// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "DSPIntUtil.h" #include "DSPMemoryMap.h" #include "DSPIntExtOps.h" // Extended opcodes do not exist on their own. These opcodes can only be // attached to opcodes that allow extending (8 lower bits of opcode not used by // opcode). Extended opcodes do not modify program counter $pc register. // Most of the suffixes increment or decrement one or more addressing registers // (the first four, ARx). The increment/decrement is either 1, or the // corresponding "index" register (the second four, IXx). The addressing // registers will wrap in odd ways, dictated by the corresponding wrapping // register, WP0-3. // The following should be applied as a decrement (and is applied by // dsp_decrement_addr_reg): // ar[i] = (ar[i] & wp[i]) == 0 ? ar[i] | wp[i] : ar[i] - 1; // I have not found the corresponding algorithms for increments yet. // It's gotta be fairly simple though. See R3123, R3125 in Google Code. // (May have something to do with (ar[i] ^ wp[i]) == 0) namespace DSPInterpreter { namespace Ext { inline bool IsSameMemArea(u16 a, u16 b) { //LM: tested on WII if ((a>>10)==(b>>10)) return true; else return false; } // DR $arR // xxxx xxxx 0000 01rr // Decrement addressing register $arR. void dr(const UDSPInstruction& opc) { writeToBackLog(0, opc.hex & 0x3, dsp_decrement_addr_reg(opc.hex & 0x3)); } // IR $arR // xxxx xxxx 0000 10rr // Increment addressing register $arR. void ir(const UDSPInstruction& opc) { writeToBackLog(0, opc.hex & 0x3, dsp_increment_addr_reg(opc.hex & 0x3)); } // NR $arR // xxxx xxxx 0000 11rr // Add corresponding indexing register $ixR to addressing register $arR. void nr(const UDSPInstruction& opc) { u8 reg = opc.hex & 0x3; writeToBackLog(0, reg, dsp_increase_addr_reg(reg, (s16)g_dsp.r[DSP_REG_IX0 + reg])); } // MV $axD, $acS.l // xxxx xxxx 0001 ddss // Move value of $acS.l to the $axD.l. void mv(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 2) & 0x3); writeToBackLog(0, dreg + DSP_REG_AXL0, g_dsp.r[sreg + DSP_REG_ACL0]); } // S @$D, $acD.l // xxxx xxxx 001s s0dd // Store value of $(acS.l) in the memory pointed by register $D. // Post increment register $D. void s(const UDSPInstruction& opc) { u8 dreg = opc.hex & 0x3; u8 sreg = ((opc.hex >> 3) & 0x3) + DSP_REG_ACL0; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_increment_addr_reg(dreg)); } // SN @$D, $acD.l // xxxx xxxx 001s s1dd // Store value of register $acS in the memory pointed by register $D. // Add indexing register $ixD to register $D. void sn(const UDSPInstruction& opc) { u8 dreg = opc.hex & 0x3; u8 sreg = ((opc.hex >> 3) & 0x3) + DSP_REG_ACL0; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg])); } // L axD.l, @$S // xxxx xxxx 01dd d0ss // Load $axD with value from memory pointed by register $S. // Post increment register $S. void l(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0; if ((dreg >= DSP_REG_ACM0) && (g_dsp.r[DSP_REG_SR] & SR_40_MODE_BIT)) { u16 val = dsp_dmem_read(g_dsp.r[sreg]); writeToBackLog(0, dreg - DSP_REG_ACM0 + DSP_REG_ACH0, (val & 0x8000) ? 0xFFFF : 0x0000); writeToBackLog(1, dreg, val); writeToBackLog(2, dreg - DSP_REG_ACM0 + DSP_REG_ACL0, 0); writeToBackLog(3, sreg, dsp_increment_addr_reg(sreg)); } else { writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg)); } } // LN axD.l, @$S // xxxx xxxx 01dd d0ss // Load $axD with value from memory pointed by register $S. // Add indexing register register $ixS to register $S. void ln(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0; if ((dreg >= DSP_REG_ACM0) && (g_dsp.r[DSP_REG_SR] & SR_40_MODE_BIT)) { u16 val = dsp_dmem_read(g_dsp.r[sreg]); writeToBackLog(0, dreg - DSP_REG_ACM0 + DSP_REG_ACH0, (val & 0x8000) ? 0xFFFF : 0x0000); writeToBackLog(1, dreg, val); writeToBackLog(2, dreg - DSP_REG_ACM0 + DSP_REG_ACL0, 0); writeToBackLog(3, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } else { writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } } // LS $axD.l, $acS.m // xxxx xxxx 10dd 000s // Load register $axD.l with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Increment both $ar0 and $ar3. void ls(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 sreg = DSP_REG_AR3; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg)); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // LSN $acD.l, $acS.m // xxxx xxxx 10dd 010s // Load register $acD.l with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Add corresponding indexing register $ix0 to addressing // register $ar0 and increment $ar3. void lsn(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 sreg = DSP_REG_AR3; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg)); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // LSM $acD.l, $acS.m // xxxx xxxx 10dd 100s // Load register $acD.l with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Add corresponding indexing register $ix3 to addressing // register $ar3 and increment $ar0. void lsm(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 sreg = DSP_REG_AR3; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // LSMN $acD.l, $acS.m // xxxx xxxx 10dd 110s // Load register $acD.l with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Add corresponding indexing register $ix0 to addressing // register $ar0 and add corresponding indexing register $ix3 to addressing // register $ar3. void lsnm(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 sreg = DSP_REG_AR3; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // SL $acS.m, $acD.l // xxxx xxxx 10dd 001s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $acD.l with value from memory pointed by register // $ar3. Increment both $ar0 and $ar3. void sl(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; const u8 sreg = DSP_REG_AR3; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg)); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // SLN $acS.m, $acD.l // xxxx xxxx 10dd 011s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $acD.l with value from memory pointed by register // $ar3. Add corresponding indexing register $ix0 to addressing register $ar0 // and increment $ar3. void sln(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; const u8 sreg = DSP_REG_AR3; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg)); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // SLM $acS.m, $acD.l // xxxx xxxx 10dd 101s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $acD.l with value from memory pointed by register // $ar3. Add corresponding indexing register $ix3 to addressing register $ar3 // and increment $ar0. void slm(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; const u8 sreg = DSP_REG_AR3; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // SLMN $acS.m, $acD.l // xxxx xxxx 10dd 111s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $acD.l with value from memory pointed by register // $ar3. Add corresponding indexing register $ix0 to addressing register $ar0 // and add corresponding indexing register $ix3 to addressing register $ar3. void slnm(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; const u8 sreg = DSP_REG_AR3; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // Not in duddie's doc // LD $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 00ss void ld(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x1; u8 rreg = (opc.hex >> 4) & 0x1; u8 sreg = opc.hex & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increment_addr_reg(sreg)); } else { writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increment_addr_reg(dreg)); } writeToBackLog(3, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); } // Not in duddie's doc // LDN $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 01ss void ldn(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x1; u8 rreg = (opc.hex >> 4) & 0x1; u8 sreg = opc.hex & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } else { writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg])); } writeToBackLog(3, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); } // Not in duddie's doc // LDM $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 10ss void ldm(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x1; u8 rreg = (opc.hex >> 4) & 0x1; u8 sreg = opc.hex & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increment_addr_reg(sreg)); } else { writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increment_addr_reg(dreg)); } writeToBackLog(3, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX0 + DSP_REG_AR3])); } // Not in duddie's doc // LDNM $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 11ss void ldnm(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x1; u8 rreg = (opc.hex >> 4) & 0x1; u8 sreg = opc.hex & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } else { writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg])); } writeToBackLog(3, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX0 + DSP_REG_AR3])); } void nop(const UDSPInstruction& opc) { } } // end namespace ext } // end namespace DSPInterpeter // The ext ops are calculated in parallel with the actual op. That means that // both the main op and the ext op see the same register state as input. The // output is simple as long as the main and ext ops don't change the same // register. If they do the output is the bitwise or of the result of both the // main and ext ops. // The ext op are writing their output into the backlog which is // being applied to the real registers after the main op was executed void applyWriteBackLog() { // always make sure to have an extra entry at the end w/ -1 to avoid // infinitive loops for (int i = 0; writeBackLogIdx[i] != -1; i++) { dsp_op_write_reg(writeBackLogIdx[i], g_dsp.r[writeBackLogIdx[i]] | writeBackLog[i]); // Clear back log writeBackLogIdx[i] = -1; } } // This function is being called in the main op after all input regs were read // and before it writes into any regs. This way we can always use bitwise or to // apply the ext command output, because if the main op didn't change the value // then 0 | ext output = ext output and if it did then bitwise or is still the // right thing to do void zeroWriteBackLog() { // always make sure to have an extra entry at the end w/ -1 to avoid // infinitive loops for (int i = 0; writeBackLogIdx[i] != -1; i++) dsp_op_write_reg(writeBackLogIdx[i], 0); }