dolphin/Externals/glslang/hlsl/hlslParseHelper.h
orbea 690dee3533 Externals: Update glslang.
This updates glslang to commit 4fc7a33910fb8e40b970d160e1b38ab3f67fe0f3
which is the current version listed in the known_good.json file for the
version 1.2.131.2 of the Vulkan-ValidationLayers repo.
2020-05-30 18:06:03 -07:00

508 lines
27 KiB
C++

//
// Copyright (C) 2016-2018 Google, Inc.
// Copyright (C) 2016 LunarG, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#ifndef HLSL_PARSE_INCLUDED_
#define HLSL_PARSE_INCLUDED_
#include "../glslang/MachineIndependent/parseVersions.h"
#include "../glslang/MachineIndependent/ParseHelper.h"
#include "../glslang/MachineIndependent/attribute.h"
#include <array>
namespace glslang {
class TFunctionDeclarator;
class HlslParseContext : public TParseContextBase {
public:
HlslParseContext(TSymbolTable&, TIntermediate&, bool parsingBuiltins,
int version, EProfile, const SpvVersion& spvVersion, EShLanguage, TInfoSink&,
const TString sourceEntryPointName,
bool forwardCompatible = false, EShMessages messages = EShMsgDefault);
virtual ~HlslParseContext();
void initializeExtensionBehavior() override;
void setLimits(const TBuiltInResource&) override;
bool parseShaderStrings(TPpContext&, TInputScanner& input, bool versionWillBeError = false) override;
virtual const char* getGlobalUniformBlockName() const override { return "$Global"; }
virtual void setUniformBlockDefaults(TType& block) const override
{
block.getQualifier().layoutPacking = ElpStd140;
block.getQualifier().layoutMatrix = ElmRowMajor;
}
void reservedPpErrorCheck(const TSourceLoc&, const char* /*name*/, const char* /*op*/) override { }
bool lineContinuationCheck(const TSourceLoc&, bool /*endOfComment*/) override { return true; }
bool lineDirectiveShouldSetNextLine() const override { return true; }
bool builtInName(const TString&);
void handlePragma(const TSourceLoc&, const TVector<TString>&) override;
TIntermTyped* handleVariable(const TSourceLoc&, const TString* string);
TIntermTyped* handleBracketDereference(const TSourceLoc&, TIntermTyped* base, TIntermTyped* index);
TIntermTyped* handleBracketOperator(const TSourceLoc&, TIntermTyped* base, TIntermTyped* index);
TIntermTyped* handleBinaryMath(const TSourceLoc&, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right);
TIntermTyped* handleUnaryMath(const TSourceLoc&, const char* str, TOperator op, TIntermTyped* childNode);
TIntermTyped* handleDotDereference(const TSourceLoc&, TIntermTyped* base, const TString& field);
bool isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field);
void assignToInterface(TVariable& variable);
void handleFunctionDeclarator(const TSourceLoc&, TFunction& function, bool prototype);
TIntermAggregate* handleFunctionDefinition(const TSourceLoc&, TFunction&, const TAttributes&, TIntermNode*& entryPointTree);
TIntermNode* transformEntryPoint(const TSourceLoc&, TFunction&, const TAttributes&);
void handleEntryPointAttributes(const TSourceLoc&, const TAttributes&);
void transferTypeAttributes(const TSourceLoc&, const TAttributes&, TType&, bool allowEntry = false);
void handleFunctionBody(const TSourceLoc&, TFunction&, TIntermNode* functionBody, TIntermNode*& node);
void remapEntryPointIO(TFunction& function, TVariable*& returnValue, TVector<TVariable*>& inputs, TVector<TVariable*>& outputs);
void remapNonEntryPointIO(TFunction& function);
TIntermNode* handleReturnValue(const TSourceLoc&, TIntermTyped*);
void handleFunctionArgument(TFunction*, TIntermTyped*& arguments, TIntermTyped* newArg);
TIntermTyped* handleAssign(const TSourceLoc&, TOperator, TIntermTyped* left, TIntermTyped* right);
TIntermTyped* handleAssignToMatrixSwizzle(const TSourceLoc&, TOperator, TIntermTyped* left, TIntermTyped* right);
TIntermTyped* handleFunctionCall(const TSourceLoc&, TFunction*, TIntermTyped*);
TIntermAggregate* assignClipCullDistance(const TSourceLoc&, TOperator, int semanticId, TIntermTyped* left, TIntermTyped* right);
TIntermTyped* assignPosition(const TSourceLoc&, TOperator, TIntermTyped* left, TIntermTyped* right);
void decomposeIntrinsic(const TSourceLoc&, TIntermTyped*& node, TIntermNode* arguments);
void decomposeSampleMethods(const TSourceLoc&, TIntermTyped*& node, TIntermNode* arguments);
void decomposeStructBufferMethods(const TSourceLoc&, TIntermTyped*& node, TIntermNode* arguments);
void decomposeGeometryMethods(const TSourceLoc&, TIntermTyped*& node, TIntermNode* arguments);
void pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments);
void addInputArgumentConversions(const TFunction&, TIntermTyped*&);
void expandArguments(const TSourceLoc&, const TFunction&, TIntermTyped*&);
TIntermTyped* addOutputArgumentConversions(const TFunction&, TIntermOperator&);
void builtInOpCheck(const TSourceLoc&, const TFunction&, TIntermOperator&);
TFunction* makeConstructorCall(const TSourceLoc&, const TType&);
void handleSemantic(TSourceLoc, TQualifier&, TBuiltInVariable, const TString& upperCase);
void handlePackOffset(const TSourceLoc&, TQualifier&, const glslang::TString& location,
const glslang::TString* component);
void handleRegister(const TSourceLoc&, TQualifier&, const glslang::TString* profile, const glslang::TString& desc,
int subComponent, const glslang::TString*);
TIntermTyped* convertConditionalExpression(const TSourceLoc&, TIntermTyped*, bool mustBeScalar = true);
TIntermAggregate* handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, TIntermTyped* argSampler);
bool parseMatrixSwizzleSelector(const TSourceLoc&, const TString&, int cols, int rows, TSwizzleSelectors<TMatrixSelector>&);
int getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>&);
void assignError(const TSourceLoc&, const char* op, TString left, TString right);
void unaryOpError(const TSourceLoc&, const char* op, TString operand);
void binaryOpError(const TSourceLoc&, const char* op, TString left, TString right);
void variableCheck(TIntermTyped*& nodePtr);
void constantValueCheck(TIntermTyped* node, const char* token);
void integerCheck(const TIntermTyped* node, const char* token);
void globalCheck(const TSourceLoc&, const char* token);
bool constructorError(const TSourceLoc&, TIntermNode*, TFunction&, TOperator, TType&);
void arraySizeCheck(const TSourceLoc&, TIntermTyped* expr, TArraySize&);
void arraySizeRequiredCheck(const TSourceLoc&, const TArraySizes&);
void structArrayCheck(const TSourceLoc&, const TType& structure);
bool voidErrorCheck(const TSourceLoc&, const TString&, TBasicType);
void globalQualifierFix(const TSourceLoc&, TQualifier&);
bool structQualifierErrorCheck(const TSourceLoc&, const TPublicType& pType);
void mergeQualifiers(TQualifier& dst, const TQualifier& src);
int computeSamplerTypeIndex(TSampler&);
TSymbol* redeclareBuiltinVariable(const TSourceLoc&, const TString&, const TQualifier&, const TShaderQualifiers&);
void paramFix(TType& type);
void specializationCheck(const TSourceLoc&, const TType&, const char* op);
void setLayoutQualifier(const TSourceLoc&, TQualifier&, TString&);
void setLayoutQualifier(const TSourceLoc&, TQualifier&, TString&, const TIntermTyped*);
void setSpecConstantId(const TSourceLoc&, TQualifier&, int value);
void mergeObjectLayoutQualifiers(TQualifier& dest, const TQualifier& src, bool inheritOnly);
void checkNoShaderLayouts(const TSourceLoc&, const TShaderQualifiers&);
const TFunction* findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth, TIntermTyped*& args);
void addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args);
void declareTypedef(const TSourceLoc&, const TString& identifier, const TType&);
void declareStruct(const TSourceLoc&, TString& structName, TType&);
TSymbol* lookupUserType(const TString&, TType&);
TIntermNode* declareVariable(const TSourceLoc&, const TString& identifier, TType&, TIntermTyped* initializer = 0);
void lengthenList(const TSourceLoc&, TIntermSequence& list, int size, TIntermTyped* scalarInit);
TIntermTyped* handleConstructor(const TSourceLoc&, TIntermTyped*, const TType&);
TIntermTyped* addConstructor(const TSourceLoc&, TIntermTyped*, const TType&);
TIntermTyped* convertArray(TIntermTyped*, const TType&);
TIntermTyped* constructAggregate(TIntermNode*, const TType&, int, const TSourceLoc&);
TIntermTyped* constructBuiltIn(const TType&, TOperator, TIntermTyped*, const TSourceLoc&, bool subset);
void declareBlock(const TSourceLoc&, TType&, const TString* instanceName = 0);
void declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name);
void fixBlockLocations(const TSourceLoc&, TQualifier&, TTypeList&, bool memberWithLocation, bool memberWithoutLocation);
void fixXfbOffsets(TQualifier&, TTypeList&);
void fixBlockUniformOffsets(const TQualifier&, TTypeList&);
void addQualifierToExisting(const TSourceLoc&, TQualifier, const TString& identifier);
void addQualifierToExisting(const TSourceLoc&, TQualifier, TIdentifierList&);
void updateStandaloneQualifierDefaults(const TSourceLoc&, const TPublicType&);
void wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode);
TIntermNode* addSwitch(const TSourceLoc&, TIntermTyped* expression, TIntermAggregate* body, const TAttributes&);
void nestLooping() { ++loopNestingLevel; }
void unnestLooping() { --loopNestingLevel; }
void nestAnnotations() { ++annotationNestingLevel; }
void unnestAnnotations() { --annotationNestingLevel; }
int getAnnotationNestingLevel() { return annotationNestingLevel; }
void pushScope() { symbolTable.push(); }
void popScope() { symbolTable.pop(0); }
void pushThisScope(const TType&, const TVector<TFunctionDeclarator>&);
void popThisScope() { symbolTable.pop(0); }
void pushImplicitThis(TVariable* thisParameter) { implicitThisStack.push_back(thisParameter); }
void popImplicitThis() { implicitThisStack.pop_back(); }
TVariable* getImplicitThis(int thisDepth) const { return implicitThisStack[implicitThisStack.size() - thisDepth]; }
void pushNamespace(const TString& name);
void popNamespace();
void getFullNamespaceName(TString*&) const;
void addScopeMangler(TString&);
void pushSwitchSequence(TIntermSequence* sequence) { switchSequenceStack.push_back(sequence); }
void popSwitchSequence() { switchSequenceStack.pop_back(); }
virtual void growGlobalUniformBlock(const TSourceLoc&, TType&, const TString& memberName,
TTypeList* typeList = nullptr) override;
// Apply L-value conversions. E.g, turning a write to a RWTexture into an ImageStore.
TIntermTyped* handleLvalue(const TSourceLoc&, const char* op, TIntermTyped*& node);
bool lValueErrorCheck(const TSourceLoc&, const char* op, TIntermTyped*) override;
TLayoutFormat getLayoutFromTxType(const TSourceLoc&, const TType&);
bool handleOutputGeometry(const TSourceLoc&, const TLayoutGeometry& geometry);
bool handleInputGeometry(const TSourceLoc&, const TLayoutGeometry& geometry);
// Determine selection control from attributes
void handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection*, const TAttributes& attributes);
void handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch*, const TAttributes& attributes);
// Determine loop control from attributes
void handleLoopAttributes(const TSourceLoc& loc, TIntermLoop*, const TAttributes& attributes);
// Share struct buffer deep types
void shareStructBufferType(TType&);
// Set texture return type of the given sampler. Returns success (not all types are valid).
bool setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc);
// Obtain the sampler return type of the given sampler in retType.
void getTextureReturnType(const TSampler& sampler, TType& retType) const;
TAttributeType attributeFromName(const TString& nameSpace, const TString& name) const;
protected:
struct TFlattenData {
TFlattenData() : nextBinding(TQualifier::layoutBindingEnd),
nextLocation(TQualifier::layoutLocationEnd) { }
TFlattenData(int nb, int nl) : nextBinding(nb), nextLocation(nl) { }
TVector<TVariable*> members; // individual flattened variables
TVector<int> offsets; // offset to next tree level
unsigned int nextBinding; // next binding to use.
unsigned int nextLocation; // next location to use
};
void fixConstInit(const TSourceLoc&, const TString& identifier, TType& type, TIntermTyped*& initializer);
void inheritGlobalDefaults(TQualifier& dst) const;
TVariable* makeInternalVariable(const char* name, const TType&) const;
TVariable* makeInternalVariable(const TString& name, const TType& type) const {
return makeInternalVariable(name.c_str(), type);
}
TIntermSymbol* makeInternalVariableNode(const TSourceLoc&, const char* name, const TType&) const;
TVariable* declareNonArray(const TSourceLoc&, const TString& identifier, const TType&, bool track);
void declareArray(const TSourceLoc&, const TString& identifier, const TType&, TSymbol*&, bool track);
TIntermNode* executeInitializer(const TSourceLoc&, TIntermTyped* initializer, TVariable* variable);
TIntermTyped* convertInitializerList(const TSourceLoc&, const TType&, TIntermTyped* initializer, TIntermTyped* scalarInit);
bool isScalarConstructor(const TIntermNode*);
TOperator mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage);
// Return true if this node requires L-value conversion (e.g, to an imageStore).
bool shouldConvertLValue(const TIntermNode*) const;
// Array and struct flattening
TIntermTyped* flattenAccess(TIntermTyped* base, int member);
TIntermTyped* flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage, const TType&, int subset = -1);
int findSubtreeOffset(const TIntermNode&) const;
int findSubtreeOffset(const TType&, int subset, const TVector<int>& offsets) const;
bool shouldFlatten(const TType&, TStorageQualifier, bool topLevel) const;
bool wasFlattened(const TIntermTyped* node) const;
bool wasFlattened(int id) const { return flattenMap.find(id) != flattenMap.end(); }
int addFlattenedMember(const TVariable&, const TType&, TFlattenData&, const TString& name, bool linkage,
const TQualifier& outerQualifier, const TArraySizes* builtInArraySizes);
// Structure splitting (splits interstage built-in types into its own struct)
void split(const TVariable&);
void splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes*, const TQualifier&);
const TType& split(const TType& type, const TString& name, const TQualifier&);
bool wasSplit(const TIntermTyped* node) const;
bool wasSplit(int id) const { return splitNonIoVars.find(id) != splitNonIoVars.end(); }
TVariable* getSplitNonIoVar(int id) const;
void addPatchConstantInvocation();
void fixTextureShadowModes();
void finalizeAppendMethods();
TIntermTyped* makeIntegerIndex(TIntermTyped*);
void fixBuiltInIoType(TType&);
void flatten(const TVariable& variable, bool linkage);
int flatten(const TVariable& variable, const TType&, TFlattenData&, TString name, bool linkage,
const TQualifier& outerQualifier, const TArraySizes* builtInArraySizes);
int flattenStruct(const TVariable& variable, const TType&, TFlattenData&, TString name, bool linkage,
const TQualifier& outerQualifier, const TArraySizes* builtInArraySizes);
int flattenArray(const TVariable& variable, const TType&, TFlattenData&, TString name, bool linkage,
const TQualifier& outerQualifier);
bool hasUniform(const TQualifier& qualifier) const;
void clearUniform(TQualifier& qualifier);
bool isInputBuiltIn(const TQualifier& qualifier) const;
bool hasInput(const TQualifier& qualifier) const;
void correctOutput(TQualifier& qualifier);
bool isOutputBuiltIn(const TQualifier& qualifier) const;
bool hasOutput(const TQualifier& qualifier) const;
void correctInput(TQualifier& qualifier);
void correctUniform(TQualifier& qualifier);
void clearUniformInputOutput(TQualifier& qualifier);
// Test method names
bool isStructBufferMethod(const TString& name) const;
void counterBufferType(const TSourceLoc& loc, TType& type);
// Return standard sample position array
TIntermConstantUnion* getSamplePosArray(int count);
TType* getStructBufferContentType(const TType& type) const;
bool isStructBufferType(const TType& type) const { return getStructBufferContentType(type) != nullptr; }
TIntermTyped* indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const;
TIntermTyped* getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer);
TString getStructBuffCounterName(const TString&) const;
void addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*&);
void addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter&, TIntermAggregate*&);
// Return true if this type is a reference. This is not currently a type method in case that's
// a language specific answer.
bool isReference(const TType& type) const { return isStructBufferType(type); }
// Return true if this a buffer type that has an associated counter buffer.
bool hasStructBuffCounter(const TType&) const;
// Finalization step: remove unused buffer blocks from linkage (we don't know until the
// shader is entirely compiled)
void removeUnusedStructBufferCounters();
static bool isClipOrCullDistance(TBuiltInVariable);
static bool isClipOrCullDistance(const TQualifier& qual) { return isClipOrCullDistance(qual.builtIn); }
static bool isClipOrCullDistance(const TType& type) { return isClipOrCullDistance(type.getQualifier()); }
// Find the patch constant function (issues error, returns nullptr if not found)
const TFunction* findPatchConstantFunction(const TSourceLoc& loc);
// Pass through to base class after remembering built-in mappings.
using TParseContextBase::trackLinkage;
void trackLinkage(TSymbol& variable) override;
void finish() override; // post-processing
// Linkage symbol helpers
TIntermSymbol* findTessLinkageSymbol(TBuiltInVariable biType) const;
// Current state of parsing
int annotationNestingLevel; // 0 if outside all annotations
HlslParseContext(HlslParseContext&);
HlslParseContext& operator=(HlslParseContext&);
static const int maxSamplerIndex = EsdNumDims * (EbtNumTypes * (2 * 2 * 2)); // see computeSamplerTypeIndex()
TQualifier globalBufferDefaults;
TQualifier globalUniformDefaults;
TQualifier globalInputDefaults;
TQualifier globalOutputDefaults;
TString currentCaller; // name of last function body entered (not valid when at global scope)
TIdSetType inductiveLoopIds;
TVector<TIntermTyped*> needsIndexLimitationChecking;
//
// Geometry shader input arrays:
// - array sizing is based on input primitive and/or explicit size
//
// Tessellation control output arrays:
// - array sizing is based on output layout(vertices=...) and/or explicit size
//
// Both:
// - array sizing is retroactive
// - built-in block redeclarations interact with this
//
// Design:
// - use a per-context "resize-list", a list of symbols whose array sizes
// can be fixed
//
// - the resize-list starts empty at beginning of user-shader compilation, it does
// not have built-ins in it
//
// - on built-in array use: copyUp() symbol and add it to the resize-list
//
// - on user array declaration: add it to the resize-list
//
// - on block redeclaration: copyUp() symbol and add it to the resize-list
// * note, that appropriately gives an error if redeclaring a block that
// was already used and hence already copied-up
//
// - on seeing a layout declaration that sizes the array, fix everything in the
// resize-list, giving errors for mismatch
//
// - on seeing an array size declaration, give errors on mismatch between it and previous
// array-sizing declarations
//
TVector<TSymbol*> ioArraySymbolResizeList;
TMap<int, TFlattenData> flattenMap;
// IO-type map. Maps a pure symbol-table form of a structure-member list into
// each of the (up to) three kinds of IO, as each as different allowed decorations,
// but HLSL allows mixing all in the same structure.
struct tIoKinds {
TTypeList* input;
TTypeList* output;
TTypeList* uniform;
};
TMap<const TTypeList*, tIoKinds> ioTypeMap;
// Structure splitting data:
TMap<int, TVariable*> splitNonIoVars; // variables with the built-in interstage IO removed, indexed by unique ID.
// Structuredbuffer shared types. Typically there are only a few.
TVector<TType*> structBufferTypes;
// This tracks texture sample user structure return types. Only a limited number are supported, as
// may fit in TSampler::structReturnIndex.
TVector<TTypeList*> textureReturnStruct;
TMap<TString, bool> structBufferCounter; // true if counter buffer is in use
// The built-in interstage IO map considers e.g, EvqPosition on input and output separately, so that we
// can build the linkage correctly if position appears on both sides. Otherwise, multiple positions
// are considered identical.
struct tInterstageIoData {
tInterstageIoData(TBuiltInVariable bi, TStorageQualifier q) :
builtIn(bi), storage(q) { }
TBuiltInVariable builtIn;
TStorageQualifier storage;
// ordering for maps
bool operator<(const tInterstageIoData d) const {
return (builtIn != d.builtIn) ? (builtIn < d.builtIn) : (storage < d.storage);
}
};
TMap<tInterstageIoData, TVariable*> splitBuiltIns; // split built-ins, indexed by built-in type.
TVariable* inputPatch; // input patch is special for PCF: it's the only non-builtin PCF input,
// and is handled as a pseudo-builtin.
unsigned int nextInLocation;
unsigned int nextOutLocation;
TFunction* entryPointFunction;
TIntermNode* entryPointFunctionBody;
TString patchConstantFunctionName; // hull shader patch constant function name, from function level attribute.
TMap<TBuiltInVariable, TSymbol*> builtInTessLinkageSymbols; // used for tessellation, finding declared built-ins
TVector<TString> currentTypePrefix; // current scoping prefix for nested structures
TVector<TVariable*> implicitThisStack; // currently active 'this' variables for nested structures
TVariable* gsStreamOutput; // geometry shader stream outputs, for emit (Append method)
TVariable* clipDistanceOutput; // synthesized clip distance out variable (shader might have >1)
TVariable* cullDistanceOutput; // synthesized cull distance out variable (shader might have >1)
TVariable* clipDistanceInput; // synthesized clip distance in variable (shader might have >1)
TVariable* cullDistanceInput; // synthesized cull distance in variable (shader might have >1)
static const int maxClipCullRegs = 2;
std::array<int, maxClipCullRegs> clipSemanticNSizeIn; // vector, indexed by clip semantic ID
std::array<int, maxClipCullRegs> cullSemanticNSizeIn; // vector, indexed by cull semantic ID
std::array<int, maxClipCullRegs> clipSemanticNSizeOut; // vector, indexed by clip semantic ID
std::array<int, maxClipCullRegs> cullSemanticNSizeOut; // vector, indexed by cull semantic ID
// This tracks the first (mip level) argument to the .mips[][] operator. Since this can be nested as
// in tx.mips[tx.mips[0][1].x][2], we need a stack. We also track the TSourceLoc for error reporting
// purposes.
struct tMipsOperatorData {
tMipsOperatorData(TSourceLoc l, TIntermTyped* m) : loc(l), mipLevel(m) { }
TSourceLoc loc;
TIntermTyped* mipLevel;
};
TVector<tMipsOperatorData> mipsOperatorMipArg;
// The geometry output stream is not copied out from the entry point as a typical output variable
// is. It's written via EmitVertex (hlsl=Append), which may happen in arbitrary control flow.
// For this we need the real output symbol. Since it may not be known at the time and Append()
// method is parsed, the sequence will be patched during finalization.
struct tGsAppendData {
TIntermAggregate* node;
TSourceLoc loc;
};
TVector<tGsAppendData> gsAppends;
// A texture object may be used with shadow and non-shadow samplers, but both may not be
// alive post-DCE in the same shader. We do not know at compilation time which are alive: that's
// only known post-DCE. If a texture is used both ways, we create two textures, and
// leave the elimiation of one to the optimizer. This maps the shader variant to
// the shadow variant.
//
// This can be removed if and when the texture shadow code in
// HlslParseContext::handleSamplerTextureCombine is removed.
struct tShadowTextureSymbols {
tShadowTextureSymbols() { symId.fill(-1); }
void set(bool shadow, int id) { symId[int(shadow)] = id; }
int get(bool shadow) const { return symId[int(shadow)]; }
// True if this texture has been seen with both shadow and non-shadow modes
bool overloaded() const { return symId[0] != -1 && symId[1] != -1; }
bool isShadowId(int id) const { return symId[1] == id; }
private:
std::array<int, 2> symId;
};
TMap<int, tShadowTextureSymbols*> textureShadowVariant;
};
// This is the prefix we use for built-in methods to avoid namespace collisions with
// global scope user functions.
// TODO: this would be better as a nonparseable character, but that would
// require changing the scanner.
#define BUILTIN_PREFIX "__BI_"
} // end namespace glslang
#endif // HLSL_PARSE_INCLUDED_