mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2024-11-15 05:47:56 -07:00
833 lines
28 KiB
C++
833 lines
28 KiB
C++
// Copyright 2010 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
// ---------------------------------------------------------------------------------------------
|
|
// GC graphics pipeline
|
|
// ---------------------------------------------------------------------------------------------
|
|
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
|
|
// The efb can be copied back into ram in two forms: as textures or as XFB.
|
|
// The XFB is the region in RAM that the VI chip scans out to the television.
|
|
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
|
|
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
|
|
// ---------------------------------------------------------------------------------------------
|
|
|
|
#include "VideoCommon/RenderBase.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <tuple>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/ChunkFile.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Config/Config.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "Core/Config/GraphicsSettings.h"
|
|
#include "Core/Config/SYSCONFSettings.h"
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/Core.h"
|
|
#include "Core/DolphinAnalytics.h"
|
|
#include "Core/FifoPlayer/FifoRecorder.h"
|
|
#include "Core/FreeLookConfig.h"
|
|
#include "Core/HW/SystemTimers.h"
|
|
#include "Core/System.h"
|
|
|
|
#include "VideoCommon/AbstractFramebuffer.h"
|
|
#include "VideoCommon/AbstractTexture.h"
|
|
#include "VideoCommon/BoundingBox.h"
|
|
#include "VideoCommon/CommandProcessor.h"
|
|
#include "VideoCommon/FrameDumper.h"
|
|
#include "VideoCommon/FramebufferManager.h"
|
|
#include "VideoCommon/FreeLookCamera.h"
|
|
#include "VideoCommon/GraphicsModSystem/Config/GraphicsModGroup.h"
|
|
#include "VideoCommon/OnScreenDisplay.h"
|
|
#include "VideoCommon/PerformanceMetrics.h"
|
|
#include "VideoCommon/PixelEngine.h"
|
|
#include "VideoCommon/PixelShaderManager.h"
|
|
#include "VideoCommon/Present.h"
|
|
#include "VideoCommon/ShaderCache.h"
|
|
#include "VideoCommon/ShaderGenCommon.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/VertexManagerBase.h"
|
|
#include "VideoCommon/VideoBackendBase.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
|
|
std::unique_ptr<Renderer> g_renderer;
|
|
|
|
Renderer::Renderer(int backbuffer_width, int backbuffer_height, float backbuffer_scale,
|
|
AbstractTextureFormat backbuffer_format)
|
|
: m_last_xfb_width{MAX_XFB_WIDTH}, m_last_xfb_height{MAX_XFB_HEIGHT}
|
|
{
|
|
UpdateActiveConfig();
|
|
FreeLook::UpdateActiveConfig();
|
|
CalculateTargetSize();
|
|
|
|
g_presenter->SetBackbuffer(backbuffer_width, backbuffer_height, backbuffer_scale,
|
|
backbuffer_format);
|
|
|
|
m_is_game_widescreen = SConfig::GetInstance().bWii && Config::Get(Config::SYSCONF_WIDESCREEN);
|
|
g_freelook_camera.SetControlType(FreeLook::GetActiveConfig().camera_config.control_type);
|
|
}
|
|
|
|
Renderer::~Renderer() = default;
|
|
|
|
bool Renderer::Initialize()
|
|
{
|
|
m_bounding_box = CreateBoundingBox();
|
|
if (g_ActiveConfig.backend_info.bSupportsBBox && !m_bounding_box->Initialize())
|
|
{
|
|
PanicAlertFmt("Failed to initialize bounding box.");
|
|
return false;
|
|
}
|
|
|
|
if (g_ActiveConfig.bGraphicMods)
|
|
{
|
|
// If a config change occurred in a previous session,
|
|
// remember the old change count value. By setting
|
|
// our current change count to the old value, we
|
|
// avoid loading the stale data when we
|
|
// check for config changes.
|
|
const u32 old_game_mod_changes = g_ActiveConfig.graphics_mod_config ?
|
|
g_ActiveConfig.graphics_mod_config->GetChangeCount() :
|
|
0;
|
|
g_ActiveConfig.graphics_mod_config = GraphicsModGroupConfig(SConfig::GetInstance().GetGameID());
|
|
g_ActiveConfig.graphics_mod_config->Load();
|
|
g_ActiveConfig.graphics_mod_config->SetChangeCount(old_game_mod_changes);
|
|
m_graphics_mod_manager.Load(*g_ActiveConfig.graphics_mod_config);
|
|
}
|
|
|
|
return g_presenter->Initialize();
|
|
}
|
|
|
|
void Renderer::Shutdown()
|
|
{
|
|
m_bounding_box.reset();
|
|
}
|
|
|
|
void Renderer::BeginUtilityDrawing()
|
|
{
|
|
g_vertex_manager->Flush();
|
|
}
|
|
|
|
void Renderer::EndUtilityDrawing()
|
|
{
|
|
// Reset framebuffer/scissor/viewport. Pipeline will be reset at next draw.
|
|
g_framebuffer_manager->BindEFBFramebuffer();
|
|
BPFunctions::SetScissorAndViewport();
|
|
}
|
|
|
|
void Renderer::SetFramebuffer(AbstractFramebuffer* framebuffer)
|
|
{
|
|
m_current_framebuffer = framebuffer;
|
|
}
|
|
|
|
void Renderer::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer)
|
|
{
|
|
m_current_framebuffer = framebuffer;
|
|
}
|
|
|
|
void Renderer::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer,
|
|
const ClearColor& color_value, float depth_value)
|
|
{
|
|
m_current_framebuffer = framebuffer;
|
|
}
|
|
|
|
bool Renderer::EFBHasAlphaChannel() const
|
|
{
|
|
return m_prev_efb_format == PixelFormat::RGBA6_Z24;
|
|
}
|
|
|
|
void Renderer::ClearScreen(const MathUtil::Rectangle<int>& rc, bool colorEnable, bool alphaEnable,
|
|
bool zEnable, u32 color, u32 z)
|
|
{
|
|
g_framebuffer_manager->ClearEFB(rc, colorEnable, alphaEnable, zEnable, color, z);
|
|
}
|
|
|
|
void Renderer::ReinterpretPixelData(EFBReinterpretType convtype)
|
|
{
|
|
g_framebuffer_manager->ReinterpretPixelData(convtype);
|
|
}
|
|
|
|
bool Renderer::IsBBoxEnabled() const
|
|
{
|
|
return m_bounding_box->IsEnabled();
|
|
}
|
|
|
|
void Renderer::BBoxEnable(PixelShaderManager& pixel_shader_manager)
|
|
{
|
|
m_bounding_box->Enable(pixel_shader_manager);
|
|
}
|
|
|
|
void Renderer::BBoxDisable(PixelShaderManager& pixel_shader_manager)
|
|
{
|
|
m_bounding_box->Disable(pixel_shader_manager);
|
|
}
|
|
|
|
u16 Renderer::BBoxRead(u32 index)
|
|
{
|
|
if (!g_ActiveConfig.bBBoxEnable || !g_ActiveConfig.backend_info.bSupportsBBox)
|
|
return m_bounding_box_fallback[index];
|
|
|
|
return m_bounding_box->Get(index);
|
|
}
|
|
|
|
void Renderer::BBoxWrite(u32 index, u16 value)
|
|
{
|
|
if (!g_ActiveConfig.bBBoxEnable || !g_ActiveConfig.backend_info.bSupportsBBox)
|
|
{
|
|
m_bounding_box_fallback[index] = value;
|
|
return;
|
|
}
|
|
|
|
m_bounding_box->Set(index, value);
|
|
}
|
|
|
|
void Renderer::BBoxFlush()
|
|
{
|
|
if (!g_ActiveConfig.bBBoxEnable || !g_ActiveConfig.backend_info.bSupportsBBox)
|
|
return;
|
|
|
|
m_bounding_box->Flush();
|
|
}
|
|
|
|
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
|
|
{
|
|
if (type == EFBAccessType::PeekColor)
|
|
{
|
|
u32 color = g_framebuffer_manager->PeekEFBColor(x, y);
|
|
|
|
// a little-endian value is expected to be returned
|
|
color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000));
|
|
|
|
if (bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
color = RGBA8ToRGBA6ToRGBA8(color);
|
|
}
|
|
else if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
color = RGBA8ToRGB565ToRGBA8(color);
|
|
}
|
|
if (bpmem.zcontrol.pixel_format != PixelFormat::RGBA6_Z24)
|
|
{
|
|
color |= 0xFF000000;
|
|
}
|
|
|
|
// check what to do with the alpha channel (GX_PokeAlphaRead)
|
|
PixelEngine::AlphaReadMode alpha_read_mode =
|
|
Core::System::GetInstance().GetPixelEngine().GetAlphaReadMode();
|
|
|
|
if (alpha_read_mode == PixelEngine::AlphaReadMode::ReadNone)
|
|
{
|
|
return color;
|
|
}
|
|
else if (alpha_read_mode == PixelEngine::AlphaReadMode::ReadFF)
|
|
{
|
|
return color | 0xFF000000;
|
|
}
|
|
else
|
|
{
|
|
if (alpha_read_mode != PixelEngine::AlphaReadMode::Read00)
|
|
{
|
|
PanicAlertFmt("Invalid PE alpha read mode: {}", static_cast<u16>(alpha_read_mode));
|
|
}
|
|
return color & 0x00FFFFFF;
|
|
}
|
|
}
|
|
else // if (type == EFBAccessType::PeekZ)
|
|
{
|
|
// Depth buffer is inverted for improved precision near far plane
|
|
float depth = g_framebuffer_manager->PeekEFBDepth(x, y);
|
|
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
depth = 1.0f - depth;
|
|
|
|
// Convert to 24bit depth
|
|
u32 z24depth = std::clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
|
|
|
|
if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
// When in RGB565_Z16 mode, EFB Z peeks return a 16bit value, which is presumably a
|
|
// resolved sample from the MSAA buffer.
|
|
// Dolphin doesn't currently emulate the 3 sample MSAA mode (and potentially never will)
|
|
// it just transparently upgrades the framebuffer to 24bit depth and color and whatever
|
|
// level of MSAA and higher Internal Resolution the user has configured.
|
|
|
|
// This is mostly transparent, unless the game does an EFB read.
|
|
// But we can simply convert the 24bit depth on the fly to the 16bit depth the game expects.
|
|
|
|
return CompressZ16(z24depth, bpmem.zcontrol.zformat);
|
|
}
|
|
|
|
return z24depth;
|
|
}
|
|
}
|
|
|
|
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
|
|
{
|
|
if (type == EFBAccessType::PokeColor)
|
|
{
|
|
for (size_t i = 0; i < num_points; i++)
|
|
{
|
|
// Convert to expected format (BGRA->RGBA)
|
|
// TODO: Check alpha, depending on mode?
|
|
const EfbPokeData& point = points[i];
|
|
u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) |
|
|
((point.data << 16) & 0xFF0000));
|
|
g_framebuffer_manager->PokeEFBColor(point.x, point.y, color);
|
|
}
|
|
}
|
|
else // if (type == EFBAccessType::PokeZ)
|
|
{
|
|
for (size_t i = 0; i < num_points; i++)
|
|
{
|
|
// Convert to floating-point depth.
|
|
const EfbPokeData& point = points[i];
|
|
float depth = float(point.data & 0xFFFFFF) / 16777216.0f;
|
|
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
depth = 1.0f - depth;
|
|
|
|
g_framebuffer_manager->PokeEFBDepth(point.x, point.y, depth);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Renderer::RenderToXFB(u32 xfbAddr, const MathUtil::Rectangle<int>& sourceRc, u32 fbStride,
|
|
u32 fbHeight, float Gamma)
|
|
{
|
|
CheckFifoRecording();
|
|
|
|
if (!fbStride || !fbHeight)
|
|
return;
|
|
}
|
|
|
|
unsigned int Renderer::GetEFBScale() const
|
|
{
|
|
return m_efb_scale;
|
|
}
|
|
|
|
int Renderer::EFBToScaledX(int x) const
|
|
{
|
|
return x * static_cast<int>(m_efb_scale);
|
|
}
|
|
|
|
int Renderer::EFBToScaledY(int y) const
|
|
{
|
|
return y * static_cast<int>(m_efb_scale);
|
|
}
|
|
|
|
float Renderer::EFBToScaledXf(float x) const
|
|
{
|
|
return x * ((float)GetTargetWidth() / (float)EFB_WIDTH);
|
|
}
|
|
|
|
float Renderer::EFBToScaledYf(float y) const
|
|
{
|
|
return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT);
|
|
}
|
|
|
|
std::tuple<int, int> Renderer::CalculateTargetScale(int x, int y) const
|
|
{
|
|
return std::make_tuple(x * static_cast<int>(m_efb_scale), y * static_cast<int>(m_efb_scale));
|
|
}
|
|
|
|
// return true if target size changed
|
|
bool Renderer::CalculateTargetSize()
|
|
{
|
|
if (g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL)
|
|
{
|
|
auto target_rectangle = g_presenter->GetTargetRectangle();
|
|
// Set a scale based on the window size
|
|
int width = EFB_WIDTH * target_rectangle.GetWidth() / m_last_xfb_width;
|
|
int height = EFB_HEIGHT * target_rectangle.GetHeight() / m_last_xfb_height;
|
|
m_efb_scale = std::max((width - 1) / EFB_WIDTH + 1, (height - 1) / EFB_HEIGHT + 1);
|
|
}
|
|
else
|
|
{
|
|
m_efb_scale = g_ActiveConfig.iEFBScale;
|
|
}
|
|
|
|
const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize;
|
|
if (max_size < EFB_WIDTH * m_efb_scale)
|
|
m_efb_scale = max_size / EFB_WIDTH;
|
|
|
|
auto [new_efb_width, new_efb_height] = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT);
|
|
new_efb_width = std::max(new_efb_width, 1);
|
|
new_efb_height = std::max(new_efb_height, 1);
|
|
|
|
if (new_efb_width != m_target_width || new_efb_height != m_target_height)
|
|
{
|
|
m_target_width = new_efb_width;
|
|
m_target_height = new_efb_height;
|
|
auto& system = Core::System::GetInstance();
|
|
auto& pixel_shader_manager = system.GetPixelShaderManager();
|
|
pixel_shader_manager.SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Renderer::CheckForConfigChanges()
|
|
{
|
|
const ShaderHostConfig old_shader_host_config = ShaderHostConfig::GetCurrent();
|
|
const StereoMode old_stereo = g_ActiveConfig.stereo_mode;
|
|
const u32 old_multisamples = g_ActiveConfig.iMultisamples;
|
|
const int old_anisotropy = g_ActiveConfig.iMaxAnisotropy;
|
|
const int old_efb_access_tile_size = g_ActiveConfig.iEFBAccessTileSize;
|
|
const auto old_texture_filtering_mode = g_ActiveConfig.texture_filtering_mode;
|
|
const bool old_vsync = g_ActiveConfig.bVSyncActive;
|
|
const bool old_bbox = g_ActiveConfig.bBBoxEnable;
|
|
const u32 old_game_mod_changes =
|
|
g_ActiveConfig.graphics_mod_config ? g_ActiveConfig.graphics_mod_config->GetChangeCount() : 0;
|
|
const bool old_graphics_mods_enabled = g_ActiveConfig.bGraphicMods;
|
|
|
|
UpdateActiveConfig();
|
|
FreeLook::UpdateActiveConfig();
|
|
g_vertex_manager->OnConfigChange();
|
|
|
|
g_freelook_camera.SetControlType(FreeLook::GetActiveConfig().camera_config.control_type);
|
|
|
|
if (g_ActiveConfig.bGraphicMods && !old_graphics_mods_enabled)
|
|
{
|
|
g_ActiveConfig.graphics_mod_config = GraphicsModGroupConfig(SConfig::GetInstance().GetGameID());
|
|
g_ActiveConfig.graphics_mod_config->Load();
|
|
}
|
|
|
|
if (g_ActiveConfig.graphics_mod_config &&
|
|
(old_game_mod_changes != g_ActiveConfig.graphics_mod_config->GetChangeCount()))
|
|
{
|
|
m_graphics_mod_manager.Load(*g_ActiveConfig.graphics_mod_config);
|
|
}
|
|
|
|
// Update texture cache settings with any changed options.
|
|
g_texture_cache->OnConfigChanged(g_ActiveConfig);
|
|
|
|
// EFB tile cache doesn't need to notify the backend.
|
|
if (old_efb_access_tile_size != g_ActiveConfig.iEFBAccessTileSize)
|
|
g_framebuffer_manager->SetEFBCacheTileSize(std::max(g_ActiveConfig.iEFBAccessTileSize, 0));
|
|
|
|
// Determine which (if any) settings have changed.
|
|
ShaderHostConfig new_host_config = ShaderHostConfig::GetCurrent();
|
|
u32 changed_bits = 0;
|
|
if (old_shader_host_config.bits != new_host_config.bits)
|
|
changed_bits |= CONFIG_CHANGE_BIT_HOST_CONFIG;
|
|
if (old_stereo != g_ActiveConfig.stereo_mode)
|
|
changed_bits |= CONFIG_CHANGE_BIT_STEREO_MODE;
|
|
if (old_multisamples != g_ActiveConfig.iMultisamples)
|
|
changed_bits |= CONFIG_CHANGE_BIT_MULTISAMPLES;
|
|
if (old_anisotropy != g_ActiveConfig.iMaxAnisotropy)
|
|
changed_bits |= CONFIG_CHANGE_BIT_ANISOTROPY;
|
|
if (old_texture_filtering_mode != g_ActiveConfig.texture_filtering_mode)
|
|
changed_bits |= CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING;
|
|
if (old_vsync != g_ActiveConfig.bVSyncActive)
|
|
changed_bits |= CONFIG_CHANGE_BIT_VSYNC;
|
|
if (old_bbox != g_ActiveConfig.bBBoxEnable)
|
|
changed_bits |= CONFIG_CHANGE_BIT_BBOX;
|
|
if (CalculateTargetSize())
|
|
changed_bits |= CONFIG_CHANGE_BIT_TARGET_SIZE;
|
|
|
|
g_presenter->CheckForConfigChanges(changed_bits);
|
|
|
|
// No changes?
|
|
if (changed_bits == 0)
|
|
return;
|
|
|
|
// Notify the backend of the changes, if any.
|
|
OnConfigChanged(changed_bits);
|
|
|
|
// If there's any shader changes, wait for the GPU to finish before destroying anything.
|
|
if (changed_bits & (CONFIG_CHANGE_BIT_HOST_CONFIG | CONFIG_CHANGE_BIT_MULTISAMPLES))
|
|
{
|
|
WaitForGPUIdle();
|
|
SetPipeline(nullptr);
|
|
}
|
|
|
|
// Framebuffer changed?
|
|
if (changed_bits & (CONFIG_CHANGE_BIT_MULTISAMPLES | CONFIG_CHANGE_BIT_STEREO_MODE |
|
|
CONFIG_CHANGE_BIT_TARGET_SIZE))
|
|
{
|
|
g_framebuffer_manager->RecreateEFBFramebuffer();
|
|
}
|
|
|
|
// Reload shaders if host config has changed.
|
|
if (changed_bits & (CONFIG_CHANGE_BIT_HOST_CONFIG | CONFIG_CHANGE_BIT_MULTISAMPLES))
|
|
{
|
|
OSD::AddMessage("Video config changed, reloading shaders.", OSD::Duration::NORMAL);
|
|
g_vertex_manager->InvalidatePipelineObject();
|
|
g_shader_cache->SetHostConfig(new_host_config);
|
|
g_shader_cache->Reload();
|
|
g_framebuffer_manager->RecompileShaders();
|
|
}
|
|
|
|
// Viewport and scissor rect have to be reset since they will be scaled differently.
|
|
if (changed_bits & CONFIG_CHANGE_BIT_TARGET_SIZE)
|
|
{
|
|
BPFunctions::SetScissorAndViewport();
|
|
}
|
|
}
|
|
|
|
bool Renderer::IsHeadless() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void Renderer::SetViewportAndScissor(const MathUtil::Rectangle<int>& rect, float min_depth,
|
|
float max_depth)
|
|
{
|
|
SetViewport(static_cast<float>(rect.left), static_cast<float>(rect.top),
|
|
static_cast<float>(rect.GetWidth()), static_cast<float>(rect.GetHeight()), min_depth,
|
|
max_depth);
|
|
SetScissorRect(rect);
|
|
}
|
|
|
|
void Renderer::ScaleTexture(AbstractFramebuffer* dst_framebuffer,
|
|
const MathUtil::Rectangle<int>& dst_rect,
|
|
const AbstractTexture* src_texture,
|
|
const MathUtil::Rectangle<int>& src_rect)
|
|
{
|
|
ASSERT(dst_framebuffer->GetColorFormat() == AbstractTextureFormat::RGBA8);
|
|
|
|
BeginUtilityDrawing();
|
|
|
|
// The shader needs to know the source rectangle.
|
|
const auto converted_src_rect =
|
|
ConvertFramebufferRectangle(src_rect, src_texture->GetWidth(), src_texture->GetHeight());
|
|
const float rcp_src_width = 1.0f / src_texture->GetWidth();
|
|
const float rcp_src_height = 1.0f / src_texture->GetHeight();
|
|
const std::array<float, 4> uniforms = {{converted_src_rect.left * rcp_src_width,
|
|
converted_src_rect.top * rcp_src_height,
|
|
converted_src_rect.GetWidth() * rcp_src_width,
|
|
converted_src_rect.GetHeight() * rcp_src_height}};
|
|
g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
|
|
|
|
// Discard if we're overwriting the whole thing.
|
|
if (static_cast<u32>(dst_rect.GetWidth()) == dst_framebuffer->GetWidth() &&
|
|
static_cast<u32>(dst_rect.GetHeight()) == dst_framebuffer->GetHeight())
|
|
{
|
|
SetAndDiscardFramebuffer(dst_framebuffer);
|
|
}
|
|
else
|
|
{
|
|
SetFramebuffer(dst_framebuffer);
|
|
}
|
|
|
|
SetViewportAndScissor(ConvertFramebufferRectangle(dst_rect, dst_framebuffer));
|
|
SetPipeline(dst_framebuffer->GetLayers() > 1 ? g_shader_cache->GetRGBA8StereoCopyPipeline() :
|
|
g_shader_cache->GetRGBA8CopyPipeline());
|
|
SetTexture(0, src_texture);
|
|
SetSamplerState(0, RenderState::GetLinearSamplerState());
|
|
Draw(0, 3);
|
|
EndUtilityDrawing();
|
|
if (dst_framebuffer->GetColorAttachment())
|
|
dst_framebuffer->GetColorAttachment()->FinishedRendering();
|
|
}
|
|
|
|
MathUtil::Rectangle<int>
|
|
Renderer::ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
|
|
const AbstractFramebuffer* framebuffer) const
|
|
{
|
|
return ConvertFramebufferRectangle(rect, framebuffer->GetWidth(), framebuffer->GetHeight());
|
|
}
|
|
|
|
MathUtil::Rectangle<int> Renderer::ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
|
|
u32 fb_width, u32 fb_height) const
|
|
{
|
|
MathUtil::Rectangle<int> ret = rect;
|
|
if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin)
|
|
{
|
|
ret.top = fb_height - rect.bottom;
|
|
ret.bottom = fb_height - rect.top;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
MathUtil::Rectangle<int> Renderer::ConvertEFBRectangle(const MathUtil::Rectangle<int>& rc) const
|
|
{
|
|
MathUtil::Rectangle<int> result;
|
|
result.left = EFBToScaledX(rc.left);
|
|
result.top = EFBToScaledY(rc.top);
|
|
result.right = EFBToScaledX(rc.right);
|
|
result.bottom = EFBToScaledY(rc.bottom);
|
|
return result;
|
|
}
|
|
|
|
void Renderer::CheckFifoRecording()
|
|
{
|
|
const bool was_recording = OpcodeDecoder::g_record_fifo_data;
|
|
OpcodeDecoder::g_record_fifo_data = FifoRecorder::GetInstance().IsRecording();
|
|
|
|
if (!OpcodeDecoder::g_record_fifo_data)
|
|
return;
|
|
|
|
if (!was_recording)
|
|
{
|
|
RecordVideoMemory();
|
|
}
|
|
|
|
auto& system = Core::System::GetInstance();
|
|
auto& command_processor = system.GetCommandProcessor();
|
|
const auto& fifo = command_processor.GetFifo();
|
|
FifoRecorder::GetInstance().EndFrame(fifo.CPBase.load(std::memory_order_relaxed),
|
|
fifo.CPEnd.load(std::memory_order_relaxed));
|
|
}
|
|
|
|
void Renderer::RecordVideoMemory()
|
|
{
|
|
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
|
|
u32 cpmem[256] = {};
|
|
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
|
|
// that split here.
|
|
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
|
|
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
|
|
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
|
|
|
|
g_main_cp_state.FillCPMemoryArray(cpmem);
|
|
|
|
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
|
|
texMem);
|
|
}
|
|
|
|
bool Renderer::UseGeometryShaderForUI() const
|
|
{
|
|
// OpenGL doesn't render to a 2-layer backbuffer like D3D/Vulkan for quad-buffered stereo,
|
|
// instead drawing twice and the eye selected by glDrawBuffer() (see Presenter::RenderXFBToScreen)
|
|
return g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer &&
|
|
g_ActiveConfig.backend_info.api_type != APIType::OpenGL;
|
|
}
|
|
|
|
void Renderer::ForceReloadTextures()
|
|
{
|
|
m_force_reload_textures.Set();
|
|
}
|
|
|
|
// Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode.
|
|
void Renderer::UpdateWidescreenHeuristic()
|
|
{
|
|
// VertexManager maintains no statistics in Wii mode.
|
|
if (SConfig::GetInstance().bWii)
|
|
return;
|
|
|
|
const auto flush_statistics = g_vertex_manager->ResetFlushAspectRatioCount();
|
|
|
|
// If suggested_aspect_mode (GameINI) is configured don't use heuristic.
|
|
if (g_ActiveConfig.suggested_aspect_mode != AspectMode::Auto)
|
|
return;
|
|
|
|
// If widescreen hack isn't active and aspect_mode (UI) is 4:3 or 16:9 don't use heuristic.
|
|
if (!g_ActiveConfig.bWidescreenHack && (g_ActiveConfig.aspect_mode == AspectMode::Analog ||
|
|
g_ActiveConfig.aspect_mode == AspectMode::AnalogWide))
|
|
return;
|
|
|
|
// Modify the threshold based on which aspect ratio we're already using:
|
|
// If the game's in 4:3, it probably won't switch to anamorphic, and vice-versa.
|
|
static constexpr u32 TRANSITION_THRESHOLD = 3;
|
|
|
|
const auto looks_normal = [](auto& counts) {
|
|
return counts.normal_vertex_count > counts.anamorphic_vertex_count * TRANSITION_THRESHOLD;
|
|
};
|
|
const auto looks_anamorphic = [](auto& counts) {
|
|
return counts.anamorphic_vertex_count > counts.normal_vertex_count * TRANSITION_THRESHOLD;
|
|
};
|
|
|
|
const auto& persp = flush_statistics.perspective;
|
|
const auto& ortho = flush_statistics.orthographic;
|
|
|
|
const auto ortho_looks_anamorphic = looks_anamorphic(ortho);
|
|
|
|
if (looks_anamorphic(persp) || ortho_looks_anamorphic)
|
|
{
|
|
// If either perspective or orthographic projections look anamorphic, it's a safe bet.
|
|
m_is_game_widescreen = true;
|
|
}
|
|
else if (looks_normal(persp) || (m_was_orthographically_anamorphic && looks_normal(ortho)))
|
|
{
|
|
// Many widescreen games (or AR/GeckoCodes) use anamorphic perspective projections
|
|
// with NON-anamorphic orthographic projections.
|
|
// This can cause incorrect changes to 4:3 when perspective projections are temporarily not
|
|
// shown. e.g. Animal Crossing's inventory menu.
|
|
// Unless we were in a situation which was orthographically anamorphic
|
|
// we won't consider orthographic data for changes from 16:9 to 4:3.
|
|
m_is_game_widescreen = false;
|
|
}
|
|
|
|
m_was_orthographically_anamorphic = ortho_looks_anamorphic;
|
|
}
|
|
|
|
void Renderer::Swap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
|
|
{
|
|
if (SConfig::GetInstance().bWii)
|
|
m_is_game_widescreen = Config::Get(Config::SYSCONF_WIDESCREEN);
|
|
|
|
// suggested_aspect_mode overrides SYSCONF_WIDESCREEN
|
|
if (g_ActiveConfig.suggested_aspect_mode == AspectMode::Analog)
|
|
m_is_game_widescreen = false;
|
|
else if (g_ActiveConfig.suggested_aspect_mode == AspectMode::AnalogWide)
|
|
m_is_game_widescreen = true;
|
|
|
|
// If widescreen hack is disabled override game's AR if UI is set to 4:3 or 16:9.
|
|
if (!g_ActiveConfig.bWidescreenHack)
|
|
{
|
|
const auto aspect_mode = g_ActiveConfig.aspect_mode;
|
|
if (aspect_mode == AspectMode::Analog)
|
|
m_is_game_widescreen = false;
|
|
else if (aspect_mode == AspectMode::AnalogWide)
|
|
m_is_game_widescreen = true;
|
|
}
|
|
UpdateWidescreenHeuristic();
|
|
|
|
// Ensure the last frame was written to the dump.
|
|
// This is required even if frame dumping has stopped, since the frame dump is one frame
|
|
// behind the renderer.
|
|
g_frame_dumper->FlushFrameDump();
|
|
|
|
if (g_ActiveConfig.bGraphicMods)
|
|
{
|
|
m_graphics_mod_manager.EndOfFrame();
|
|
}
|
|
|
|
g_framebuffer_manager->EndOfFrame();
|
|
|
|
if (xfb_addr && fb_width && fb_stride && fb_height)
|
|
{
|
|
// Get the current XFB from texture cache
|
|
|
|
g_presenter->ReleaseXFBContentLock();
|
|
|
|
MathUtil::Rectangle<int> xfb_rect;
|
|
RcTcacheEntry xfb_entry =
|
|
g_texture_cache->GetXFBTexture(xfb_addr, fb_width, fb_height, fb_stride, &xfb_rect);
|
|
|
|
bool is_duplicate_frame =
|
|
g_presenter->SubmitXFB(std::move(xfb_entry), xfb_rect, ticks, m_frame_count);
|
|
|
|
if (!g_ActiveConfig.bSkipPresentingDuplicateXFBs || !is_duplicate_frame)
|
|
{
|
|
if (!is_duplicate_frame)
|
|
{
|
|
DolphinAnalytics::PerformanceSample perf_sample;
|
|
perf_sample.speed_ratio = SystemTimers::GetEstimatedEmulationPerformance();
|
|
perf_sample.num_prims = g_stats.this_frame.num_prims + g_stats.this_frame.num_dl_prims;
|
|
perf_sample.num_draw_calls = g_stats.this_frame.num_draw_calls;
|
|
DolphinAnalytics::Instance().ReportPerformanceInfo(std::move(perf_sample));
|
|
|
|
// Begin new frame
|
|
m_frame_count++;
|
|
g_stats.ResetFrame();
|
|
}
|
|
|
|
g_shader_cache->RetrieveAsyncShaders();
|
|
g_vertex_manager->OnEndFrame();
|
|
|
|
// We invalidate the pipeline object at the start of the frame.
|
|
// This is for the rare case where only a single pipeline configuration is used,
|
|
// and hybrid ubershaders have compiled the specialized shader, but without any
|
|
// state changes the specialized shader will not take over.
|
|
g_vertex_manager->InvalidatePipelineObject();
|
|
|
|
if (m_force_reload_textures.TestAndClear())
|
|
{
|
|
g_texture_cache->ForceReload();
|
|
}
|
|
else
|
|
{
|
|
// Flush any outstanding EFB copies to RAM, in case the game is running at an uncapped frame
|
|
// rate and not waiting for vblank. Otherwise, we'd end up with a huge list of pending
|
|
// copies.
|
|
g_texture_cache->FlushEFBCopies();
|
|
}
|
|
|
|
if (!is_duplicate_frame)
|
|
{
|
|
// Remove stale EFB/XFB copies.
|
|
g_texture_cache->Cleanup(m_frame_count);
|
|
const double last_speed_denominator = g_perf_metrics.GetLastSpeedDenominator();
|
|
// The denominator should always be > 0 but if it's not, just return 1
|
|
const double last_speed =
|
|
last_speed_denominator > 0.0 ? (1.0 / last_speed_denominator) : 1.0;
|
|
Core::Callback_FramePresented(last_speed);
|
|
}
|
|
|
|
// Handle any config changes, this gets propagated to the backend.
|
|
CheckForConfigChanges();
|
|
g_Config.iSaveTargetId = 0;
|
|
}
|
|
else
|
|
{
|
|
Flush();
|
|
}
|
|
|
|
// Update our last xfb values
|
|
m_last_xfb_addr = xfb_addr;
|
|
m_last_xfb_ticks = ticks;
|
|
m_last_xfb_width = fb_width;
|
|
m_last_xfb_stride = fb_stride;
|
|
m_last_xfb_height = fb_height;
|
|
}
|
|
else
|
|
{
|
|
Flush();
|
|
}
|
|
}
|
|
|
|
bool Renderer::UseVertexDepthRange() const
|
|
{
|
|
// We can't compute the depth range in the vertex shader if we don't support depth clamp.
|
|
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
|
|
return false;
|
|
|
|
// We need a full depth range if a ztexture is used.
|
|
if (bpmem.ztex2.op != ZTexOp::Disabled && !bpmem.zcontrol.early_ztest)
|
|
return true;
|
|
|
|
// If an inverted depth range is unsupported, we also need to check if the range is inverted.
|
|
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f)
|
|
return true;
|
|
|
|
// If an oversized depth range or a ztexture is used, we need to calculate the depth range
|
|
// in the vertex shader.
|
|
return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
|
|
}
|
|
|
|
void Renderer::DoState(PointerWrap& p)
|
|
{
|
|
p.Do(m_is_game_widescreen);
|
|
p.Do(m_frame_count);
|
|
p.Do(m_prev_efb_format);
|
|
p.Do(m_last_xfb_ticks);
|
|
p.Do(m_last_xfb_addr);
|
|
p.Do(m_last_xfb_width);
|
|
p.Do(m_last_xfb_stride);
|
|
p.Do(m_last_xfb_height);
|
|
p.DoArray(m_bounding_box_fallback);
|
|
|
|
m_bounding_box->DoState(p);
|
|
|
|
if (p.IsReadMode())
|
|
{
|
|
// Force the next xfb to be displayed.
|
|
g_presenter->ClearLastXfbId();
|
|
|
|
m_was_orthographically_anamorphic = false;
|
|
|
|
// And actually display it.
|
|
Swap(m_last_xfb_addr, m_last_xfb_width, m_last_xfb_stride, m_last_xfb_height, m_last_xfb_ticks);
|
|
}
|
|
|
|
#if defined(HAVE_FFMPEG)
|
|
g_frame_dumper->DoState(p);
|
|
#endif
|
|
}
|
|
|
|
std::unique_ptr<VideoCommon::AsyncShaderCompiler> Renderer::CreateAsyncShaderCompiler()
|
|
{
|
|
return std::make_unique<VideoCommon::AsyncShaderCompiler>();
|
|
}
|
|
|
|
const GraphicsModManager& Renderer::GetGraphicsModManager() const
|
|
{
|
|
return m_graphics_mod_manager;
|
|
}
|