dolphin/Source/Core/VideoBackends/Software/TextureSampler.cpp
comex 6e774f1b64 Add missing includes where headers depend on other headers having been included first.
This is good hygiene, and also happens to be required to build Dolphin
using Clang modules.

(Under this setup, each header file becomes a module, and each #include
is automatically translated to a module import.  Recursive includes
still leak through (by default), but modules are compiled independently,
and can't depend on defines or types having previously been set up.  The
main reason to retrofit it onto Dolphin is compilation performance - no
more textual includes whatsoever, rather than putting a few blessed
common headers into a PCH.  Unfortunately, I found multiple Clang bugs
while trying to build Dolphin this way, so it's not ready yet, but I can
start with this prerequisite.)
2014-10-21 21:22:16 -04:00

239 lines
6.5 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <algorithm>
#include <cmath>
#include "Common/Common.h"
#include "Core/HW/Memmap.h"
#include "VideoBackends/Software/BPMemLoader.h"
#include "VideoBackends/Software/TextureSampler.h"
#include "VideoCommon/TextureDecoder.h"
#define ALLOW_MIPMAP 1
namespace TextureSampler
{
static inline void WrapCoord(int* coordp, int wrapMode, int imageSize)
{
int coord = *coordp;
switch (wrapMode)
{
case 0: // clamp
coord = (coord>imageSize)?imageSize:(coord<0)?0:coord;
break;
case 1: // wrap
coord = coord % (imageSize + 1);
coord = (coord<0)?imageSize+coord:coord;
break;
case 2: // mirror
{
int sizePlus1 = imageSize + 1;
int div = coord / sizePlus1;
coord = coord - (div * sizePlus1);
coord = (coord<0)?-coord:coord;
coord = (div&1)?imageSize - coord:coord;
}
break;
}
*coordp = coord;
}
static inline void SetTexel(u8 *inTexel, u32 *outTexel, u32 fract)
{
outTexel[0] = inTexel[0] * fract;
outTexel[1] = inTexel[1] * fract;
outTexel[2] = inTexel[2] * fract;
outTexel[3] = inTexel[3] * fract;
}
static inline void AddTexel(u8 *inTexel, u32 *outTexel, u32 fract)
{
outTexel[0] += inTexel[0] * fract;
outTexel[1] += inTexel[1] * fract;
outTexel[2] += inTexel[2] * fract;
outTexel[3] += inTexel[3] * fract;
}
void Sample(s32 s, s32 t, s32 lod, bool linear, u8 texmap, u8 *sample)
{
int baseMip = 0;
bool mipLinear = false;
#if (ALLOW_MIPMAP)
FourTexUnits& texUnit = bpmem.tex[(texmap >> 2) & 1];
TexMode0& tm0 = texUnit.texMode0[texmap & 3];
s32 lodFract = lod & 0xf;
if (lod > 0 && tm0.min_filter & 3)
{
// use mipmap
baseMip = lod >> 4;
mipLinear = (lodFract && tm0.min_filter & 2);
// if using nearest mip filter and lodFract >= 0.5 round up to next mip
baseMip += (lodFract >> 3) & (tm0.min_filter & 1);
}
if (mipLinear)
{
u8 sampledTex[4];
u32 texel[4];
SampleMip(s, t, baseMip, linear, texmap, sampledTex);
SetTexel(sampledTex, texel, (16 - lodFract));
SampleMip(s, t, baseMip + 1, linear, texmap, sampledTex);
AddTexel(sampledTex, texel, lodFract);
sample[0] = (u8)(texel[0] >> 4);
sample[1] = (u8)(texel[1] >> 4);
sample[2] = (u8)(texel[2] >> 4);
sample[3] = (u8)(texel[3] >> 4);
}
else
#endif
{
SampleMip(s, t, baseMip, linear, texmap, sample);
}
}
void SampleMip(s32 s, s32 t, s32 mip, bool linear, u8 texmap, u8 *sample)
{
FourTexUnits& texUnit = bpmem.tex[(texmap >> 2) & 1];
u8 subTexmap = texmap & 3;
TexMode0& tm0 = texUnit.texMode0[subTexmap];
TexImage0& ti0 = texUnit.texImage0[subTexmap];
TexTLUT& texTlut = texUnit.texTlut[subTexmap];
TlutFormat tlutfmt = (TlutFormat) texTlut.tlut_format;
u8 *imageSrc, *imageSrcOdd = nullptr;
if (texUnit.texImage1[subTexmap].image_type)
{
imageSrc = &texMem[texUnit.texImage1[subTexmap].tmem_even * TMEM_LINE_SIZE];
if (ti0.format == GX_TF_RGBA8)
imageSrcOdd = &texMem[texUnit.texImage2[subTexmap].tmem_odd * TMEM_LINE_SIZE];
}
else
{
u32 imageBase = texUnit.texImage3[subTexmap].image_base << 5;
imageSrc = Memory::GetPointer(imageBase);
}
int imageWidth = ti0.width;
int imageHeight = ti0.height;
int tlutAddress = texTlut.tmem_offset << 9;
const u8* tlut = &texMem[tlutAddress];
// reduce sample location and texture size to mip level
// move texture pointer to mip location
if (mip)
{
int mipWidth = imageWidth + 1;
int mipHeight = imageHeight + 1;
int fmtWidth = TexDecoder_GetBlockWidthInTexels(ti0.format);
int fmtHeight = TexDecoder_GetBlockHeightInTexels(ti0.format);
int fmtDepth = TexDecoder_GetTexelSizeInNibbles(ti0.format);
imageWidth >>= mip;
imageHeight >>= mip;
s >>= mip;
t >>= mip;
while (mip)
{
mipWidth = std::max(mipWidth, fmtWidth);
mipHeight = std::max(mipHeight, fmtHeight);
u32 size = (mipWidth * mipHeight * fmtDepth) >> 1;
imageSrc += size;
mipWidth >>= 1;
mipHeight >>= 1;
mip--;
}
}
if (linear)
{
// offset linear sampling
s -= 64;
t -= 64;
// integer part of sample location
int imageS = s >> 7;
int imageT = t >> 7;
// linear sampling
int imageSPlus1 = imageS + 1;
int fractS = s & 0x7f;
int imageTPlus1 = imageT + 1;
int fractT = t & 0x7f;
u8 sampledTex[4];
u32 texel[4];
WrapCoord(&imageS, tm0.wrap_s, imageWidth);
WrapCoord(&imageT, tm0.wrap_t, imageHeight);
WrapCoord(&imageSPlus1, tm0.wrap_s, imageWidth);
WrapCoord(&imageTPlus1, tm0.wrap_t, imageHeight);
if (!(ti0.format == GX_TF_RGBA8 && texUnit.texImage1[subTexmap].image_type))
{
TexDecoder_DecodeTexel(sampledTex, imageSrc, imageS, imageT, imageWidth, ti0.format, tlut, tlutfmt);
SetTexel(sampledTex, texel, (128 - fractS) * (128 - fractT));
TexDecoder_DecodeTexel(sampledTex, imageSrc, imageSPlus1, imageT, imageWidth, ti0.format, tlut, tlutfmt);
AddTexel(sampledTex, texel, (fractS) * (128 - fractT));
TexDecoder_DecodeTexel(sampledTex, imageSrc, imageS, imageTPlus1, imageWidth, ti0.format, tlut, tlutfmt);
AddTexel(sampledTex, texel, (128 - fractS) * (fractT));
TexDecoder_DecodeTexel(sampledTex, imageSrc, imageSPlus1, imageTPlus1, imageWidth, ti0.format, tlut, tlutfmt);
AddTexel(sampledTex, texel, (fractS) * (fractT));
}
else
{
TexDecoder_DecodeTexelRGBA8FromTmem(sampledTex, imageSrc, imageSrcOdd, imageS, imageT, imageWidth);
SetTexel(sampledTex, texel, (128 - fractS) * (128 - fractT));
TexDecoder_DecodeTexelRGBA8FromTmem(sampledTex, imageSrc, imageSrcOdd, imageSPlus1, imageT, imageWidth);
AddTexel(sampledTex, texel, (fractS) * (128 - fractT));
TexDecoder_DecodeTexelRGBA8FromTmem(sampledTex, imageSrc, imageSrcOdd, imageS, imageTPlus1, imageWidth);
AddTexel(sampledTex, texel, (128 - fractS) * (fractT));
TexDecoder_DecodeTexelRGBA8FromTmem(sampledTex, imageSrc, imageSrcOdd, imageSPlus1, imageTPlus1, imageWidth);
AddTexel(sampledTex, texel, (fractS) * (fractT));
}
sample[0] = (u8)(texel[0] >> 14);
sample[1] = (u8)(texel[1] >> 14);
sample[2] = (u8)(texel[2] >> 14);
sample[3] = (u8)(texel[3] >> 14);
}
else
{
// integer part of sample location
int imageS = s >> 7;
int imageT = t >> 7;
// nearest neighbor sampling
WrapCoord(&imageS, tm0.wrap_s, imageWidth);
WrapCoord(&imageT, tm0.wrap_t, imageHeight);
if (!(ti0.format == GX_TF_RGBA8 && texUnit.texImage1[subTexmap].image_type))
TexDecoder_DecodeTexel(sample, imageSrc, imageS, imageT, imageWidth, ti0.format, tlut, tlutfmt);
else
TexDecoder_DecodeTexelRGBA8FromTmem(sample, imageSrc, imageSrcOdd, imageS, imageT, imageWidth);
}
}
}