x", bpmem.genMode.numtevstages.Value() + 1, bpmem.genMode.numindstages.Value(), bpmem.genMode.numtexgens.Value(), bpmem.dstalpha.enable.Value(), (bpmem.alpha_test.hex >> 16) & 0xff); #endif // Track some stats used elsewhere by the anamorphic widescreen heuristic. if (!SConfig::GetInstance().bWii) { const auto& raw_projection = xfmem.projection.rawProjection; const bool viewport_is_4_3 = AspectIs4_3(xfmem.viewport.wd, xfmem.viewport.ht); if (AspectIs16_9(raw_projection[2], raw_projection[0]) && viewport_is_4_3) { // Projection is 16:9 and viewport is 4:3, we are rendering an anamorphic // widescreen picture. m_flush_count_anamorphic++; } else if (AspectIs4_3(raw_projection[2], raw_projection[0]) && viewport_is_4_3) { // Projection and viewports are both 4:3, we are rendering a normal image. m_flush_count_4_3++; } } // Calculate ZSlope for zfreeze VertexShaderManager::SetConstants(); if (!bpmem.genMode.zfreeze) { // Must be done after VertexShaderManager::SetConstants() CalculateZSlope(VertexLoaderManager::GetCurrentVertexFormat()); } else if (m_zslope.dirty && !m_cull_all) // or apply any dirty ZSlopes { PixelShaderManager::SetZSlope(m_zslope.dfdx, m_zslope.dfdy, m_zslope.f0); m_zslope.dirty = false; } if (!m_cull_all) { // Now the vertices can be flushed to the GPU. Everything following the CommitBuffer() call // must be careful to not upload any utility vertices, as the binding will be lost otherwise. const u32 num_indices = IndexGenerator::GetIndexLen(); u32 base_vertex, base_index; CommitBuffer(IndexGenerator::GetNumVerts(), VertexLoaderManager::GetCurrentVertexFormat()->GetVertexStride(), num_indices, &base_vertex, &base_index); // Texture loading can cause palettes to be applied (-> uniforms -> draws). // Palette application does not use vertices, only a full-screen quad, so this is okay. // Same with GPU texture decoding, which uses compute shaders. LoadTextures(); // Now we can upload uniforms, as nothing else will override them. GeometryShaderManager::SetConstants(); PixelShaderManager::SetConstants(); UploadUniforms(); // Update the pipeline, or compile one if needed. UpdatePipelineConfig(); UpdatePipelineObject(); if (m_current_pipeline_object) { g_renderer->SetPipeline(m_current_pipeline_object); if (PerfQueryBase::ShouldEmulate()) g_perf_query->EnableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP); DrawCurrentBatch(base_index, num_indices, base_vertex); INCSTAT(stats.thisFrame.numDrawCalls); if (PerfQueryBase::ShouldEmulate()) g_perf_query->DisableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP); OnDraw(); // The EFB cache is now potentially stale. g_framebuffer_manager->FlagPeekCacheAsOutOfDate(); } } if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens) { ERROR_LOG(VIDEO, "xf.numtexgens (%d) does not match bp.numtexgens (%d). Error in command stream.", xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value()); } } void VertexManagerBase::DoState(PointerWrap& p) { p.Do(m_zslope); } void VertexManagerBase::CalculateZSlope(NativeVertexFormat* format) { float out[12]; float viewOffset[2] = {xfmem.viewport.xOrig - bpmem.scissorOffset.x * 2, xfmem.viewport.yOrig - bpmem.scissorOffset.y * 2}; if (m_current_primitive_type != PrimitiveType::Triangles && m_current_primitive_type != PrimitiveType::TriangleStrip) { return; } // Global matrix ID. u32 mtxIdx = g_main_cp_state.matrix_index_a.PosNormalMtxIdx; const PortableVertexDeclaration vert_decl = format->GetVertexDeclaration(); // Make sure the buffer contains at least 3 vertices. if ((m_cur_buffer_pointer - m_base_buffer_pointer) < (vert_decl.stride * 3)) return; // Lookup vertices of the last rendered triangle and software-transform them // This allows us to determine the depth slope, which will be used if z-freeze // is enabled in the following flush. for (unsigned int i = 0; i < 3; ++i) { // If this vertex format has per-vertex position matrix IDs, look it up. if (vert_decl.posmtx.enable) mtxIdx = VertexLoaderManager::position_matrix_index[3 - i]; if (vert_decl.position.components == 2) VertexLoaderManager::position_cache[2 - i][2] = 0; VertexShaderManager::TransformToClipSpace(&VertexLoaderManager::position_cache[2 - i][0], &out[i * 4], mtxIdx); // Transform to Screenspace float inv_w = 1.0f / out[3 + i * 4]; out[0 + i * 4] = out[0 + i * 4] * inv_w * xfmem.viewport.wd + viewOffset[0]; out[1 + i * 4] = out[1 + i * 4] * inv_w * xfmem.viewport.ht + viewOffset[1]; out[2 + i * 4] = out[2 + i * 4] * inv_w * xfmem.viewport.zRange + xfmem.viewport.farZ; } float dx31 = out[8] - out[0]; float dx12 = out[0] - out[4]; float dy12 = out[1] - out[5]; float dy31 = out[9] - out[1]; float DF31 = out[10] - out[2]; float DF21 = out[6] - out[2]; float a = DF31 * -dy12 - DF21 * dy31; float b = dx31 * DF21 + dx12 * DF31; float c = -dx12 * dy31 - dx31 * -dy12; // Sometimes we process de-generate triangles. Stop any divide by zeros if (c == 0) return; m_zslope.dfdx = -a / c; m_zslope.dfdy = -b / c; m_zslope.f0 = out[2] - (out[0] * m_zslope.dfdx + out[1] * m_zslope.dfdy); m_zslope.dirty = true; } void VertexManagerBase::UpdatePipelineConfig() { NativeVertexFormat* vertex_format = VertexLoaderManager::GetCurrentVertexFormat(); if (vertex_format != m_current_pipeline_config.vertex_format) { m_current_pipeline_config.vertex_format = vertex_format; m_current_uber_pipeline_config.vertex_format = VertexLoaderManager::GetUberVertexFormat(vertex_format->GetVertexDeclaration()); m_pipeline_config_changed = true; } VertexShaderUid vs_uid = GetVertexShaderUid(); if (vs_uid != m_current_pipeline_config.vs_uid) { m_current_pipeline_config.vs_uid = vs_uid; m_current_uber_pipeline_config.vs_uid = UberShader::GetVertexShaderUid(); m_pipeline_config_changed = true; } PixelShaderUid ps_uid = GetPixelShaderUid(); if (ps_uid != m_current_pipeline_config.ps_uid) { m_current_pipeline_config.ps_uid = ps_uid; m_current_uber_pipeline_config.ps_uid = UberShader::GetPixelShaderUid(); m_pipeline_config_changed = true; } GeometryShaderUid gs_uid = GetGeometryShaderUid(GetCurrentPrimitiveType()); if (gs_uid != m_current_pipeline_config.gs_uid) { m_current_pipeline_config.gs_uid = gs_uid; m_current_uber_pipeline_config.gs_uid = gs_uid; m_pipeline_config_changed = true; } if (m_rasterization_state_changed) { m_rasterization_state_changed = false; RasterizationState new_rs = {}; new_rs.Generate(bpmem, m_current_primitive_type); if (new_rs != m_current_pipeline_config.rasterization_state) { m_current_pipeline_config.rasterization_state = new_rs; m_current_uber_pipeline_config.rasterization_state = new_rs; m_pipeline_config_changed = true; } } if (m_depth_state_changed) { m_depth_state_changed = false; DepthState new_ds = {}; new_ds.Generate(bpmem); if (new_ds != m_current_pipeline_config.depth_state) { m_current_pipeline_config.depth_state = new_ds; m_current_uber_pipeline_config.depth_state = new_ds; m_pipeline_config_changed = true; } } if (m_blending_state_changed) { m_blending_state_changed = false; BlendingState new_bs = {}; new_bs.Generate(bpmem); if (new_bs != m_current_pipeline_config.blending_state) { m_current_pipeline_config.blending_state = new_bs; m_current_uber_pipeline_config.blending_state = new_bs; m_pipeline_config_changed = true; } } } void VertexManagerBase::UpdatePipelineObject() { if (!m_pipeline_config_changed) return; m_current_pipeline_object = nullptr; m_pipeline_config_changed = false; switch (g_ActiveConfig.iShaderCompilationMode) { case ShaderCompilationMode::Synchronous: { // Ubershaders disabled? Block and compile the specialized shader. m_current_pipeline_object = g_shader_cache->GetPipelineForUid(m_current_pipeline_config); } break; case ShaderCompilationMode::SynchronousUberShaders: { // Exclusive ubershader mode, always use ubershaders. m_current_pipeline_object = g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config); } break; case ShaderCompilationMode::AsynchronousUberShaders: case ShaderCompilationMode::AsynchronousSkipRendering: { // Can we background compile shaders? If so, get the pipeline asynchronously. auto res = g_shader_cache->GetPipelineForUidAsync(m_current_pipeline_config); if (res) { // Specialized shaders are ready, prefer these. m_current_pipeline_object = *res; return; } if (g_ActiveConfig.iShaderCompilationMode == ShaderCompilationMode::AsynchronousUberShaders) { // Specialized shaders not ready, use the ubershaders. m_current_pipeline_object = g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config); } else { // Ensure we try again next draw. Otherwise, if no registers change between frames, the // object will never be drawn, even when the shader is ready. m_pipeline_config_changed = true; } } break; } } void VertexManagerBase::OnDraw() { m_draw_counter++; // If we didn't have any CPU access last frame, do nothing. if (m_scheduled_command_buffer_kicks.empty() || !m_allow_background_execution) return; // Check if this draw is scheduled to kick a command buffer. // The draw counters will always be sorted so a binary search is possible here. if (std::binary_search(m_scheduled_command_buffer_kicks.begin(), m_scheduled_command_buffer_kicks.end(), m_draw_counter)) { // Kick a command buffer on the background thread. g_renderer->Flush(); } } void VertexManagerBase::OnCPUEFBAccess() { // Check this isn't another access without any draws inbetween. if (!m_cpu_accesses_this_frame.empty() && m_cpu_accesses_this_frame.back() == m_draw_counter) return; // Store the current draw counter for scheduling in OnEndFrame. m_cpu_accesses_this_frame.emplace_back(m_draw_counter); } void VertexManagerBase::OnEFBCopyToRAM() { // If we're not deferring, try to preempt it next frame. if (!g_ActiveConfig.bDeferEFBCopies) { OnCPUEFBAccess(); return; } // Otherwise, only execute if we have at least 10 objects between us and the last copy. const u32 diff = m_draw_counter - m_last_efb_copy_draw_counter; m_last_efb_copy_draw_counter = m_draw_counter; if (diff < MINIMUM_DRAW_CALLS_PER_COMMAND_BUFFER_FOR_READBACK) return; g_renderer->Flush(); } void VertexManagerBase::OnEndFrame() { m_draw_counter = 0; m_last_efb_copy_draw_counter = 0; m_scheduled_command_buffer_kicks.clear(); // If we have no CPU access at all, leave everything in the one command buffer for maximum // parallelism between CPU/GPU, at the cost of slightly higher latency. if (m_cpu_accesses_this_frame.empty()) return; // In order to reduce CPU readback latency, we want to kick a command buffer roughly halfway // between the draw counters that invoked the readback, or every 250 draws, whichever is smaller. if (g_ActiveConfig.iCommandBufferExecuteInterval > 0) { u32 last_draw_counter = 0; u32 interval = static_cast(g_ActiveConfig.iCommandBufferExecuteInterval); for (u32 draw_counter : m_cpu_accesses_this_frame) { // We don't want to waste executing command buffers for only a few draws, so set a minimum. // Leave last_draw_counter as-is, so we get the correct number of draws between submissions. u32 draw_count = draw_counter - last_draw_counter; if (draw_count < MINIMUM_DRAW_CALLS_PER_COMMAND_BUFFER_FOR_READBACK) continue; if (draw_count <= interval) { u32 mid_point = draw_count / 2; m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + mid_point); } else { u32 counter = interval; while (counter < draw_count) { m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + counter); counter += interval; } } last_draw_counter = draw_counter; } } #if 0 { std::stringstream ss; std::for_each(m_cpu_accesses_this_frame.begin(), m_cpu_accesses_this_frame.end(), [&ss](u32 idx) { ss << idx << ","; }); WARN_LOG(VIDEO, "CPU EFB accesses in last frame: %s", ss.str().c_str()); } { std::stringstream ss; std::for_each(m_scheduled_command_buffer_kicks.begin(), m_scheduled_command_buffer_kicks.end(), [&ss](u32 idx) { ss << idx << ","; }); WARN_LOG(VIDEO, "Scheduled command buffer kicks: %s", ss.str().c_str()); } #endif m_cpu_accesses_this_frame.clear(); }