// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include "Common/Arm64Emitter.h" #include "Common/MathUtil.h" namespace Arm64Gen { void ARM64XEmitter::SetCodePtr(u8* ptr) { m_code = ptr; m_startcode = m_code; m_lastCacheFlushEnd = ptr; } const u8* ARM64XEmitter::GetCodePtr() const { return m_code; } u8* ARM64XEmitter::GetWritableCodePtr() { return m_code; } void ARM64XEmitter::ReserveCodeSpace(u32 bytes) { for (u32 i = 0; i < bytes/4; i++) BRK(0); } const u8* ARM64XEmitter::AlignCode16() { int c = int((u64)m_code & 15); if (c) ReserveCodeSpace(16-c); return m_code; } const u8* ARM64XEmitter::AlignCodePage() { int c = int((u64)m_code & 4095); if (c) ReserveCodeSpace(4096-c); return m_code; } void ARM64XEmitter::FlushIcache() { FlushIcacheSection(m_lastCacheFlushEnd, m_code); m_lastCacheFlushEnd = m_code; } void ARM64XEmitter::FlushIcacheSection(u8* start, u8* end) { #if defined(IOS) // Header file says this is equivalent to: sys_icache_invalidate(start, end - start); sys_cache_control(kCacheFunctionPrepareForExecution, start, end - start); #else #ifdef __clang__ __clear_cache(start, end); #else __builtin___clear_cache(start, end); #endif #endif } // Exception generation static const u32 ExcEnc[][3] = { {0, 0, 1}, // SVC {0, 0, 2}, // HVC {0, 0, 3}, // SMC {1, 0, 0}, // BRK {2, 0, 0}, // HLT {5, 0, 1}, // DCPS1 {5, 0, 2}, // DCPS2 {5, 0, 3}, // DCPS3 }; // Arithmetic generation static const u32 ArithEnc[] = { 0x058, // ADD 0x258, // SUB }; // Conditional Select static const u32 CondSelectEnc[][2] = { {0, 0}, // CSEL {0, 1}, // CSINC {1, 0}, // CSINV {1, 1}, // CSNEG }; // Data-Processing (1 source) static const u32 Data1SrcEnc[][2] = { {0, 0}, // RBIT {0, 1}, // REV16 {0, 2}, // REV32 {0, 3}, // REV64 {0, 4}, // CLZ {0, 5}, // CLS }; // Data-Processing (2 source) static const u32 Data2SrcEnc[] = { 0x02, // UDIV 0x03, // SDIV 0x08, // LSLV 0x09, // LSRV 0x0A, // ASRV 0x0B, // RORV 0x10, // CRC32B 0x11, // CRC32H 0x12, // CRC32W 0x14, // CRC32CB 0x15, // CRC32CH 0x16, // CRC32CW 0x13, // CRC32X (64bit Only) 0x17, // XRC32CX (64bit Only) }; // Data-Processing (3 source) static const u32 Data3SrcEnc[][2] = { {0, 0}, // MADD {0, 1}, // MSUB {1, 0}, // SMADDL (64Bit Only) {1, 1}, // SMSUBL (64Bit Only) {2, 0}, // SMULH (64Bit Only) {5, 0}, // UMADDL (64Bit Only) {5, 1}, // UMSUBL (64Bit Only) {6, 0}, // UMULH (64Bit Only) }; // Logical (shifted register) static const u32 LogicalEnc[][2] = { {0, 0}, // AND {0, 1}, // BIC {1, 0}, // OOR {1, 1}, // ORN {2, 0}, // EOR {2, 1}, // EON {3, 0}, // ANDS {3, 1}, // BICS }; // Load/Store Exclusive static u32 LoadStoreExcEnc[][5] = { {0, 0, 0, 0, 0}, // STXRB {0, 0, 0, 0, 1}, // STLXRB {0, 0, 1, 0, 0}, // LDXRB {0, 0, 1, 0, 1}, // LDAXRB {0, 1, 0, 0, 1}, // STLRB {0, 1, 1, 0, 1}, // LDARB {1, 0, 0, 0, 0}, // STXRH {1, 0, 0, 0, 1}, // STLXRH {1, 0, 1, 0, 0}, // LDXRH {1, 0, 1, 0, 1}, // LDAXRH {1, 1, 0, 0, 1}, // STLRH {1, 1, 1, 0, 1}, // LDARH {2, 0, 0, 0, 0}, // STXR {3, 0, 0, 0, 0}, // (64bit) STXR {2, 0, 0, 0, 1}, // STLXR {3, 0, 0, 0, 1}, // (64bit) STLXR {2, 0, 0, 1, 0}, // STXP {3, 0, 0, 1, 0}, // (64bit) STXP {2, 0, 0, 1, 1}, // STLXP {3, 0, 0, 1, 1}, // (64bit) STLXP {2, 0, 1, 0, 0}, // LDXR {3, 0, 1, 0, 0}, // (64bit) LDXR {2, 0, 1, 0, 1}, // LDAXR {3, 0, 1, 0, 1}, // (64bit) LDAXR {2, 0, 1, 1, 0}, // LDXP {3, 0, 1, 1, 0}, // (64bit) LDXP {2, 0, 1, 1, 1}, // LDAXP {3, 0, 1, 1, 1}, // (64bit) LDAXP {2, 1, 0, 0, 1}, // STLR {3, 1, 0, 0, 1}, // (64bit) STLR {2, 1, 1, 0, 1}, // LDAR {3, 1, 1, 0, 1}, // (64bit) LDAR }; void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr) { bool b64Bit = Is64Bit(Rt); s64 distance = (s64)ptr - (s64(m_code) + 8); _assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance); distance >>= 2; _assert_msg_(DYNA_REC, distance >= -0xFFFFF && distance < 0xFFFFF, "%s: Received too large distance: %lx", __FUNCTION__, distance); Rt = DecodeReg(Rt); Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | \ (distance << 5) | Rt); } void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr) { bool b64Bit = Is64Bit(Rt); s64 distance = (s64)ptr - (s64(m_code) + 8); _assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance); distance >>= 2; _assert_msg_(DYNA_REC, distance >= -0x3FFF && distance < 0x3FFF, "%s: Received too large distance: %lx", __FUNCTION__, distance); Rt = DecodeReg(Rt); Write32((b64Bit << 31) | (0x36 << 24) | (op << 24) | \ (bits << 19) | (distance << 5) | Rt); } void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 op, const void* ptr) { s64 distance = (s64)ptr - s64(m_code); _assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance); distance >>= 2; _assert_msg_(DYNA_REC, distance >= -0x3FFFFFF && distance < 0x3FFFFFF, "%s: Received too large distance: %lx", __FUNCTION__, distance); Write32((op << 31) | (0x5 << 26) | (distance & 0x3FFFFFF)); } void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn) { Rn = DecodeReg(Rn); Write32((0x6B << 25) | (opc << 21) | (op2 << 16) | (op3 << 10) | (Rn << 5) | op4); } void ARM64XEmitter::EncodeExceptionInst(u32 instenc, u32 imm) { _assert_msg_(DYNA_REC, !(imm & ~0xFFFF), "%s: Exception instruction too large immediate: %d", __FUNCTION__, imm); Write32((0xD4 << 24) | (ExcEnc[instenc][0] << 21) | (imm << 5) | (ExcEnc[instenc][1] << 2) | ExcEnc[instenc][2]); } void ARM64XEmitter::EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt) { Write32((0x354 << 22) | (op0 << 19) | (op1 << 16) | (CRn << 12) | (CRm << 8) | (op2 << 5) | Rt); } void ARM64XEmitter::EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((flags << 29) | (ArithEnc[instenc] << 21) | \ (Option.GetType() == ArithOption::TYPE_EXTENDEDREG ? 1 << 21 : 0) | (Rm << 16) | Option.GetData() | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (flags << 29) | \ (0xD0 << 21) | (Rm << 16) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) { bool b64Bit = Is64Bit(Rn); _assert_msg_(DYNA_REC, !(imm & ~0x1F), "%s: too large immediate: %d", __FUNCTION__, imm) _assert_msg_(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __FUNCTION__, nzcv) Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | \ (imm << 16) | (cond << 12) | (1 << 11) | (Rn << 5) | nzcv); } void ARM64XEmitter::EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) { bool b64Bit = Is64Bit(Rm); _assert_msg_(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __FUNCTION__, nzcv) Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | \ (Rm << 16) | (cond << 12) | (Rn << 5) | nzcv); } void ARM64XEmitter::EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (CondSelectEnc[instenc][0] << 30) | \ (0xD4 << 21) | (Rm << 16) | (cond << 12) | (CondSelectEnc[instenc][1] << 10) | \ (Rn << 5) | Rd); } void ARM64XEmitter::EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (0x2D6 << 21) | \ (Data1SrcEnc[instenc][0] << 16) | (Data1SrcEnc[instenc][1] << 10) | \ (Rn << 5) | Rd); } void ARM64XEmitter::EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (0x0D6 << 21) | \ (Rm << 16) | (Data2SrcEnc[instenc] << 10) | \ (Rn << 5) | Rd); } void ARM64XEmitter::EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Ra = DecodeReg(Ra); Write32((b64Bit << 31) | (0xD8 << 21) | (Data3SrcEnc[instenc][0] << 21) | \ (Rm << 16) | (Data3SrcEnc[instenc][1] << 15) | \ (Ra << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((LogicalEnc[instenc][0] << 29) | (0x50 << 21) | (LogicalEnc[instenc][1] << 21) | \ Shift.GetData() | (Rm << 16) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm) { bool b64Bit = Is64Bit(Rt); bool bVec = IsVector(Rt); _assert_msg_(DYNA_REC, !(imm & 0xFFFFF), "%s: offset too large %d", __FUNCTION__, imm); Rt = DecodeReg(Rt); if (b64Bit && bitop != 0x2) // LDRSW(0x2) uses 64bit reg, doesn't have 64bit bit set bitop |= 0x1; Write32((bitop << 30) | (bVec << 26) | (0x18 << 24) | (imm << 5) | Rt); } void ARM64XEmitter::EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt) { Rs = DecodeReg(Rs); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Rt = DecodeReg(Rt); Write32((LoadStoreExcEnc[instenc][0] << 30) | (0x8 << 24) | (LoadStoreExcEnc[instenc][1] << 23) | \ (LoadStoreExcEnc[instenc][2] << 22) | (LoadStoreExcEnc[instenc][3] << 21) | (Rs << 16) | \ (LoadStoreExcEnc[instenc][4] << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) { bool b64Bit = Is64Bit(Rt); bool b128Bit = Is128Bit(Rt); bool bVec = IsVector(Rt); if (b128Bit) imm >>= 4; else if (b64Bit) imm >>= 3; else imm >>= 2; _assert_msg_(DYNA_REC, !(imm & ~0xF), "%s: offset too large %d", __FUNCTION__, imm); u32 opc = 0; if (b128Bit) opc = 2; else if (b64Bit && bVec) opc = 1; else if (b64Bit && !bVec) opc = 2; Rt = DecodeReg(Rt); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Write32((opc << 30) | (bVec << 26) | (op << 22) | (imm << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { bool b64Bit = Is64Bit(Rt); bool bVec = IsVector(Rt); u32 offset = imm & 0x1FF; _assert_msg_(DYNA_REC, imm < -256 || imm > 255, "%s: offset too large %d", __FUNCTION__, imm); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (offset << 12) | (op2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size) { bool b64Bit = Is64Bit(Rt); bool bVec = IsVector(Rt); if (size == 64) imm >>= 3; else if (size == 32) imm >>= 2; else if (size == 16) imm >>= 1; _assert_msg_(DYNA_REC, imm < 0, "%s(INDEX_UNSIGNED): offset must be positive", __FUNCTION__); _assert_msg_(DYNA_REC, !(imm & ~0xFFF), "%s(INDEX_UNSIGNED): offset too large %d", __FUNCTION__, imm); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (imm << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos) { bool b64Bit = Is64Bit(Rd); _assert_msg_(DYNA_REC, !(imm & ~0xFFFF), "%s: immediate out of range: %d", __FUNCTION__, imm); Rd = DecodeReg(Rd); Write32((b64Bit << 31) | (op << 29) | (0x25 << 23) | (pos << 21) | (imm << 5) | Rd); } void ARM64XEmitter::EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 29) | (0x26 << 23) | (b64Bit << 22) | \ (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((size << 30) | (opc << 22) | (0x1C1 << 21) | (Rm << 16) | \ (extend << 13) | (1 << 11) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd) { bool b64Bit = Is64Bit(Rd); _assert_msg_(DYNA_REC, !(imm & ~0xFFF), "%s: immediate too large: %x", __FUNCTION__, imm); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0x11 << 24) | (shift << 22) | \ (imm << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { // Sometimes Rd is fixed to SP, but can still be 32bit or 64bit. // Use Rn to determine bitness here. bool b64Bit = Is64Bit(Rn); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (b64Bit << 22) | \ (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { bool b64Bit = Is64Bit(Rt); u32 type_encode = 0; switch (type) { case INDEX_UNSIGNED: type_encode = 0b010; break; case INDEX_POST: type_encode = 0b001; break; case INDEX_PRE: type_encode = 0b011; break; } if (b64Bit) { op |= 0b10; imm >>= 3; } else { imm >>= 2; } Rt = DecodeReg(Rt); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Write32((op << 30) | (0b101 << 27) | (type_encode << 23) | (load << 22) | \ ((imm & 0x7F) << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm) { Rd = DecodeReg(Rd); Write32((op << 31) | ((imm & 0x3) << 29) | (0b10000 << 24) | \ ((imm & 0x1FFFFC) << 3) | Rd); } // FixupBranch branching void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch) { bool Not = false; u32 inst = 0; s64 distance = (s64)(m_code - branch.ptr); distance >>= 2; switch (branch.type) { case 1: // CBNZ Not = true; case 0: // CBZ { _assert_msg_(DYNA_REC, distance >= -0xFFFFF && distance < 0xFFFFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance); bool b64Bit = Is64Bit(branch.reg); ARM64Reg reg = DecodeReg(branch.reg); inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | (distance << 5) | reg; } break; case 2: // B (conditional) _assert_msg_(DYNA_REC, distance >= -0xFFFFF && distance < 0xFFFFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance); inst = (0x2A << 25) | (distance << 5) | branch.cond; break; case 4: // TBNZ Not = true; case 3: // TBZ { _assert_msg_(DYNA_REC, distance >= -0x3FFF && distance < 0x3FFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance); ARM64Reg reg = DecodeReg(branch.reg); inst = ((branch.bit & 0x20) << 26) | (0x1B << 25) | (Not << 24) | ((branch.bit & 0x1F) << 19) | (distance << 5) | reg; } break; case 5: // B (uncoditional) _assert_msg_(DYNA_REC, distance >= -0x3FFFFFF && distance < 0x3FFFFFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance); inst = (0x5 << 26) | distance; break; case 6: // BL (unconditional) _assert_msg_(DYNA_REC, distance >= -0x3FFFFFF && distance < 0x3FFFFFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance); inst = (0x25 << 26) | distance; break; } *(u32*)branch.ptr = inst; } FixupBranch ARM64XEmitter::CBZ(ARM64Reg Rt) { FixupBranch branch; branch.ptr = m_code; branch.type = 0; branch.reg = Rt; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::CBNZ(ARM64Reg Rt) { FixupBranch branch; branch.ptr = m_code; branch.type = 1; branch.reg = Rt; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::B(CCFlags cond) { FixupBranch branch; branch.ptr = m_code; branch.type = 2; branch.cond = cond; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bit) { FixupBranch branch; branch.ptr = m_code; branch.type = 3; branch.reg = Rt; branch.bit = bit; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bit) { FixupBranch branch; branch.ptr = m_code; branch.type = 4; branch.reg = Rt; branch.bit = bit; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::B() { FixupBranch branch; branch.ptr = m_code; branch.type = 5; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::BL() { FixupBranch branch; branch.ptr = m_code; branch.type = 6; HINT(HINT_NOP); return branch; } // Compare and Branch void ARM64XEmitter::CBZ(ARM64Reg Rt, const void* ptr) { EncodeCompareBranchInst(0, Rt, ptr); } void ARM64XEmitter::CBNZ(ARM64Reg Rt, const void* ptr) { EncodeCompareBranchInst(1, Rt, ptr); } // Conditional Branch void ARM64XEmitter::B(CCFlags cond, const void* ptr) { s64 distance = (s64)ptr - (s64(m_code) + 8); distance >>= 2; _assert_msg_(DYNA_REC, distance >= -0xFFFFF && distance < 0xFFFFF, "%s: Received too large distance: %lx", __FUNCTION__, distance); Write32((0x54 << 24) | (distance << 5) | cond); } // Test and Branch void ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bits, const void* ptr) { EncodeTestBranchInst(0, Rt, bits, ptr); } void ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bits, const void* ptr) { EncodeTestBranchInst(1, Rt, bits, ptr); } // Unconditional Branch void ARM64XEmitter::B(const void* ptr) { EncodeUnconditionalBranchInst(0, ptr); } void ARM64XEmitter::BL(const void* ptr) { EncodeUnconditionalBranchInst(1, ptr); } // Unconditional Branch (register) void ARM64XEmitter::BR(ARM64Reg Rn) { EncodeUnconditionalBranchInst(0, 0x1F, 0, 0, Rn); } void ARM64XEmitter::BLR(ARM64Reg Rn) { EncodeUnconditionalBranchInst(1, 0x1F, 0, 0, Rn); } void ARM64XEmitter::RET(ARM64Reg Rn) { EncodeUnconditionalBranchInst(2, 0x1F, 0, 0, Rn); } void ARM64XEmitter::ERET() { EncodeUnconditionalBranchInst(4, 0x1F, 0, 0, SP); } void ARM64XEmitter::DRPS() { EncodeUnconditionalBranchInst(5, 0x1F, 0, 0, SP); } // Exception generation void ARM64XEmitter::SVC(u32 imm) { EncodeExceptionInst(0, imm); } void ARM64XEmitter::HVC(u32 imm) { EncodeExceptionInst(1, imm); } void ARM64XEmitter::SMC(u32 imm) { EncodeExceptionInst(2, imm); } void ARM64XEmitter::BRK(u32 imm) { EncodeExceptionInst(3, imm); } void ARM64XEmitter::HLT(u32 imm) { EncodeExceptionInst(4, imm); } void ARM64XEmitter::DCPS1(u32 imm) { EncodeExceptionInst(5, imm); } void ARM64XEmitter::DCPS2(u32 imm) { EncodeExceptionInst(6, imm); } void ARM64XEmitter::DCPS3(u32 imm) { EncodeExceptionInst(7, imm); } // System void ARM64XEmitter::_MSR(PStateField field, u8 imm) { u32 op1 = 0, op2 = 0; switch (field) { case FIELD_SPSel: op1 = 0; op2 = 5; break; case FIELD_DAIFSet: op1 = 3; op2 = 6; break; case FIELD_DAIFClr: op1 = 3; op2 = 7; break; } EncodeSystemInst(0, op1, 3, imm, op2, WSP); } void ARM64XEmitter::HINT(SystemHint op) { EncodeSystemInst(0, 3, 2, 0, op, WSP); } void ARM64XEmitter::CLREX() { EncodeSystemInst(0, 3, 3, 0, 2, WSP); } void ARM64XEmitter::DSB(BarrierType type) { EncodeSystemInst(0, 3, 3, type, 4, WSP); } void ARM64XEmitter::DMB(BarrierType type) { EncodeSystemInst(0, 3, 3, type, 5, WSP); } void ARM64XEmitter::ISB(BarrierType type) { EncodeSystemInst(0, 3, 3, type, 6, WSP); } // Add/Subtract (extended register) void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ADD(Rd, Rn, Rm, ArithOption(Rd)); } void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(0, false, Rd, Rn, Rm, Option); } void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticInst(0, true, Rd, Rn, Rm, ArithOption(Rd)); } void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(0, true, Rd, Rn, Rm, Option); } void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { SUB(Rd, Rn, Rm, ArithOption(Rd)); } void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(1, false, Rd, Rn, Rm, Option); } void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticInst(1, false, Rd, Rn, Rm, ArithOption(Rd)); } void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(1, true, Rd, Rn, Rm, Option); } void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm) { CMN(Rn, Rm, ArithOption(Rn)); } void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(0, true, SP, Rn, Rm, Option); } void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm) { CMP(Rn, Rm, ArithOption(Rn)); } void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(1, true, SP, Rn, Rm, Option); } // Add/Subtract (with carry) void ARM64XEmitter::ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(0, false, Rd, Rn, Rm); } void ARM64XEmitter::ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(0, true, Rd, Rn, Rm); } void ARM64XEmitter::SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(1, false, Rd, Rn, Rm); } void ARM64XEmitter::SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(1, true, Rd, Rn, Rm); } // Conditional Compare (immediate) void ARM64XEmitter::CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) { EncodeCondCompareImmInst(0, Rn, imm, nzcv, cond); } void ARM64XEmitter::CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) { EncodeCondCompareImmInst(1, Rn, imm, nzcv, cond); } // Conditiona Compare (register) void ARM64XEmitter::CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) { EncodeCondCompareRegInst(0, Rn, Rm, nzcv, cond); } void ARM64XEmitter::CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) { EncodeCondCompareRegInst(1, Rn, Rm, nzcv, cond); } // Conditional Select void ARM64XEmitter::CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(0, Rd, Rn, Rm, cond); } void ARM64XEmitter::CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(1, Rd, Rn, Rm, cond); } void ARM64XEmitter::CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(2, Rd, Rn, Rm, cond); } void ARM64XEmitter::CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(3, Rd, Rn, Rm, cond); } // Data-Processing 1 source void ARM64XEmitter::RBIT(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(0, Rd, Rn); } void ARM64XEmitter::REV16(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(1, Rd, Rn); } void ARM64XEmitter::REV32(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(2, Rd, Rn); } void ARM64XEmitter::REV64(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(3, Rd, Rn); } void ARM64XEmitter::CLZ(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(4, Rd, Rn); } void ARM64XEmitter::CLS(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(5, Rd, Rn); } // Data-Processing 2 source void ARM64XEmitter::UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(0, Rd, Rn, Rm); } void ARM64XEmitter::SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(1, Rd, Rn, Rm); } void ARM64XEmitter::LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(2, Rd, Rn, Rm); } void ARM64XEmitter::LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(3, Rd, Rn, Rm); } void ARM64XEmitter::ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(4, Rd, Rn, Rm); } void ARM64XEmitter::RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(5, Rd, Rn, Rm); } void ARM64XEmitter::CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(6, Rd, Rn, Rm); } void ARM64XEmitter::CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(7, Rd, Rn, Rm); } void ARM64XEmitter::CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(8, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(9, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(10, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(11, Rd, Rn, Rm); } void ARM64XEmitter::CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(12, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(13, Rd, Rn, Rm); } // Data-Processing 3 source void ARM64XEmitter::MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(0, Rd, Rn, Rm, Ra); } void ARM64XEmitter::MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(1, Rd, Rn, Rm, Ra); } void ARM64XEmitter::SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(2, Rd, Rn, Rm, Ra); } void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(3, Rd, Rn, Rm, Ra); } void ARM64XEmitter::SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(4, Rd, Rn, Rm, Ra); } void ARM64XEmitter::UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(5, Rd, Rn, Rm, Ra); } void ARM64XEmitter::UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(6, Rd, Rn, Rm, Ra); } void ARM64XEmitter::UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(7, Rd, Rn, Rm, Ra); } // Logical (shifted register) void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(0, Rd, Rn, Rm, Shift); } void ARM64XEmitter::BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(1, Rd, Rn, Rm, Shift); } void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(2, Rd, Rn, Rm, Shift); } void ARM64XEmitter::ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(3, Rd, Rn, Rm, Shift); } void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(4, Rd, Rn, Rm, Shift); } void ARM64XEmitter::EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(5, Rd, Rn, Rm, Shift); } void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(6, Rd, Rn, Rm, Shift); } void ARM64XEmitter::BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(7, Rd, Rn, Rm, Shift); } void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm) { ORR(Rd, Is64Bit(Rd) ? SP : WSP, Rm, ArithOption(Rm, ST_LSL, 0)); } void ARM64XEmitter::MVN(ARM64Reg Rd, ARM64Reg Rm) { ORN(Rd, Is64Bit(Rd) ? SP : WSP, Rm, ArithOption(Rm, ST_LSL, 0)); } // Logical (immediate) void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeLogicalImmInst(0, Rd, Rn, immr, imms); } void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeLogicalImmInst(3, Rd, Rn, immr, imms); } void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeLogicalImmInst(2, Rd, Rn, immr, imms); } void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeLogicalImmInst(1, Rd, Rn, immr, imms); } void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms) { EncodeLogicalImmInst(3, SP, Rn, immr, imms); } // Add/subtract (immediate) void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(0, false, shift, imm, Rn, Rd); } void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(0, true, shift, imm, Rn, Rd); } void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(1, false, shift, imm, Rn, Rd); } void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(1, true, shift, imm, Rn, Rd); } void ARM64XEmitter::CMP(ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(1, true, shift, imm, Rn, Is64Bit(Rn) ? SP : WSP); } // Data Processing (Immediate) void ARM64XEmitter::MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos) { EncodeMOVWideInst(2, Rd, imm, pos); } void ARM64XEmitter::MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos) { EncodeMOVWideInst(0, Rd, imm, pos); } void ARM64XEmitter::MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos) { EncodeMOVWideInst(3, Rd, imm, pos); } // Bitfield move void ARM64XEmitter::BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeBitfieldMOVInst(1, Rd, Rn, immr, imms); } void ARM64XEmitter::SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeBitfieldMOVInst(0, Rd, Rn, immr, imms); } void ARM64XEmitter::UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeBitfieldMOVInst(2, Rd, Rn, immr, imms); } void ARM64XEmitter::SXTB(ARM64Reg Rd, ARM64Reg Rn) { SBFM(Rd, Rn, 0, 7); } void ARM64XEmitter::SXTH(ARM64Reg Rd, ARM64Reg Rn) { SBFM(Rd, Rn, 0, 15); } void ARM64XEmitter::SXTW(ARM64Reg Rd, ARM64Reg Rn) { _assert_msg_(DYNA_REC, Is64Bit(Rd), "%s requires 64bit register as destination", __FUNCTION__); SBFM(Rd, Rn, 0, 31); } // Load Register (Literal) void ARM64XEmitter::LDR(ARM64Reg Rt, u32 imm) { EncodeLoadRegisterInst(0, Rt, imm); } void ARM64XEmitter::LDRSW(ARM64Reg Rt, u32 imm) { EncodeLoadRegisterInst(2, Rt, imm); } void ARM64XEmitter::PRFM(ARM64Reg Rt, u32 imm) { EncodeLoadRegisterInst(3, Rt, imm); } // Load/Store pair void ARM64XEmitter::LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(0, 1, type, Rt, Rt2, Rn, imm); } void ARM64XEmitter::LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(1, 1, type, Rt, Rt2, Rn, imm); } void ARM64XEmitter::STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(0, 0, type, Rt, Rt2, Rn, imm); } // Load/Store Exclusive void ARM64XEmitter::STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(0, Rs, SP, Rt, Rn); } void ARM64XEmitter::STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(1, Rs, SP, Rt, Rn); } void ARM64XEmitter::LDXRB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(2, SP, SP, Rt, Rn); } void ARM64XEmitter::LDAXRB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(3, SP, SP, Rt, Rn); } void ARM64XEmitter::STLRB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(4, SP, SP, Rt, Rn); } void ARM64XEmitter::LDARB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(5, SP, SP, Rt, Rn); } void ARM64XEmitter::STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(6, Rs, SP, Rt, Rn); } void ARM64XEmitter::STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(7, Rs, SP, Rt, Rn); } void ARM64XEmitter::LDXRH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(8, SP, SP, Rt, Rn); } void ARM64XEmitter::LDAXRH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(9, SP, SP, Rt, Rn); } void ARM64XEmitter::STLRH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(10, SP, SP, Rt, Rn); } void ARM64XEmitter::LDARH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(11, SP, SP, Rt, Rn); } void ARM64XEmitter::STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(12 + Is64Bit(Rt), Rs, SP, Rt, Rn); } void ARM64XEmitter::STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(14 + Is64Bit(Rt), Rs, SP, Rt, Rn); } void ARM64XEmitter::STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(16 + Is64Bit(Rt), Rs, Rt2, Rt, Rn); } void ARM64XEmitter::STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(18 + Is64Bit(Rt), Rs, Rt2, Rt, Rn); } void ARM64XEmitter::LDXR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(20 + Is64Bit(Rt), SP, SP, Rt, Rn); } void ARM64XEmitter::LDAXR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(22 + Is64Bit(Rt), SP, SP, Rt, Rn); } void ARM64XEmitter::LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(24 + Is64Bit(Rt), SP, Rt2, Rt, Rn); } void ARM64XEmitter::LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(26 + Is64Bit(Rt), SP, Rt2, Rt, Rn); } void ARM64XEmitter::STLR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(28 + Is64Bit(Rt), SP, SP, Rt, Rn); } void ARM64XEmitter::LDAR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(30 + Is64Bit(Rt), SP, SP, Rt, Rn); } // Load/Store no-allocate pair (offset) void ARM64XEmitter::STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) { EncodeLoadStorePairedInst(0xA0, Rt, Rt2, Rn, imm); } void ARM64XEmitter::LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) { EncodeLoadStorePairedInst(0xA1, Rt, Rt2, Rn, imm); } // Load/Store register (immediate post-indexed) // XXX: Most of these support vectors void ARM64XEmitter::STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x0E4, Rt, Rn, imm, 8); else EncodeLoadStoreIndexedInst(0x0E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x0E5, Rt, Rn, imm, 8); else EncodeLoadStoreIndexedInst(0x0E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E6 : 0x0E7, Rt, Rn, imm, 8); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E2 : 0x0E3, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x1E4, Rt, Rn, imm, 16); else EncodeLoadStoreIndexedInst(0x1E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x1E5, Rt, Rn, imm, 16); else EncodeLoadStoreIndexedInst(0x1E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E6 : 0x1E7, Rt, Rn, imm, 16); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E2 : 0x1E3, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E4 : 0x2E4, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E0 : 0x2E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E5 : 0x2E5, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E1 : 0x2E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x2E6, Rt, Rn, imm, 32); else EncodeLoadStoreIndexedInst(0x2E2, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } // Load/Store register (register offset) void ARM64XEmitter::STRB(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { EncodeLoadStoreRegisterOffset(0, 0, Rt, Rn, Rm, extend); } void ARM64XEmitter::LDRB(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { EncodeLoadStoreRegisterOffset(0, 1, Rt, Rn, Rm, extend); } void ARM64XEmitter::LDRSB(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(0, 3 - b64Bit, Rt, Rn, Rm, extend); } void ARM64XEmitter::STRH(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { EncodeLoadStoreRegisterOffset(1, 0, Rt, Rn, Rm, extend); } void ARM64XEmitter::LDRH(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { EncodeLoadStoreRegisterOffset(1, 1, Rt, Rn, Rm, extend); } void ARM64XEmitter::LDRSH(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(1, 3 - b64Bit, Rt, Rn, Rm, extend); } void ARM64XEmitter::STR(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(2 + b64Bit, 0, Rt, Rn, Rm, extend); } void ARM64XEmitter::LDR(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(2 + b64Bit, 1, Rt, Rn, Rm, extend); } void ARM64XEmitter::LDRSW(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { EncodeLoadStoreRegisterOffset(2, 2, Rt, Rn, Rm, extend); } void ARM64XEmitter::PRFM(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend) { EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm, extend); } // Address of label/page PC-relative void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm) { EncodeAddressInst(0, Rd, imm); } void ARM64XEmitter::ADRP(ARM64Reg Rd, s32 imm) { EncodeAddressInst(1, Rd, imm >> 12); } // Wrapper around MOVZ+MOVK void ARM64XEmitter::MOVI2R(ARM64Reg Rd, u64 imm, bool optimize) { unsigned parts = Is64Bit(Rd) ? 4 : 2; BitSet32 upload_part(0); bool need_movz = false; if (!Is64Bit(Rd)) _assert_msg_(DYNA_REC, !(imm >> 32), "%s: immediate doesn't fit in 32bit register: %lx", __FUNCTION__, imm); if (!imm) { // Zero immediate, just clear the register EOR(Rd, Rd, Rd, ArithOption(Rd, ST_LSL, 0)); return; } if ((Is64Bit(Rd) && imm == std::numeric_limits::max()) || (!Is64Bit(Rd) && imm == std::numeric_limits::max())) { // Max unsigned value // Set to ~ZR ARM64Reg ZR = Is64Bit(Rd) ? SP : WSP; ORN(Rd, Rd, ZR, ArithOption(ZR, ST_LSL, 0)); return; } // XXX: Optimize more // XXX: Support rotating immediates to save instructions if (optimize) { for (unsigned i = 0; i < parts; ++i) { if ((imm >> (i * 16)) & 0xFFFF) upload_part[i] = 1; else need_movz = true; } } u64 aligned_pc = (u64)GetCodePtr() & ~0xFFF; s64 aligned_offset = (s64)imm - (s64)aligned_pc; if (upload_part.Count() > 1 && std::abs(aligned_offset) < 0xFFFFFFFF) { // Immediate we are loading is within 4GB of our aligned range // Most likely a address that we can load in one or two instructions if (!(std::abs(aligned_offset) & 0xFFF)) { // Aligned ADR ADRP(Rd, (s32)aligned_offset); return; } else { // If the address is within 1MB of PC we can load it in a single instruction still s64 offset = (s64)imm - (s64)GetCodePtr(); if (offset >= -0xFFFFF && offset <= 0xFFFFF) { ADR(Rd, (s32)offset); return; } else { ADRP(Rd, (s32)(aligned_offset & ~0xFFF)); ADD(Rd, Rd, imm & 0xFFF); return; } } } for (unsigned i = 0; i < parts; ++i) { if (need_movz && upload_part[i]) { MOVZ(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i); need_movz = false; } else { if (upload_part[i] || !optimize) MOVK(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i); } } } void ARM64XEmitter::ABI_PushRegisters(BitSet32 registers) { int num_regs = registers.Count(); if (num_regs % 2) { bool first = true; // Stack is required to be quad-word aligned. u32 stack_size = ROUND_UP(num_regs * 8, 16); u32 current_offset = 0; std::vector reg_pair; for (auto it : registers) { if (first) { STR(INDEX_PRE, (ARM64Reg)(X0 + it), SP, -stack_size); first = false; current_offset += 16; } else { reg_pair.push_back((ARM64Reg)(X0 + it)); if (reg_pair.size() == 2) { STP(INDEX_UNSIGNED, reg_pair[0], reg_pair[1], SP, current_offset); reg_pair.clear(); current_offset += 16; } } } } else { std::vector reg_pair; for (auto it : registers) { reg_pair.push_back((ARM64Reg)(X0 + it)); if (reg_pair.size() == 2) { STP(INDEX_PRE, reg_pair[0], reg_pair[1], SP, -16); reg_pair.clear(); } } } } void ARM64XEmitter::ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask) { int num_regs = registers.Count(); if (num_regs % 2) { bool first = true; std::vector reg_pair; for (auto it : registers) { if (ignore_mask[it]) it = WSP; if (first) { LDR(INDEX_POST, (ARM64Reg)(X0 + it), SP, 16); first = false; } else { reg_pair.push_back((ARM64Reg)(X0 + it)); if (reg_pair.size() == 2) { LDP(INDEX_POST, reg_pair[0], reg_pair[1], SP, 16); reg_pair.clear(); } } } } else { std::vector reg_pair; for (int i = 31; i >= 0; --i) { if (!registers[i]) continue; int reg = i; if (ignore_mask[reg]) reg = WSP; reg_pair.push_back((ARM64Reg)(X0 + reg)); if (reg_pair.size() == 2) { LDP(INDEX_POST, reg_pair[1], reg_pair[0], SP, 16); reg_pair.clear(); } } } } }