// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include "Common/Common.h" #include "Common/MemoryUtil.h" #include "Common/StringUtil.h" #include "Common/x64ABI.h" #include "Common/x64Emitter.h" #include "Core/Host.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/LookUpTables.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoader.h" #include "VideoCommon/VertexLoader_Color.h" #include "VideoCommon/VertexLoader_Normal.h" #include "VideoCommon/VertexLoader_Position.h" #include "VideoCommon/VertexLoader_TextCoord.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" //BBox #include "VideoCommon/XFMemory.h" #define COMPILED_CODE_SIZE 4096 NativeVertexFormat *g_nativeVertexFmt; #ifndef _WIN32 #undef inline #define inline #endif // Matrix components are first in GC format but later in PC format - we need to store it temporarily // when decoding each vertex. static u8 s_curposmtx = MatrixIndexA.PosNormalMtxIdx; static u8 s_curtexmtx[8]; static int s_texmtxwrite = 0; static int s_texmtxread = 0; static int loop_counter; // Vertex loaders read these. Although the scale ones should be baked into the shader. int tcIndex; int colIndex; int colElements[2]; float posScale; float tcScale[8]; // bbox variables // bbox must read vertex position, so convert it to this buffer static float s_bbox_vertex_buffer[3]; static u8 *s_bbox_pCurBufferPointer_orig; static int s_bbox_primitive; static struct Point { s32 x; s32 y; float z; } s_bbox_points[3]; static u8 s_bbox_currPoint; static u8 s_bbox_loadedPoints; static const u8 s_bbox_primitivePoints[8] = { 3, 0, 3, 3, 3, 2, 2, 1 }; static const float fractionTable[32] = { 1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3), 1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7), 1.0f / (1U << 8), 1.0f / (1U << 9), 1.0f / (1U << 10), 1.0f / (1U << 11), 1.0f / (1U << 12), 1.0f / (1U << 13), 1.0f / (1U << 14), 1.0f / (1U << 15), 1.0f / (1U << 16), 1.0f / (1U << 17), 1.0f / (1U << 18), 1.0f / (1U << 19), 1.0f / (1U << 20), 1.0f / (1U << 21), 1.0f / (1U << 22), 1.0f / (1U << 23), 1.0f / (1U << 24), 1.0f / (1U << 25), 1.0f / (1U << 26), 1.0f / (1U << 27), 1.0f / (1U << 28), 1.0f / (1U << 29), 1.0f / (1U << 30), 1.0f / (1U << 31), }; using namespace Gen; static void LOADERDECL PosMtx_ReadDirect_UByte() { s_curposmtx = DataReadU8() & 0x3f; PRIM_LOG("posmtx: %d, ", s_curposmtx); } static void LOADERDECL PosMtx_Write() { DataWrite(s_curposmtx); DataWrite(0); DataWrite(0); DataWrite(0); // Resetting current position matrix to default is needed for bbox to behave s_curposmtx = (u8) MatrixIndexA.PosNormalMtxIdx; } static void LOADERDECL UpdateBoundingBoxPrepare() { if (!PixelEngine::bbox_active) return; // set our buffer as videodata buffer, so we will get a copy of the vertex positions // this is a big hack, but so we can use the same converting function then without bbox s_bbox_pCurBufferPointer_orig = VertexManager::s_pCurBufferPointer; VertexManager::s_pCurBufferPointer = (u8*)s_bbox_vertex_buffer; } static inline bool UpdateBoundingBoxVars() { switch (s_bbox_primitive) { // Quads: fill 0,1,2 (check),1 (check, clear, repeat) case 0: ++s_bbox_loadedPoints; if (s_bbox_loadedPoints == 3) { s_bbox_currPoint = 1; return true; } if (s_bbox_loadedPoints == 4) { s_bbox_loadedPoints = 0; s_bbox_currPoint = 0; return true; } ++s_bbox_currPoint; return false; // Triangles: 0,1,2 (check, clear, repeat) case 2: ++s_bbox_loadedPoints; if (s_bbox_loadedPoints == 3) { s_bbox_loadedPoints = 0; s_bbox_currPoint = 0; return true; } ++s_bbox_currPoint; return false; // Triangle strip: 0, 1, 2 (check), 0 (check), 1, (check), 2 (check, repeat checking 0, 1, 2) case 3: if (++s_bbox_currPoint == 3) s_bbox_currPoint = 0; if (s_bbox_loadedPoints == 2) return true; ++s_bbox_loadedPoints; return false; // Triangle fan: 0,1,2 (check), 1 (check), 2 (check, repeat checking 1,2) case 4: s_bbox_currPoint ^= s_bbox_currPoint ? 3 : 1; if (s_bbox_loadedPoints == 2) return true; ++s_bbox_loadedPoints; return false; // Lines: 0,1 (check, clear, repeat) case 5: ++s_bbox_loadedPoints; if (s_bbox_loadedPoints == 2) { s_bbox_loadedPoints = 0; s_bbox_currPoint = 0; return true; } ++s_bbox_currPoint; return false; // Line strip: 0,1 (check), 0 (check), 1 (check, repeat checking 0,1) case 6: s_bbox_currPoint ^= 1; if (s_bbox_loadedPoints == 1) return true; ++s_bbox_loadedPoints; return false; // Points: 0 (check, clear, repeat) case 7: return true; // This should not happen! default: return false; } } static void LOADERDECL UpdateBoundingBox() { if (!PixelEngine::bbox_active) return; // Reset videodata pointer VertexManager::s_pCurBufferPointer = s_bbox_pCurBufferPointer_orig; // Copy vertex pointers memcpy(VertexManager::s_pCurBufferPointer, s_bbox_vertex_buffer, 12); VertexManager::s_pCurBufferPointer += 12; // We must transform the just loaded point by the current world and projection matrix - in software float transformed[3]; float screenPoint[3]; // We need to get the raw projection values for the bounding box calculation // to work properly. That means, no projection hacks! const float * const orig_point = s_bbox_vertex_buffer; const float * const world_matrix = (float*)xfmem.posMatrices + s_curposmtx * 4; const float * const proj_matrix = xfmem.projection.rawProjection; // Transform by world matrix // Only calculate what we need, discard the rest transformed[0] = orig_point[0] * world_matrix[0] + orig_point[1] * world_matrix[1] + orig_point[2] * world_matrix[2] + world_matrix[3]; transformed[1] = orig_point[0] * world_matrix[4] + orig_point[1] * world_matrix[5] + orig_point[2] * world_matrix[6] + world_matrix[7]; // Transform by projection matrix switch (xfmem.projection.type) { // Perspective projection, we must divide by w case GX_PERSPECTIVE: transformed[2] = orig_point[0] * world_matrix[8] + orig_point[1] * world_matrix[9] + orig_point[2] * world_matrix[10] + world_matrix[11]; screenPoint[0] = (transformed[0] * proj_matrix[0] + transformed[2] * proj_matrix[1]) / (-transformed[2]); screenPoint[1] = (transformed[1] * proj_matrix[2] + transformed[2] * proj_matrix[3]) / (-transformed[2]); screenPoint[2] = ((transformed[2] * proj_matrix[4] + proj_matrix[5]) * (1.0f - (float) 1e-7)) / (-transformed[2]); break; // Orthographic projection case GX_ORTHOGRAPHIC: screenPoint[0] = transformed[0] * proj_matrix[0] + proj_matrix[1]; screenPoint[1] = transformed[1] * proj_matrix[2] + proj_matrix[3]; // We don't really have to care about z here screenPoint[2] = -0.2f; break; default: ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type); screenPoint[0] = screenPoint[1] = screenPoint[2] = 1; } // Convert to screen space and add the point to the list - round like the real hardware s_bbox_points[s_bbox_currPoint].x = (((s32) (0.5f + (16.0f * (screenPoint[0] * xfmem.viewport.wd + (xfmem.viewport.xOrig - 342.0f))))) + 3) >> 4; s_bbox_points[s_bbox_currPoint].y = (((s32) (0.5f + (16.0f * (screenPoint[1] * xfmem.viewport.ht + (xfmem.viewport.yOrig - 342.0f))))) + 3) >> 4; s_bbox_points[s_bbox_currPoint].z = screenPoint[2]; // Update point list for primitive bool check_bbox = UpdateBoundingBoxVars(); // If we do not have enough points to check the bounding box yet, we are done for now if (!check_bbox) return; // How many points does our primitive have? const u8 numPoints = s_bbox_primitivePoints[s_bbox_primitive]; // If the primitive is a point, update the bounding box now if (numPoints == 1) { Point & p = s_bbox_points[0]; // Point is out of bounds if (p.x < 0 || p.x > 607 || p.y < 0 || p.y > 479 || p.z >= 0.0f) return; // Point is in bounds. Update bounding box if necessary and return PixelEngine::bbox[0] = (p.x < PixelEngine::bbox[0]) ? p.x : PixelEngine::bbox[0]; PixelEngine::bbox[1] = (p.x > PixelEngine::bbox[1]) ? p.x : PixelEngine::bbox[1]; PixelEngine::bbox[2] = (p.y < PixelEngine::bbox[2]) ? p.y : PixelEngine::bbox[2]; PixelEngine::bbox[3] = (p.y > PixelEngine::bbox[3]) ? p.y : PixelEngine::bbox[3]; return; } // Now comes the fun part. We must clip the triangles/lines to the viewport - also in software Point & p0 = s_bbox_points[0], &p1 = s_bbox_points[1], &p2 = s_bbox_points[2]; // Check for z-clip. This crude method is required for Mickey's Magical Mirror, at least if ((p0.z > 0.0f) || (p1.z > 0.0f) || ((numPoints == 3) && (p2.z > 0.0f))) return; // Check points for bounds u8 b0 = ((p0.x > 0) ? 1 : 0) | ((p0.y > 0) ? 2 : 0) | ((p0.x > 607) ? 4 : 0) | ((p0.y > 479) ? 8 : 0); u8 b1 = ((p1.x > 0) ? 1 : 0) | ((p1.y > 0) ? 2 : 0) | ((p1.x > 607) ? 4 : 0) | ((p1.y > 479) ? 8 : 0); // Let's be practical... If we only have a line, setting b2 to 3 saves an "if"-clause later on u8 b2 = 3; // Otherwise if we have a triangle, we need to check the third point if (numPoints == 3) b2 = ((p2.x > 0) ? 1 : 0) | ((p2.y > 0) ? 2 : 0) | ((p2.x > 607) ? 4 : 0) | ((p2.y > 479) ? 8 : 0); // These are the internal bbox vars s32 left = 608, right = -1, top = 480, bottom = -1; // If the polygon is inside viewport, let's update the bounding box and be done with it if ((b0 == 3) && (b0 == b1) && (b0 == b2)) { left = std::min(p0.x, p1.x); top = std::min(p0.y, p1.y); right = std::max(p0.x, p1.x); bottom = std::max(p0.y, p1.y); // Triangle if (numPoints == 3) { left = std::min(left, p2.x); top = std::min(top, p2.y); right = std::max(right, p2.x); bottom = std::max(bottom, p2.y); } // Update bounding box PixelEngine::bbox[0] = (left < PixelEngine::bbox[0]) ? left : PixelEngine::bbox[0]; PixelEngine::bbox[1] = (right > PixelEngine::bbox[1]) ? right : PixelEngine::bbox[1]; PixelEngine::bbox[2] = (top < PixelEngine::bbox[2]) ? top : PixelEngine::bbox[2]; PixelEngine::bbox[3] = (bottom > PixelEngine::bbox[3]) ? bottom : PixelEngine::bbox[3]; return; } // If it is not inside, then either it is completely outside, or it needs clipping. // Check the primitive's lines u8 i0 = b0 ^ b1; u8 i1 = (numPoints == 3) ? (b1 ^ b2) : i0; u8 i2 = (numPoints == 3) ? (b0 ^ b2) : i0; // Primitive out of bounds - return if (!(i0 | i1 | i2)) return; // First point inside viewport - update internal bbox if (b0 == 3) { left = p0.x; top = p0.y; right = p0.x; bottom = p0.y; } // Second point inside if (b1 == 3) { left = std::min(p1.x, left); top = std::min(p1.y, top); right = std::max(p1.x, right); bottom = std::max(p1.y, bottom); } // Third point inside if ((b2 == 3) && (numPoints == 3)) { left = std::min(p2.x, left); top = std::min(p2.y, top); right = std::max(p2.x, right); bottom = std::max(p2.y, bottom); } // Triangle equation vars float m, c; // Some definitions to help with rounding later on const float highNum = 89374289734.0f; const float roundUp = 0.001f; // Intersection result s32 s; // First line intersects if (i0) { m = (p1.x - p0.x) ? ((p1.y - p0.y) / (p1.x - p0.x)) : highNum; c = p0.y - (m * p0.x); if (i0 & 1) { s = (s32)(c + roundUp); if (s >= 0 && s <= 479) left = 0; top = std::min(s, top); bottom = std::max(s, bottom); } if (i0 & 2) { s = (s32)((-c / m) + roundUp); if (s >= 0 && s <= 607) top = 0; left = std::min(s, left); right = std::max(s, right); } if (i0 & 4) { s = (s32)((m * 607) + c + roundUp); if (s >= 0 && s <= 479) right = 607; top = std::min(s, top); bottom = std::max(s, bottom); } if (i0 & 8) { s = (s32)(((479 - c) / m) + roundUp); if (s >= 0 && s <= 607) bottom = 479; left = std::min(s, left); right = std::max(s, right); } } // Only check other lines if we are dealing with a triangle if (numPoints == 3) { // Second line intersects if (i1) { m = (p2.x - p1.x) ? ((p2.y - p1.y) / (p2.x - p1.x)) : highNum; c = p1.y - (m * p1.x); if (i1 & 1) { s = (s32)(c + roundUp); if (s >= 0 && s <= 479) left = 0; top = std::min(s, top); bottom = std::max(s, bottom); } if (i1 & 2) { s = (s32)((-c / m) + roundUp); if (s >= 0 && s <= 607) top = 0; left = std::min(s, left); right = std::max(s, right); } if (i1 & 4) { s = (s32)((m * 607) + c + roundUp); if (s >= 0 && s <= 479) right = 607; top = std::min(s, top); bottom = std::max(s, bottom); } if (i1 & 8) { s = (s32)(((479 - c) / m) + roundUp); if (s >= 0 && s <= 607) bottom = 479; left = std::min(s, left); right = std::max(s, right); } } // Third line intersects if (i2) { m = (p2.x - p0.x) ? ((p2.y - p0.y) / (p2.x - p0.x)) : highNum; c = p0.y - (m * p0.x); if (i2 & 1) { s = (s32)(c + roundUp); if (s >= 0 && s <= 479) left = 0; top = std::min(s, top); bottom = std::max(s, bottom); } if (i2 & 2) { s = (s32)((-c / m) + roundUp); if (s >= 0 && s <= 607) top = 0; left = std::min(s, left); right = std::max(s, right); } if (i2 & 4) { s = (s32)((m * 607) + c + roundUp); if (s >= 0 && s <= 479) right = 607; top = std::min(s, top); bottom = std::max(s, bottom); } if (i2 & 8) { s = (s32)(((479 - c) / m) + roundUp); if (s >= 0 && s <= 607) bottom = 479; left = std::min(s, left); right = std::max(s, right); } } } // Wrong bounding box values, discard this polygon (it is outside) if (left > 607 || top > 479 || right < 0 || bottom < 0) return; // Trim bounding box to viewport left = (left < 0) ? 0 : left; top = (top < 0) ? 0 : top; right = (right > 607) ? 607 : right; bottom = (bottom > 479) ? 479 : bottom; // Update bounding box PixelEngine::bbox[0] = (left < PixelEngine::bbox[0]) ? left : PixelEngine::bbox[0]; PixelEngine::bbox[1] = (right > PixelEngine::bbox[1]) ? right : PixelEngine::bbox[1]; PixelEngine::bbox[2] = (top < PixelEngine::bbox[2]) ? top : PixelEngine::bbox[2]; PixelEngine::bbox[3] = (bottom > PixelEngine::bbox[3]) ? bottom : PixelEngine::bbox[3]; } static void LOADERDECL TexMtx_ReadDirect_UByte() { s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f; PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]); s_texmtxread++; } static void LOADERDECL TexMtx_Write_Float() { DataWrite(float(s_curtexmtx[s_texmtxwrite++])); } static void LOADERDECL TexMtx_Write_Float2() { DataWrite(0.f); DataWrite(float(s_curtexmtx[s_texmtxwrite++])); } static void LOADERDECL TexMtx_Write_Float4() { DataWrite(0.f); DataWrite(0.f); DataWrite(float(s_curtexmtx[s_texmtxwrite++])); // Just to fill out with 0. DataWrite(0.f); } VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr) { m_compiledCode = nullptr; m_numLoadedVertices = 0; m_VertexSize = 0; loop_counter = 0; VertexLoader_Normal::Init(); VertexLoader_Position::Init(); VertexLoader_TextCoord::Init(); m_VtxDesc = vtx_desc; SetVAT(vtx_attr); #ifdef USE_VERTEX_LOADER_JIT AllocCodeSpace(COMPILED_CODE_SIZE); CompileVertexTranslator(); WriteProtect(); #else m_numPipelineStages = 0; CompileVertexTranslator(); #endif } VertexLoader::~VertexLoader() { #ifdef USE_VERTEX_LOADER_JIT FreeCodeSpace(); #endif } void VertexLoader::CompileVertexTranslator() { m_VertexSize = 0; const TVtxAttr &vtx_attr = m_VtxAttr; #ifdef USE_VERTEX_LOADER_JIT if (m_compiledCode) PanicAlert("Trying to recompile a vertex translator"); m_compiledCode = GetCodePtr(); ABI_PushAllCalleeSavedRegsAndAdjustStack(); // Start loop here const u8 *loop_start = GetCodePtr(); // Reset component counters if present in vertex format only. if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord || m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord) { WriteSetVariable(32, &tcIndex, Imm32(0)); } if (m_VtxDesc.Color0 || m_VtxDesc.Color1) { WriteSetVariable(32, &colIndex, Imm32(0)); } if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx || m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx) { WriteSetVariable(32, &s_texmtxwrite, Imm32(0)); WriteSetVariable(32, &s_texmtxread, Imm32(0)); } #else // Reset pipeline m_numPipelineStages = 0; #endif // Colors const u32 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; // TextureCoord // Since m_VtxDesc.Text7Coord is broken across a 32 bit word boundary, retrieve its value manually. // If we didn't do this, the vertex format would be read as one bit offset from where it should be, making // 01 become 00, and 10/11 become 01 const u32 tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, (const u32)((m_VtxDesc.Hex >> 31) & 3) }; u32 components = 0; // Position in pc vertex format. int nat_offset = 0; PortableVertexDeclaration vtx_decl; memset(&vtx_decl, 0, sizeof(vtx_decl)); // Position Matrix Index if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_ReadDirect_UByte); components |= VB_HAS_POSMTXIDX; m_VertexSize += 1; } if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); } // Write vertex position loader if (g_ActiveConfig.bUseBBox) { WriteCall(UpdateBoundingBoxPrepare); WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements)); WriteCall(UpdateBoundingBox); } else { WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements)); } m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements); nat_offset += 12; vtx_decl.position.components = 3; vtx_decl.position.enable = true; vtx_decl.position.offset = 0; vtx_decl.position.type = VAR_FLOAT; vtx_decl.position.integer = false; // Normals if (m_VtxDesc.Normal != NOT_PRESENT) { m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); if (pFunc == nullptr) { Host_SysMessage( StringFromFormat("VertexLoader_Normal::GetFunction(%i %i %i %i) returned zero!", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3).c_str()); } WriteCall(pFunc); for (int i = 0; i < (vtx_attr.NormalElements ? 3 : 1); i++) { vtx_decl.normals[i].components = 3; vtx_decl.normals[i].enable = true; vtx_decl.normals[i].offset = nat_offset; vtx_decl.normals[i].type = VAR_FLOAT; vtx_decl.normals[i].integer = false; nat_offset += 12; } components |= VB_HAS_NRM0; if (m_VtxAttr.NormalElements == 1) components |= VB_HAS_NRM1 | VB_HAS_NRM2; } for (int i = 0; i < 2; i++) { vtx_decl.colors[i].components = 4; vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE; vtx_decl.colors[i].integer = false; switch (col[i]) { case NOT_PRESENT: break; case DIRECT: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break; case FORMAT_24B_888: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break; case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break; case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break; case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break; case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break; default: _assert_(0); break; } break; case INDEX8: m_VertexSize += 1; switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break; default: _assert_(0); break; } break; case INDEX16: m_VertexSize += 2; switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break; default: _assert_(0); break; } break; } // Common for the three bottom cases if (col[i] != NOT_PRESENT) { components |= VB_HAS_COL0 << i; vtx_decl.colors[i].offset = nat_offset; vtx_decl.colors[i].enable = true; nat_offset += 4; } } // Texture matrix indices (remove if corresponding texture coordinate isn't enabled) for (int i = 0; i < 8; i++) { vtx_decl.texcoords[i].offset = nat_offset; vtx_decl.texcoords[i].type = VAR_FLOAT; vtx_decl.texcoords[i].integer = false; const int format = m_VtxAttr.texCoord[i].Format; const int elements = m_VtxAttr.texCoord[i].Elements; if (tc[i] == NOT_PRESENT) { components &= ~(VB_HAS_UV0 << i); } else { _assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", tc[i]); _assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format); _assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elements!\n(elements = %d)", elements); components |= VB_HAS_UV0 << i; WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements)); m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements); } if (components & (VB_HAS_TEXMTXIDX0 << i)) { vtx_decl.texcoords[i].enable = true; if (tc[i] != NOT_PRESENT) { // if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index vtx_decl.texcoords[i].components = 3; nat_offset += 12; WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2); } else { components |= VB_HAS_UV0 << i; // have to include since using now vtx_decl.texcoords[i].components = 4; nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes WriteCall(TexMtx_Write_Float4); } } else { if (tc[i] != NOT_PRESENT) { vtx_decl.texcoords[i].enable = true; vtx_decl.texcoords[i].components = vtx_attr.texCoord[i].Elements ? 2 : 1; nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1); } } if (tc[i] == NOT_PRESENT) { // if there's more tex coords later, have to write a dummy call int j = i + 1; for (; j < 8; ++j) { if (tc[j] != NOT_PRESENT) { WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right! break; } } // tricky! if (j == 8 && !((components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1)))) { // no more tex coords and tex matrices, so exit loop break; } } } if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_Write); vtx_decl.posmtx.components = 4; vtx_decl.posmtx.enable = true; vtx_decl.posmtx.offset = nat_offset; vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE; vtx_decl.posmtx.integer = true; nat_offset += 4; } native_stride = nat_offset; vtx_decl.stride = native_stride; #ifdef USE_VERTEX_LOADER_JIT // End loop here #if _M_X86_64 MOV(64, R(RAX), Imm64((u64)&loop_counter)); SUB(32, MatR(RAX), Imm8(1)); #else SUB(32, M(&loop_counter), Imm8(1)); #endif J_CC(CC_NZ, loop_start); ABI_PopAllCalleeSavedRegsAndAdjustStack(); RET(); #endif m_NativeFmt = VertexLoaderManager::GetNativeVertexFormat(vtx_decl, components); } void VertexLoader::WriteCall(TPipelineFunction func) { #ifdef USE_VERTEX_LOADER_JIT #if _M_X86_64 MOV(64, R(RAX), Imm64((u64)func)); CALLptr(R(RAX)); #else CALL((void*)func); #endif #else m_PipelineStages[m_numPipelineStages++] = func; #endif } // ARMTODO: This should be done in a better way #ifndef _M_GENERIC void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address) { #ifdef USE_VERTEX_LOADER_JIT #if _M_X86_64 MOV(64, R(RAX), Imm64((u64)address)); MOV(bits, dest, MatR(RAX)); #else MOV(bits, dest, M(address)); #endif #endif } void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value) { #ifdef USE_VERTEX_LOADER_JIT #if _M_X86_64 MOV(64, R(RAX), Imm64((u64)address)); MOV(bits, MatR(RAX), value); #else MOV(bits, M(address), value); #endif #endif } #endif void VertexLoader::SetupRunVertices(const VAT& vat, int primitive, int const count) { m_numLoadedVertices += count; // Flush if our vertex format is different from the currently set. if (g_nativeVertexFmt != nullptr && g_nativeVertexFmt != m_NativeFmt) { VertexManager::Flush(); // Also move the Set() here? } g_nativeVertexFmt = m_NativeFmt; // Load position and texcoord scale factors. m_VtxAttr.PosFrac = vat.g0.PosFrac; m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac; m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac; m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac; m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac; m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac; m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac; m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac; m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac; posScale = fractionTable[m_VtxAttr.PosFrac]; if (m_NativeFmt->m_components & VB_HAS_UVALL) for (int i = 0; i < 8; i++) tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac]; for (int i = 0; i < 2; i++) colElements[i] = m_VtxAttr.color[i].Elements; // Prepare bounding box s_bbox_primitive = primitive; s_bbox_currPoint = 0; s_bbox_loadedPoints = 0; } void VertexLoader::ConvertVertices ( int count ) { #ifdef USE_VERTEX_LOADER_JIT if (count > 0) { loop_counter = count; ((void (*)())(void*)m_compiledCode)(); } #else for (int s = 0; s < count; s++) { tcIndex = 0; colIndex = 0; s_texmtxwrite = s_texmtxread = 0; for (int i = 0; i < m_numPipelineStages; i++) m_PipelineStages[i](); PRIM_LOG("\n"); } #endif } void VertexLoader::RunVertices(const VAT& vat, int primitive, int const count) { if (bpmem.genMode.cullmode == 3 && primitive < 5) { // if cull mode is none, ignore triangles and quads DataSkip(count * m_VertexSize); return; } SetupRunVertices(vat, primitive, count); VertexManager::PrepareForAdditionalData(primitive, count, native_stride); ConvertVertices(count); IndexGenerator::AddIndices(primitive, count); ADDSTAT(stats.thisFrame.numPrims, count); INCSTAT(stats.thisFrame.numPrimitiveJoins); } void VertexLoader::SetVAT(const VAT& vat) { m_VtxAttr.PosElements = vat.g0.PosElements; m_VtxAttr.PosFormat = vat.g0.PosFormat; m_VtxAttr.PosFrac = vat.g0.PosFrac; m_VtxAttr.NormalElements = vat.g0.NormalElements; m_VtxAttr.NormalFormat = vat.g0.NormalFormat; m_VtxAttr.color[0].Elements = vat.g0.Color0Elements; m_VtxAttr.color[0].Comp = vat.g0.Color0Comp; m_VtxAttr.color[1].Elements = vat.g0.Color1Elements; m_VtxAttr.color[1].Comp = vat.g0.Color1Comp; m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements; m_VtxAttr.texCoord[0].Format = vat.g0.Tex0CoordFormat; m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac; m_VtxAttr.ByteDequant = vat.g0.ByteDequant; m_VtxAttr.NormalIndex3 = vat.g0.NormalIndex3; m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements; m_VtxAttr.texCoord[1].Format = vat.g1.Tex1CoordFormat; m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac; m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements; m_VtxAttr.texCoord[2].Format = vat.g1.Tex2CoordFormat; m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac; m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements; m_VtxAttr.texCoord[3].Format = vat.g1.Tex3CoordFormat; m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac; m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements; m_VtxAttr.texCoord[4].Format = vat.g1.Tex4CoordFormat; m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac; m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements; m_VtxAttr.texCoord[5].Format = vat.g2.Tex5CoordFormat; m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac; m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements; m_VtxAttr.texCoord[6].Format = vat.g2.Tex6CoordFormat; m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac; m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements; m_VtxAttr.texCoord[7].Format = vat.g2.Tex7CoordFormat; m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac; if (!m_VtxAttr.ByteDequant) { ERROR_LOG(VIDEO, "ByteDequant is set to zero"); } }; void VertexLoader::AppendToString(std::string *dest) const { dest->reserve(250); static const char *posMode[4] = { "Inv", "Dir", "I8", "I16", }; static const char *posFormats[5] = { "u8", "s8", "u16", "s16", "flt", }; static const char *colorFormat[8] = { "565", "888", "888x", "4444", "6666", "8888", "Inv", "Inv", }; dest->append(StringFromFormat("%ib skin: %i P: %i %s-%s ", m_VertexSize, m_VtxDesc.PosMatIdx, m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat])); if (m_VtxDesc.Normal) { dest->append(StringFromFormat("Nrm: %i %s-%s ", m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat])); } u32 color_mode[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; for (int i = 0; i < 2; i++) { if (color_mode[i]) { dest->append(StringFromFormat("C%i: %i %s-%s ", i, m_VtxAttr.color[i].Elements, posMode[color_mode[i]], colorFormat[m_VtxAttr.color[i].Comp])); } } u32 tex_mode[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord }; for (int i = 0; i < 8; i++) { if (tex_mode[i]) { dest->append(StringFromFormat("T%i: %i %s-%s ", i, m_VtxAttr.texCoord[i].Elements, posMode[tex_mode[i]], posFormats[m_VtxAttr.texCoord[i].Format])); } } dest->append(StringFromFormat(" - %i v\n", m_numLoadedVertices)); }