Files
dolphin/Source/Core/Core/HW/CPU.cpp
JosJuice 71ce8bb6f0 Don't call RunAsCPUThread in config callbacks
In theory, our config system supports calling Set from any thread. But
because we have config callbacks that call RunAsCPUThread, it's a lot
more restricted in practice. Calling Set from any thread other than the
host thread or the CPU thread is formally thread unsafe, and calling Set
on the host thread while the CPU thread is showing a panic alert causes
a deadlock. This is especially a problem because 04072f0 made the
"Ignore for this session" button in panic alerts call Set.

Because so many of our config callbacks want their code to run on the
CPU thread, I thought it would make sense to have a centralized way to
move execution to the CPU thread for config callbacks. To solve the
deadlock problem, this new way is non-blocking. This means that threads
other than the CPU thread might continue executing before the CPU thread
is informed of the new config, but I don't think there's any problem
with that.

Intends to fix https://bugs.dolphin-emu.org/issues/13108.
2023-08-17 19:19:25 +02:00

368 lines
9.3 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Core/HW/CPU.h"
#include <condition_variable>
#include <mutex>
#include <queue>
#include "AudioCommon/AudioCommon.h"
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Core/CPUThreadConfigCallback.h"
#include "Core/Core.h"
#include "Core/Host.h"
#include "Core/PowerPC/GDBStub.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/Fifo.h"
namespace CPU
{
CPUManager::CPUManager(Core::System& system) : m_system(system)
{
}
CPUManager::~CPUManager() = default;
void CPUManager::Init(PowerPC::CPUCore cpu_core)
{
m_system.GetPowerPC().Init(cpu_core);
m_state = State::Stepping;
}
void CPUManager::Shutdown()
{
Stop();
m_system.GetPowerPC().Shutdown();
}
// Requires holding m_state_change_lock
void CPUManager::FlushStepSyncEventLocked()
{
if (!m_state_cpu_step_instruction)
return;
if (m_state_cpu_step_instruction_sync)
{
m_state_cpu_step_instruction_sync->Set();
m_state_cpu_step_instruction_sync = nullptr;
}
m_state_cpu_step_instruction = false;
}
void CPUManager::ExecutePendingJobs(std::unique_lock<std::mutex>& state_lock)
{
while (!m_pending_jobs.empty())
{
auto callback = m_pending_jobs.front();
m_pending_jobs.pop();
state_lock.unlock();
callback();
state_lock.lock();
}
}
void CPUManager::Run()
{
auto& power_pc = m_system.GetPowerPC();
// Updating the host CPU's rounding mode must be done on the CPU thread.
// We can't rely on PowerPC::Init doing it, since it's called from EmuThread.
PowerPC::RoundingModeUpdated(power_pc.GetPPCState());
std::unique_lock state_lock(m_state_change_lock);
while (m_state != State::PowerDown)
{
m_state_cpu_cvar.wait(state_lock, [this] { return !m_state_paused_and_locked; });
ExecutePendingJobs(state_lock);
CPUThreadConfigCallback::CheckForConfigChanges();
Common::Event gdb_step_sync_event;
switch (m_state)
{
case State::Running:
m_state_cpu_thread_active = true;
state_lock.unlock();
// Adjust PC for JIT when debugging
// SingleStep so that the "continue", "step over" and "step out" debugger functions
// work when the PC is at a breakpoint at the beginning of the block
// If watchpoints are enabled, any instruction could be a breakpoint.
if (power_pc.GetMode() != PowerPC::CoreMode::Interpreter)
{
if (power_pc.GetBreakPoints().IsAddressBreakPoint(power_pc.GetPPCState().pc) ||
power_pc.GetMemChecks().HasAny())
{
m_state = State::Stepping;
PowerPC::CoreMode old_mode = power_pc.GetMode();
power_pc.SetMode(PowerPC::CoreMode::Interpreter);
power_pc.SingleStep();
power_pc.SetMode(old_mode);
m_state = State::Running;
}
}
// Enter a fast runloop
power_pc.RunLoop();
state_lock.lock();
m_state_cpu_thread_active = false;
m_state_cpu_idle_cvar.notify_all();
break;
case State::Stepping:
// Wait for step command.
m_state_cpu_cvar.wait(state_lock, [this, &state_lock, &gdb_step_sync_event] {
ExecutePendingJobs(state_lock);
CPUThreadConfigCallback::CheckForConfigChanges();
state_lock.unlock();
if (GDBStub::IsActive() && GDBStub::HasControl())
{
if (!GDBStub::JustConnected())
GDBStub::SendSignal(GDBStub::Signal::Sigtrap);
GDBStub::ProcessCommands(true);
// If we are still going to step, emulate the fact we just sent a step command
if (GDBStub::HasControl())
{
// Make sure the previous step by gdb was serviced
if (m_state_cpu_step_instruction_sync &&
m_state_cpu_step_instruction_sync != &gdb_step_sync_event)
{
m_state_cpu_step_instruction_sync->Set();
}
m_state_cpu_step_instruction = true;
m_state_cpu_step_instruction_sync = &gdb_step_sync_event;
}
}
state_lock.lock();
return m_state_cpu_step_instruction || !IsStepping();
});
if (!IsStepping())
{
// Signal event if the mode changes.
FlushStepSyncEventLocked();
continue;
}
if (m_state_paused_and_locked)
continue;
// Do step
m_state_cpu_thread_active = true;
state_lock.unlock();
power_pc.SingleStep();
state_lock.lock();
m_state_cpu_thread_active = false;
m_state_cpu_idle_cvar.notify_all();
// Update disasm dialog
FlushStepSyncEventLocked();
Host_UpdateDisasmDialog();
break;
case State::PowerDown:
break;
}
}
state_lock.unlock();
Host_UpdateDisasmDialog();
}
// Requires holding m_state_change_lock
void CPUManager::RunAdjacentSystems(bool running)
{
// NOTE: We're assuming these will not try to call Break or EnableStepping.
auto& system = Core::System::GetInstance();
system.GetFifo().EmulatorState(running);
// Core is responsible for shutting down the sound stream.
if (m_state != State::PowerDown)
AudioCommon::SetSoundStreamRunning(Core::System::GetInstance(), running);
}
void CPUManager::Stop()
{
// Change state and wait for it to be acknowledged.
// We don't need the stepping lock because State::PowerDown is a priority state which
// will stick permanently.
std::unique_lock state_lock(m_state_change_lock);
m_state = State::PowerDown;
m_state_cpu_cvar.notify_one();
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
RunAdjacentSystems(false);
FlushStepSyncEventLocked();
}
bool CPUManager::IsStepping() const
{
return m_state == State::Stepping;
}
State CPUManager::GetState() const
{
return m_state;
}
const State* CPUManager::GetStatePtr() const
{
return &m_state;
}
void CPUManager::Reset()
{
}
void CPUManager::StepOpcode(Common::Event* event)
{
std::lock_guard state_lock(m_state_change_lock);
// If we're not stepping then this is pointless
if (!IsStepping())
{
if (event)
event->Set();
return;
}
// Potential race where the previous step has not been serviced yet.
if (m_state_cpu_step_instruction_sync && m_state_cpu_step_instruction_sync != event)
m_state_cpu_step_instruction_sync->Set();
m_state_cpu_step_instruction = true;
m_state_cpu_step_instruction_sync = event;
m_state_cpu_cvar.notify_one();
}
// Requires m_state_change_lock
bool CPUManager::SetStateLocked(State s)
{
if (m_state == State::PowerDown)
return false;
m_state = s;
return true;
}
void CPUManager::EnableStepping(bool stepping)
{
std::lock_guard stepping_lock(m_stepping_lock);
std::unique_lock state_lock(m_state_change_lock);
if (stepping)
{
SetStateLocked(State::Stepping);
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
RunAdjacentSystems(false);
}
else if (SetStateLocked(State::Running))
{
m_state_cpu_cvar.notify_one();
RunAdjacentSystems(true);
}
}
void CPUManager::Break()
{
std::lock_guard state_lock(m_state_change_lock);
// If another thread is trying to PauseAndLock then we need to remember this
// for later to ignore the unpause_on_unlock.
if (m_state_paused_and_locked)
{
m_state_system_request_stepping = true;
return;
}
// We'll deadlock if we synchronize, the CPU may block waiting for our caller to
// finish resulting in the CPU loop never terminating.
SetStateLocked(State::Stepping);
RunAdjacentSystems(false);
}
void CPUManager::Continue()
{
EnableStepping(false);
Core::CallOnStateChangedCallbacks(Core::State::Running);
}
bool CPUManager::PauseAndLock(bool do_lock, bool unpause_on_unlock, bool control_adjacent)
{
// NOTE: This is protected by m_stepping_lock.
static bool s_have_fake_cpu_thread = false;
bool was_unpaused = false;
if (do_lock)
{
m_stepping_lock.lock();
std::unique_lock state_lock(m_state_change_lock);
m_state_paused_and_locked = true;
was_unpaused = m_state == State::Running;
SetStateLocked(State::Stepping);
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
if (control_adjacent)
RunAdjacentSystems(false);
state_lock.unlock();
// NOTE: It would make more sense for Core::DeclareAsCPUThread() to keep a
// depth counter instead of being a boolean.
if (!Core::IsCPUThread())
{
s_have_fake_cpu_thread = true;
Core::DeclareAsCPUThread();
}
}
else
{
// Only need the stepping lock for this
if (s_have_fake_cpu_thread)
{
s_have_fake_cpu_thread = false;
Core::UndeclareAsCPUThread();
}
{
std::lock_guard state_lock(m_state_change_lock);
if (m_state_system_request_stepping)
{
m_state_system_request_stepping = false;
}
else if (unpause_on_unlock && SetStateLocked(State::Running))
{
was_unpaused = true;
}
m_state_paused_and_locked = false;
m_state_cpu_cvar.notify_one();
if (control_adjacent)
RunAdjacentSystems(m_state == State::Running);
}
m_stepping_lock.unlock();
}
return was_unpaused;
}
void CPUManager::AddCPUThreadJob(std::function<void()> function)
{
std::unique_lock state_lock(m_state_change_lock);
m_pending_jobs.push(std::move(function));
}
} // namespace CPU