// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #pragma once // This is a system to schedule events into the emulated machine's future. Time is measured // in main CPU clock cycles. // To schedule an event, you first have to register its type. This is where you pass in the // callback. You then schedule events using the type id you get back. // See HW/SystemTimers.cpp for the main part of Dolphin's usage of this scheduler. // The int cyclesLate that the callbacks get is how many cycles late it was. // So to schedule a new event on a regular basis: // inside callback: // ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") #include #include #include #include #include "Common/CommonTypes.h" #include "Common/SPSCQueue.h" #include "Core/CPUThreadConfigCallback.h" class PointerWrap; namespace Core { class System; } namespace CoreTiming { // These really shouldn't be global, but jit64 accesses them directly struct Globals { s64 global_timer = 0; int slice_length = 0; u64 fake_TB_start_value = 0; u64 fake_TB_start_ticks = 0; float last_OC_factor_inverted = 0.0f; }; typedef void (*TimedCallback)(Core::System& system, u64 userdata, s64 cyclesLate); struct EventType { TimedCallback callback; const std::string* name; }; struct Event { s64 time; u64 fifo_order; u64 userdata; EventType* type; }; enum class FromThread { CPU, NON_CPU, // Don't use ANY unless you're sure you need to call from // both the CPU thread and at least one other thread ANY }; // helpers until the JIT is updated to use the instance void GlobalAdvance(); void GlobalIdle(); class CoreTimingManager { public: explicit CoreTimingManager(Core::System& system); // CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is // required to end slice -1 and start slice 0 before the first cycle of code is executed. void Init(); void Shutdown(); // This should only be called from the CPU thread, if you are calling it any other thread, you are // doing something evil u64 GetTicks() const; u64 GetIdleTicks() const; void RefreshConfig(); void DoState(PointerWrap& p); // Returns the event_type identifier. if name is not unique, an existing event_type will be // discarded. EventType* RegisterEvent(const std::string& name, TimedCallback callback); void UnregisterAllEvents(); // userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from savestates. // After the first Advance, the slice lengths and the downcount will be reduced whenever an event // is scheduled earlier than the current values (when scheduled from the CPU Thread only). // Scheduling from a callback will not update the downcount until the Advance() completes. void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata = 0, FromThread from = FromThread::CPU); // We only permit one event of each type in the queue at a time. void RemoveEvent(EventType* event_type); void RemoveAllEvents(EventType* event_type); // Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends // the previous timing slice and begins the next one, you must Advance from the previous // slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an // Advance() is required to initialize the slice length before the first cycle of emulated // instructions is executed. // NOTE: Advance updates the PowerPC downcount and performs a PPC external exception check. void Advance(); void MoveEvents(); // Pretend that the main CPU has executed enough cycles to reach the next event. void Idle(); // Clear all pending events. This should ONLY be done on exit or state load. void ClearPendingEvents(); void LogPendingEvents() const; std::string GetScheduledEventsSummary() const; void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock); u32 GetFakeDecStartValue() const; void SetFakeDecStartValue(u32 val); u64 GetFakeDecStartTicks() const; void SetFakeDecStartTicks(u64 val); u64 GetFakeTBStartValue() const; void SetFakeTBStartValue(u64 val); u64 GetFakeTBStartTicks() const; void SetFakeTBStartTicks(u64 val); void ForceExceptionCheck(s64 cycles); // Directly accessed by the JIT. Globals& GetGlobals() { return m_globals; } // Throttle the CPU to the specified target cycle. // Never used outside of CoreTiming, however it remains public // in order to allow custom throttling implementations to be tested. void Throttle(const s64 target_cycle); TimePoint GetCPUTimePoint(s64 cyclesLate) const; // Used by Dolphin Analytics bool GetVISkip() const; // Used By VideoInterface bool UseSyncOnSkipIdle() const; private: Globals m_globals; Core::System& m_system; // unordered_map stores each element separately as a linked list node so pointers to elements // remain stable regardless of rehashes/resizing. std::unordered_map m_event_types; // STATE_TO_SAVE // The queue is a min-heap using std::make_heap/push_heap/pop_heap. // We don't use std::priority_queue because we need to be able to serialize, unserialize and // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated // by the standard adaptor class. std::vector m_event_queue; u64 m_event_fifo_id = 0; std::mutex m_ts_write_lock; Common::SPSCQueue m_ts_queue; float m_last_oc_factor = 0.0f; s64 m_idled_cycles = 0; u32 m_fake_dec_start_value = 0; u64 m_fake_dec_start_ticks = 0; // Are we in a function that has been called from Advance() bool m_is_global_timer_sane = false; EventType* m_ev_lost = nullptr; CPUThreadConfigCallback::ConfigChangedCallbackID m_registered_config_callback_id; float m_config_oc_factor = 0.0f; float m_config_oc_inv_factor = 0.0f; bool m_config_sync_on_skip_idle = false; s64 m_throttle_last_cycle = 0; TimePoint m_throttle_deadline = Clock::now(); s64 m_throttle_clock_per_sec = 0; s64 m_throttle_min_clock_per_sleep = 0; bool m_throttle_disable_vi_int = false; DT m_max_fallback = {}; DT m_max_variance = {}; double m_emulation_speed = 1.0; void ResetThrottle(s64 cycle); int DowncountToCycles(int downcount) const; int CyclesToDowncount(int cycles) const; }; } // namespace CoreTiming