// Copyright 2009 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/TextureConversionShader.h" #include #include #include #include "Common/CommonTypes.h" #include "Common/MathUtil.h" #include "Common/MsgHandler.h" #include "VideoCommon/ShaderGenCommon.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" namespace TextureConversionShaderTiled { u16 GetEncodedSampleCount(EFBCopyFormat format) { switch (format) { case EFBCopyFormat::R4: return 8; case EFBCopyFormat::RA4: return 4; case EFBCopyFormat::RA8: return 2; case EFBCopyFormat::RGB565: return 2; case EFBCopyFormat::RGB5A3: return 2; case EFBCopyFormat::RGBA8: return 1; case EFBCopyFormat::A8: case EFBCopyFormat::R8_0x1: case EFBCopyFormat::R8: case EFBCopyFormat::G8: case EFBCopyFormat::B8: return 4; case EFBCopyFormat::RG8: case EFBCopyFormat::GB8: return 2; case EFBCopyFormat::XFB: return 2; default: PanicAlertFmt("Invalid EFB Copy Format {}! (GetEncodedSampleCount)", format); return 1; } } static void WriteHeader(ShaderCode& code, APIType api_type) { // left, top, of source rectangle within source texture // width of the destination rectangle, scale_factor (1 or 2) code.Write("UBO_BINDING(std140, 1) uniform PSBlock {{\n" " int4 position;\n" " float y_scale;\n" " float gamma_rcp;\n" " float2 clamp_tb;\n" " uint3 filter_coefficients;\n" "}};\n"); if (g_ActiveConfig.backend_info.bSupportsGeometryShaders) { code.Write("VARYING_LOCATION(0) in VertexData {{\n" " float3 v_tex0;\n" "}};\n"); } else { code.Write("VARYING_LOCATION(0) in float3 v_tex0;\n"); } code.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n" "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n"); // Alpha channel in the copy is set to 1 the EFB format does not have an alpha channel. code.Write("float4 RGBA8ToRGB8(float4 src)\n" "{{\n" " return float4(src.xyz, 1.0);\n" "}}\n" "float4 RGBA8ToRGBA6(float4 src)\n" "{{\n" " int4 val = int4(roundEven(src * 255.0));\n" " val = (val & 0xfc) | (val >> 6);\n" " return float4(val) / 255.0;\n" "}}\n" "float4 RGBA8ToRGB565(float4 src)\n" "{{\n" " int4 val = int4(roundEven(src * 255.0));\n" " val.r = (val.r & 0xf8) | (val.r >> 5);\n" " val.g = (val.g & 0xfc) | (val.g >> 6);\n" " val.b = (val.b & 0xf8) | (val.b >> 5);\n" " val.a = 255;\n" " return float4(val) / 255.0;\n" "}}\n"); } static void WriteSampleFunction(ShaderCode& code, const EFBCopyParams& params, APIType api_type) { code.Write("uint4 SampleEFB0(float2 uv, float2 pixel_size, float x_offset, float y_offset) {{\n" " float4 tex_sample = texture(samp0, float3(uv.x + x_offset * pixel_size.x, "); // Reverse the direction for OpenGL, since positive numbers are distance from the bottom row. // TODO: This isn't done on TextureConverterShaderGen - maybe it handles that via pixel_size? if (api_type == APIType::OpenGL) code.Write("clamp(uv.y - y_offset * pixel_size.y, clamp_tb.x, clamp_tb.y)"); else code.Write("clamp(uv.y + y_offset * pixel_size.y, clamp_tb.x, clamp_tb.y)"); code.Write(", 0.0));\n"); // TODO: Is this really needed? Doesn't the EFB only store appropriate values? Or is this for // EFB2Ram having consistent output with force 32-bit color? if (params.efb_format == PixelFormat::RGB8_Z24) code.Write(" tex_sample = RGBA8ToRGB8(tex_sample);\n"); else if (params.efb_format == PixelFormat::RGBA6_Z24) code.Write(" tex_sample = RGBA8ToRGBA6(tex_sample);\n"); else if (params.efb_format == PixelFormat::RGB565_Z16) code.Write(" tex_sample = RGBA8ToRGB565(tex_sample);\n"); if (params.depth) { if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange) code.Write(" tex_sample.x = 1.0 - tex_sample.x;\n"); code.Write(" uint depth = uint(tex_sample.x * 16777216.0);\n" " return uint4((depth >> 16) & 255u, (depth >> 8) & 255u, depth & 255u, 255u);\n" "}}\n"); } else { code.Write(" return uint4(tex_sample * 255.0);\n" "}}\n"); } // The copy filter applies to both color and depth copies. This has been verified on hardware. // The filter is only applied to the RGB channels, the alpha channel is left intact. code.Write("float4 SampleEFB(float2 uv, float2 pixel_size, int x_offset)\n" "{{\n"); if (params.all_copy_filter_coefs_needed) { code.Write(" uint4 prev_row = SampleEFB0(uv, pixel_size, float(x_offset), -1.0f);\n" " uint4 current_row = SampleEFB0(uv, pixel_size, float(x_offset), 0.0f);\n" " uint4 next_row = SampleEFB0(uv, pixel_size, float(x_offset), 1.0f);\n" " uint3 combined_rows = prev_row.rgb * filter_coefficients[0] +\n" " current_row.rgb * filter_coefficients[1] +\n" " next_row.rgb * filter_coefficients[2];\n"); } else { code.Write(" uint4 current_row = SampleEFB0(uv, pixel_size, float(x_offset), 0.0f);\n" " uint3 combined_rows = current_row.rgb * filter_coefficients[1];\n"); } code.Write(" // Shift right by 6 to divide by 64, as filter coefficients\n" " // that sum to 64 result in no change in brightness\n" " uint4 texcol_raw = uint4(combined_rows.rgb >> 6, current_row.a);\n"); if (params.copy_filter_can_overflow) code.Write(" texcol_raw &= 0x1ffu;\n"); // Note that overflow occurs when the sum of values is >= 128, but this max situation can be hit // on >= 64, so we always include it. code.Write(" texcol_raw = min(texcol_raw, uint4(255, 255, 255, 255));\n"); if (params.apply_gamma) { code.Write(" texcol_raw = uint4(round(pow(float4(texcol_raw) / 255.0,\n" " float4(gamma_rcp, gamma_rcp, gamma_rcp, 1.0)) * 255.0));\n"); } if (params.yuv) { code.Write(" // Intensity/YUV format conversion constants determined by hardware testing\n" " const float4 y_const = float4( 66, 129, 25, 16);\n" " const float4 u_const = float4(-38, -74, 112, 128);\n" " const float4 v_const = float4(112, -94, -18, 128);\n" " // Intensity/YUV format conversion\n" " texcol_raw.rgb = uint3(dot(y_const, float4(texcol_raw.rgb, 256)),\n" " dot(u_const, float4(texcol_raw.rgb, 256)),\n" " dot(v_const, float4(texcol_raw.rgb, 256)));\n" " // Divide by 256 and round .5 and higher up\n" " texcol_raw.rgb = (texcol_raw.rgb >> 8) + ((texcol_raw.rgb >> 7) & 1);\n"); } code.Write(" return float4(texcol_raw) / 255.0;\n"); code.Write("}}\n"); } // Block dimensions : widthStride, heightStride // Texture dimensions : width, height, x offset, y offset static void WriteSwizzler(ShaderCode& code, const EFBCopyParams& params, APIType api_type) { code.Write("void main()\n" "{{\n" " int2 sampleUv;\n" " int2 uv1 = int2(gl_FragCoord.xy);\n"); const int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(params.copy_format); const int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(params.copy_format); int samples = GetEncodedSampleCount(params.copy_format); code.Write(" int x_block_position = (uv1.x >> {}) << {};\n", IntLog2(blkH * blkW / samples), IntLog2(blkW)); code.Write(" int y_block_position = uv1.y << {};\n", IntLog2(blkH)); if (samples == 1) { // With samples == 1, we write out pairs of blocks; one A8R8, one G8B8. code.Write(" bool first = (uv1.x & {}) == 0;\n", blkH * blkW / 2); samples = 2; } code.Write(" int offset_in_block = uv1.x & {};\n", (blkH * blkW / samples) - 1); code.Write(" int y_offset_in_block = offset_in_block >> {};\n", IntLog2(blkW / samples)); code.Write(" int x_offset_in_block = (offset_in_block & {}) << {};\n", (blkW / samples) - 1, IntLog2(samples)); code.Write(" sampleUv.x = x_block_position + x_offset_in_block;\n" " sampleUv.y = y_block_position + y_offset_in_block;\n"); // sampleUv is the sample position in (int)gx_coords code.Write(" float2 uv0 = float2(sampleUv);\n"); // Move to center of pixel code.Write(" uv0 += float2(0.5, 0.5);\n"); // Scale by two if needed (also move to pixel borders // so that linear filtering will average adjacent // pixel) code.Write(" uv0 *= float(position.w);\n"); // Move to copied rect code.Write(" uv0 += float2(position.xy);\n"); // Normalize to [0:1] code.Write(" uv0 /= float2({}, {});\n", EFB_WIDTH, EFB_HEIGHT); // Apply the y scaling code.Write(" uv0 /= float2(1, y_scale);\n"); // OGL has to flip up and down if (api_type == APIType::OpenGL) { code.Write(" uv0.y = 1.0-uv0.y;\n"); } code.Write(" float2 pixel_size = float2(position.w, position.w) / float2({}, {});\n", EFB_WIDTH, EFB_HEIGHT); } static void WriteSampleColor(ShaderCode& code, std::string_view color_comp, std::string_view dest, int x_offset, APIType api_type, const EFBCopyParams& params) { code.Write(" {} = SampleEFB(uv0, pixel_size, {}).{};\n", dest, x_offset, color_comp); } static void WriteToBitDepth(ShaderCode& code, u8 depth, std::string_view src, std::string_view dest) { code.Write(" {} = floor({} * 255.0 / exp2(8.0 - {}.0));\n", dest, src, depth); } static void WriteRGB565Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params) { code.Write(" float3 texSample0;\n" " float3 texSample1;\n"); WriteSampleColor(code, "rgb", "texSample0", 0, api_type, params); WriteSampleColor(code, "rgb", "texSample1", 1, api_type, params); code.Write(" float2 texRs = float2(texSample0.r, texSample1.r);\n" " float2 texGs = float2(texSample0.g, texSample1.g);\n" " float2 texBs = float2(texSample0.b, texSample1.b);\n"); WriteToBitDepth(code, 6, "texGs", "float2 gInt"); code.Write(" float2 gUpper = floor(gInt / 8.0);\n" " float2 gLower = gInt - gUpper * 8.0;\n"); WriteToBitDepth(code, 5, "texRs", "ocol0.br"); code.Write(" ocol0.br = ocol0.br * 8.0 + gUpper;\n"); WriteToBitDepth(code, 5, "texBs", "ocol0.ga"); code.Write(" ocol0.ga = ocol0.ga + gLower * 32.0;\n"); code.Write(" ocol0 = ocol0 / 255.0;\n"); } static void WriteRGB5A3Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params) { code.Write(" float4 texSample;\n" " float color0;\n" " float gUpper;\n" " float gLower;\n"); WriteSampleColor(code, "rgba", "texSample", 0, api_type, params); // 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits code.Write("if(texSample.a > 0.878f) {{\n"); WriteToBitDepth(code, 5, "texSample.g", "color0"); code.Write(" gUpper = floor(color0 / 8.0);\n" " gLower = color0 - gUpper * 8.0;\n"); WriteToBitDepth(code, 5, "texSample.r", "ocol0.b"); code.Write(" ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n"); WriteToBitDepth(code, 5, "texSample.b", "ocol0.g"); code.Write(" ocol0.g = ocol0.g + gLower * 32.0;\n"); code.Write("}} else {{\n"); WriteToBitDepth(code, 4, "texSample.r", "ocol0.b"); WriteToBitDepth(code, 4, "texSample.b", "ocol0.g"); WriteToBitDepth(code, 3, "texSample.a", "color0"); code.Write("ocol0.b = ocol0.b + color0 * 16.0;\n"); WriteToBitDepth(code, 4, "texSample.g", "color0"); code.Write("ocol0.g = ocol0.g + color0 * 16.0;\n"); code.Write("}}\n"); WriteSampleColor(code, "rgba", "texSample", 1, api_type, params); code.Write("if(texSample.a > 0.878f) {{\n"); WriteToBitDepth(code, 5, "texSample.g", "color0"); code.Write(" gUpper = floor(color0 / 8.0);\n" " gLower = color0 - gUpper * 8.0;\n"); WriteToBitDepth(code, 5, "texSample.r", "ocol0.r"); code.Write(" ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n"); WriteToBitDepth(code, 5, "texSample.b", "ocol0.a"); code.Write(" ocol0.a = ocol0.a + gLower * 32.0;\n"); code.Write("}} else {{\n"); WriteToBitDepth(code, 4, "texSample.r", "ocol0.r"); WriteToBitDepth(code, 4, "texSample.b", "ocol0.a"); WriteToBitDepth(code, 3, "texSample.a", "color0"); code.Write("ocol0.r = ocol0.r + color0 * 16.0;\n"); WriteToBitDepth(code, 4, "texSample.g", "color0"); code.Write("ocol0.a = ocol0.a + color0 * 16.0;\n"); code.Write("}}\n"); code.Write(" ocol0 = ocol0 / 255.0;\n"); } static void WriteRGBA8Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params) { code.Write(" float4 texSample;\n" " float4 color0;\n" " float4 color1;\n"); WriteSampleColor(code, "rgba", "texSample", 0, api_type, params); code.Write(" color0.b = texSample.a;\n" " color0.g = texSample.r;\n" " color1.b = texSample.g;\n" " color1.g = texSample.b;\n"); WriteSampleColor(code, "rgba", "texSample", 1, api_type, params); code.Write(" color0.r = texSample.a;\n" " color0.a = texSample.r;\n" " color1.r = texSample.g;\n" " color1.a = texSample.b;\n"); code.Write(" ocol0 = first ? color0 : color1;\n"); } static void WriteC4Encoder(ShaderCode& code, std::string_view comp, APIType api_type, const EFBCopyParams& params) { code.Write(" float4 color0;\n" " float4 color1;\n"); WriteSampleColor(code, comp, "color0.b", 0, api_type, params); WriteSampleColor(code, comp, "color1.b", 1, api_type, params); WriteSampleColor(code, comp, "color0.g", 2, api_type, params); WriteSampleColor(code, comp, "color1.g", 3, api_type, params); WriteSampleColor(code, comp, "color0.r", 4, api_type, params); WriteSampleColor(code, comp, "color1.r", 5, api_type, params); WriteSampleColor(code, comp, "color0.a", 6, api_type, params); WriteSampleColor(code, comp, "color1.a", 7, api_type, params); WriteToBitDepth(code, 4, "color0", "color0"); WriteToBitDepth(code, 4, "color1", "color1"); code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n"); } static void WriteC8Encoder(ShaderCode& code, std::string_view comp, APIType api_type, const EFBCopyParams& params) { WriteSampleColor(code, comp, "ocol0.b", 0, api_type, params); WriteSampleColor(code, comp, "ocol0.g", 1, api_type, params); WriteSampleColor(code, comp, "ocol0.r", 2, api_type, params); WriteSampleColor(code, comp, "ocol0.a", 3, api_type, params); } static void WriteCC4Encoder(ShaderCode& code, std::string_view comp, APIType api_type, const EFBCopyParams& params) { code.Write(" float2 texSample;\n" " float4 color0;\n" " float4 color1;\n"); WriteSampleColor(code, comp, "texSample", 0, api_type, params); code.Write(" color0.b = texSample.x;\n" " color1.b = texSample.y;\n"); WriteSampleColor(code, comp, "texSample", 1, api_type, params); code.Write(" color0.g = texSample.x;\n" " color1.g = texSample.y;\n"); WriteSampleColor(code, comp, "texSample", 2, api_type, params); code.Write(" color0.r = texSample.x;\n" " color1.r = texSample.y;\n"); WriteSampleColor(code, comp, "texSample", 3, api_type, params); code.Write(" color0.a = texSample.x;\n" " color1.a = texSample.y;\n"); WriteToBitDepth(code, 4, "color0", "color0"); WriteToBitDepth(code, 4, "color1", "color1"); code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n"); } static void WriteCC8Encoder(ShaderCode& code, std::string_view comp, APIType api_type, const EFBCopyParams& params) { WriteSampleColor(code, comp, "ocol0.bg", 0, api_type, params); WriteSampleColor(code, comp, "ocol0.ra", 1, api_type, params); } static void WriteXFBEncoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params) { code.Write("float4 color0 = float4(0, 0, 0, 1), color1 = float4(0, 0, 0, 1);\n"); WriteSampleColor(code, "rgb", "color0.rgb", 0, api_type, params); WriteSampleColor(code, "rgb", "color1.rgb", 1, api_type, params); // Convert to YUV. code.Write(" // Intensity/YUV format conversion constants determined by hardware testing\n" " const float4 y_const = float4( 66, 129, 25, 16);\n" " const float4 u_const = float4(-38, -74, 112, 128);\n" " const float4 v_const = float4(112, -94, -18, 128);\n" " float4 average = (color0 + color1) * 0.5;\n" " // TODO: check rounding\n" " ocol0.b = round(dot(color0, y_const)) / 256.0;\n" " ocol0.g = round(dot(average, u_const)) / 256.0;\n" " ocol0.r = round(dot(color1, y_const)) / 256.0;\n" " ocol0.a = round(dot(average, v_const)) / 256.0;\n"); } std::string GenerateEncodingShader(const EFBCopyParams& params, APIType api_type) { ShaderCode code; WriteHeader(code, api_type); WriteSampleFunction(code, params, api_type); WriteSwizzler(code, params, api_type); switch (params.copy_format) { case EFBCopyFormat::R4: WriteC4Encoder(code, "r", api_type, params); break; case EFBCopyFormat::RA4: WriteCC4Encoder(code, "ar", api_type, params); break; case EFBCopyFormat::RA8: WriteCC8Encoder(code, "ar", api_type, params); break; case EFBCopyFormat::RGB565: WriteRGB565Encoder(code, api_type, params); break; case EFBCopyFormat::RGB5A3: WriteRGB5A3Encoder(code, api_type, params); break; case EFBCopyFormat::RGBA8: WriteRGBA8Encoder(code, api_type, params); break; case EFBCopyFormat::A8: WriteC8Encoder(code, "a", api_type, params); break; case EFBCopyFormat::R8_0x1: case EFBCopyFormat::R8: WriteC8Encoder(code, "r", api_type, params); break; case EFBCopyFormat::G8: WriteC8Encoder(code, "g", api_type, params); break; case EFBCopyFormat::B8: WriteC8Encoder(code, "b", api_type, params); break; case EFBCopyFormat::RG8: WriteCC8Encoder(code, "gr", api_type, params); break; case EFBCopyFormat::GB8: WriteCC8Encoder(code, "bg", api_type, params); break; case EFBCopyFormat::XFB: WriteXFBEncoder(code, api_type, params); break; default: PanicAlertFmt("Invalid EFB Copy Format {}! (GenerateEncodingShader)", params.copy_format); break; } code.Write("}}\n"); return code.GetBuffer(); } // NOTE: In these uniforms, a row refers to a row of blocks, not texels. static const char decoding_shader_header[] = R"( #if defined(PALETTE_FORMAT_IA8) || defined(PALETTE_FORMAT_RGB565) || defined(PALETTE_FORMAT_RGB5A3) #define HAS_PALETTE 1 #endif UBO_BINDING(std140, 1) uniform UBO { uint2 u_dst_size; uint2 u_src_size; uint u_src_offset; uint u_src_row_stride; uint u_palette_offset; }; TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer; #ifdef HAS_PALETTE TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer; #endif IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image; #define GROUP_MEMORY_BARRIER_WITH_SYNC memoryBarrierShared(); barrier(); #define GROUP_SHARED shared #define DEFINE_MAIN(lx, ly) \ layout(local_size_x = lx, local_size_y = ly) in; \ void main() uint Swap16(uint v) { // Convert BE to LE. return ((v >> 8) | (v << 8)) & 0xFFFFu; } uint Convert3To8(uint v) { // Swizzle bits: 00000123 -> 12312312 return (v << 5) | (v << 2) | (v >> 1); } uint Convert4To8(uint v) { // Swizzle bits: 00001234 -> 12341234 return (v << 4) | v; } uint Convert5To8(uint v) { // Swizzle bits: 00012345 -> 12345123 return (v << 3) | (v >> 2); } uint Convert6To8(uint v) { // Swizzle bits: 00123456 -> 12345612 return (v << 2) | (v >> 4); } uint GetTiledTexelOffset(uint2 block_size, uint2 coords) { uint2 block = coords / block_size; uint2 offset = coords % block_size; uint buffer_pos = u_src_offset; buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * (block_size.x * block_size.y); buffer_pos += offset.y * block_size.x; buffer_pos += offset.x; return buffer_pos; } #if defined(HAS_PALETTE) uint4 GetPaletteColor(uint index) { // Fetch and swap BE to LE. uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x); uint4 color; #if defined(PALETTE_FORMAT_IA8) uint a = bitfieldExtract(val, 8, 8); uint i = bitfieldExtract(val, 0, 8); color = uint4(i, i, i, a); #elif defined(PALETTE_FORMAT_RGB565) color.x = Convert5To8(bitfieldExtract(val, 11, 5)); color.y = Convert6To8(bitfieldExtract(val, 5, 6)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; #elif defined(PALETTE_FORMAT_RGB5A3) if ((val & 0x8000u) != 0u) { color.x = Convert5To8(bitfieldExtract(val, 10, 5)); color.y = Convert5To8(bitfieldExtract(val, 5, 5)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; } else { color.a = Convert3To8(bitfieldExtract(val, 12, 3)); color.r = Convert4To8(bitfieldExtract(val, 8, 4)); color.g = Convert4To8(bitfieldExtract(val, 4, 4)); color.b = Convert4To8(bitfieldExtract(val, 0, 4)); } #else // Not used. color = uint4(0, 0, 0, 0); #endif return color; } float4 GetPaletteColorNormalized(uint index) { uint4 color = GetPaletteColor(index); return float4(color) / 255.0; } #endif // defined(HAS_PALETTE) )"; static const std::map s_decoding_shader_info{ {TextureFormat::I4, {TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x8 blocks, 4 bits per pixel // We need to do the tiling manually here because the texel size is smaller than // the size of the buffer elements. uint2 block = coords.xy / 8u; uint2 offset = coords.xy % 8u; uint buffer_pos = u_src_offset; buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * 32u; buffer_pos += offset.y * 4u; buffer_pos += offset.x / 2u; // Select high nibble for odd texels, low for even. uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint i; if ((coords.x & 1u) == 0u) i = Convert4To8((val >> 4)); else i = Convert4To8((val & 0x0Fu)); uint4 color = uint4(i, i, i, i); float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::IA4, {TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x4 blocks, 8 bits per pixel uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords); uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint i = Convert4To8((val & 0x0Fu)); uint a = Convert4To8((val >> 4)); uint4 color = uint4(i, i, i, a); float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::I8, {TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x4 blocks, 8 bits per pixel uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords); uint i = texelFetch(s_input_buffer, int(buffer_pos)).x; uint4 color = uint4(i, i, i, i); float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::IA8, {TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks, 16 bits per pixel uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords); uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint a = (val & 0xFFu); uint i = (val >> 8); uint4 color = uint4(i, i, i, a); float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::RGB565, {TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords); uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x); uint4 color; color.x = Convert5To8(bitfieldExtract(val, 11, 5)); color.y = Convert6To8(bitfieldExtract(val, 5, 6)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::RGB5A3, {TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords); uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x); uint4 color; if ((val & 0x8000u) != 0u) { color.x = Convert5To8(bitfieldExtract(val, 10, 5)); color.y = Convert5To8(bitfieldExtract(val, 5, 5)); color.z = Convert5To8(bitfieldExtract(val, 0, 5)); color.a = 255u; } else { color.a = Convert3To8(bitfieldExtract(val, 12, 3)); color.r = Convert4To8(bitfieldExtract(val, 8, 4)); color.g = Convert4To8(bitfieldExtract(val, 4, 4)); color.b = Convert4To8(bitfieldExtract(val, 0, 4)); } float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::RGBA8, {TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks // We can't use the normal calculation function, as these are packed as the AR channels // for the entire block, then the GB channels afterwards. uint2 block = coords.xy / 4u; uint2 offset = coords.xy % 4u; uint buffer_pos = u_src_offset; // Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes. buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * 32u; buffer_pos += offset.y * 4u; buffer_pos += offset.x; // The two GB channels follow after the block's AR channels. uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x; uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x; uint4 color; color.a = (val1 & 0xFFu); color.r = (val1 >> 8); color.g = (val2 & 0xFFu); color.b = (val2 >> 8); float4 norm_color = float4(color) / 255.0; imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::CMPR, {TEXEL_BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true, R"( // In the compute version of this decoder, we flatten the blocks to a one-dimension array. // Each group is subdivided into 16, and the first thread in each group fetches the DXT data. // All threads then calculate the possible colors for the block and write to the output image. #define GROUP_SIZE 64u #define BLOCK_SIZE_X 4u #define BLOCK_SIZE_Y 4u #define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y) #define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE) uint DXTBlend(uint v1, uint v2) { // 3/8 blend, which is close to 1/3 return ((v1 * 3u + v2 * 5u) >> 3); } GROUP_SHARED uint2 shared_temp[BLOCKS_PER_GROUP]; DEFINE_MAIN(GROUP_SIZE, 8) { uint local_thread_id = gl_LocalInvocationID.x; uint block_in_group = local_thread_id / BLOCK_SIZE; uint thread_in_block = local_thread_id % BLOCK_SIZE; uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group; // Annoyingly, we can't precalculate this as a uniform because the DXT block size differs // from the block size of the overall texture (4 vs 8). We can however use a multiply and // subtraction to avoid the modulo for calculating the block's X coordinate. uint blocks_wide = u_src_size.x / BLOCK_SIZE_X; uint2 block_coords; block_coords.y = block_index / blocks_wide; block_coords.x = block_index - (block_coords.y * blocks_wide); // Only the first thread for each block reads from the texel buffer. if (thread_in_block == 0u) { // Calculate tiled block coordinates. uint2 tile_block_coords = block_coords / 2u; uint2 subtile_block_coords = block_coords % 2u; uint buffer_pos = u_src_offset; buffer_pos += tile_block_coords.y * u_src_row_stride; buffer_pos += tile_block_coords.x * 4u; buffer_pos += subtile_block_coords.y * 2u; buffer_pos += subtile_block_coords.x; // Read the entire DXT block to shared memory. uint2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy; shared_temp[block_in_group] = raw_data; } // Ensure store is completed before the remaining threads in the block continue. GROUP_MEMORY_BARRIER_WITH_SYNC; // Unpack colors and swap BE to LE. uint2 raw_data = shared_temp[block_in_group]; uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8); uint c1 = swapped & 0xFFFFu; uint c2 = swapped >> 16; // Expand 5/6 bit channels to 8-bits per channel. uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5)); uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5)); uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6)); uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6)); uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5)); uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5)); // Determine the four colors the block can use. // It's quicker to just precalculate all four colors rather than branching on the index. // NOTE: These must be masked with 0xFF. This is done at the normalization stage below. uint4 color0, color1, color2, color3; color0 = uint4(red1, green1, blue1, 255u); color1 = uint4(red2, green2, blue2, 255u); if (c1 > c2) { color2 = uint4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u); color3 = uint4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u); } else { color2 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u); color3 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u); } // Calculate the texel coordinates that we will write to. // The divides/modulo here should be turned into a shift/binary AND. uint local_y = thread_in_block / BLOCK_SIZE_X; uint local_x = thread_in_block % BLOCK_SIZE_X; uint global_x = block_coords.x * BLOCK_SIZE_X + local_x; uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y; // Use the coordinates within the block to shift the 32-bit value containing // all 16 indices to a single 2-bit index. uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2); // Select the un-normalized color from the precalculated color array. // Using a switch statement here removes the need for dynamic indexing of an array. uint4 color; switch (index) { case 0u: color = color0; break; case 1u: color = color1; break; case 2u: color = color2; break; case 3u: color = color3; break; default: color = color0; break; } // Normalize and write to the output image. float4 norm_color = float4(color & 0xFFu) / 255.0; imageStore(output_image, int3(int2(uint2(global_x, global_y)), 0), norm_color); } )"}}, {TextureFormat::C4, {TEXEL_BUFFER_FORMAT_R8_UINT, static_cast(TexDecoder_GetPaletteSize(TextureFormat::C4)), 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x8 blocks, 4 bits per pixel // We need to do the tiling manually here because the texel size is smaller than // the size of the buffer elements. uint2 block = coords.xy / 8u; uint2 offset = coords.xy % 8u; uint buffer_pos = u_src_offset; buffer_pos += block.y * u_src_row_stride; buffer_pos += block.x * 32u; buffer_pos += offset.y * 4u; buffer_pos += offset.x / 2u; // Select high nibble for odd texels, low for even. uint val = texelFetch(s_input_buffer, int(buffer_pos)).x; uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu); float4 norm_color = GetPaletteColorNormalized(index); imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::C8, {TEXEL_BUFFER_FORMAT_R8_UINT, static_cast(TexDecoder_GetPaletteSize(TextureFormat::C8)), 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 8x4 blocks, 8 bits per pixel uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords); uint index = texelFetch(s_input_buffer, int(buffer_pos)).x; float4 norm_color = GetPaletteColorNormalized(index); imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, {TextureFormat::C14X2, {TEXEL_BUFFER_FORMAT_R16_UINT, static_cast(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 coords = gl_GlobalInvocationID.xy; // Tiled in 4x4 blocks, 16 bits per pixel uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords); uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu; float4 norm_color = GetPaletteColorNormalized(index); imageStore(output_image, int3(int2(coords), 0), norm_color); } )"}}, // We do the inverse BT.601 conversion for YCbCr to RGB // http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion {TextureFormat::XFB, {TEXEL_BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false, R"( DEFINE_MAIN(8, 8) { uint2 uv = gl_GlobalInvocationID.xy; int buffer_pos = int(u_src_offset + (uv.y * u_src_row_stride) + (uv.x / 2u)); float4 yuyv = float4(texelFetch(s_input_buffer, buffer_pos)); float y = (uv.x & 1u) != 0u ? yuyv.b : yuyv.r; float yComp = 1.164 * (y - 16.0); float uComp = yuyv.g - 128.0; float vComp = yuyv.a - 128.0; float4 rgb = float4(yComp + (1.596 * vComp), yComp - (0.813 * vComp) - (0.391 * uComp), yComp + (2.018 * uComp), 255.0); float4 rgba_norm = rgb / 255.0; imageStore(output_image, int3(int2(uv), 0), rgba_norm); } )"}}}; const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format) { auto iter = s_decoding_shader_info.find(format); return iter != s_decoding_shader_info.end() ? &iter->second : nullptr; } std::pair GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height) { // Flatten to a single dimension? if (info->group_flatten) return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1}; return {(width + (info->group_size_x - 1)) / info->group_size_x, (height + (info->group_size_y - 1)) / info->group_size_y}; } std::string GenerateDecodingShader(TextureFormat format, std::optional palette_format, APIType api_type) { const DecodingShaderInfo* info = GetDecodingShaderInfo(format); if (!info) return ""; std::ostringstream ss; if (palette_format.has_value()) { switch (*palette_format) { case TLUTFormat::IA8: ss << "#define PALETTE_FORMAT_IA8 1\n"; break; case TLUTFormat::RGB565: ss << "#define PALETTE_FORMAT_RGB565 1\n"; break; case TLUTFormat::RGB5A3: ss << "#define PALETTE_FORMAT_RGB5A3 1\n"; break; } } ss << decoding_shader_header; ss << info->shader_body; return ss.str(); } std::string GeneratePaletteConversionShader(TLUTFormat palette_format, APIType api_type) { std::ostringstream ss; ss << R"( int Convert3To8(int v) { // Swizzle bits: 00000123 -> 12312312 return (v << 5) | (v << 2) | (v >> 1); } int Convert4To8(int v) { // Swizzle bits: 00001234 -> 12341234 return (v << 4) | v; } int Convert5To8(int v) { // Swizzle bits: 00012345 -> 12345123 return (v << 3) | (v >> 2); } int Convert6To8(int v) { // Swizzle bits: 00123456 -> 12345612 return (v << 2) | (v >> 4); })"; switch (palette_format) { case TLUTFormat::IA8: ss << R"( float4 DecodePixel(int val) { int i = val & 0xFF; int a = val >> 8; return float4(i, i, i, a) / 255.0; })"; break; case TLUTFormat::RGB565: ss << R"( float4 DecodePixel(int val) { int r, g, b, a; r = Convert5To8((val >> 11) & 0x1f); g = Convert6To8((val >> 5) & 0x3f); b = Convert5To8((val) & 0x1f); a = 0xFF; return float4(r, g, b, a) / 255.0; })"; break; case TLUTFormat::RGB5A3: ss << R"( float4 DecodePixel(int val) { int r,g,b,a; if ((val&0x8000) > 0) { r=Convert5To8((val>>10) & 0x1f); g=Convert5To8((val>>5 ) & 0x1f); b=Convert5To8((val ) & 0x1f); a=0xFF; } else { a=Convert3To8((val>>12) & 0x7); r=Convert4To8((val>>8 ) & 0xf); g=Convert4To8((val>>4 ) & 0xf); b=Convert4To8((val ) & 0xf); } return float4(r, g, b, a) / 255.0; })"; break; default: PanicAlertFmt("Unknown format"); break; } ss << "\n"; ss << "TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp0;\n"; ss << "SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n"; ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n"; ss << " float multiplier;\n"; ss << " int texel_buffer_offset;\n"; ss << "};\n"; if (g_ActiveConfig.backend_info.bSupportsGeometryShaders) { ss << "VARYING_LOCATION(0) in VertexData {\n"; ss << " float3 v_tex0;\n"; ss << "};\n"; } else { ss << "VARYING_LOCATION(0) in float3 v_tex0;\n"; } ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n"; ss << "void main() {\n"; ss << " float3 coords = v_tex0;\n"; ss << " int src = int(round(texture(samp1, coords).r * multiplier));\n"; ss << " src = int(texelFetch(samp0, src + texel_buffer_offset).r);\n"; ss << " src = ((src << 8) & 0xFF00) | (src >> 8);\n"; ss << " ocol0 = DecodePixel(src);\n"; ss << "}\n"; return ss.str(); } } // namespace TextureConversionShaderTiled