dolphin/Source/Core/DiscIO/DirectoryBlob.cpp
JosJuice 07605bf67c
Merge pull request #13090 from mitaclaw/ranges-modernization-1-trivial
Ranges Algorithms Modernization - Trivial
2024-10-15 17:08:55 +02:00

1270 lines
44 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "DiscIO/DirectoryBlob.h"
#include <algorithm>
#include <array>
#include <cstring>
#include <locale>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <variant>
#include <vector>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonPaths.h"
#include "Common/CommonTypes.h"
#include "Common/FileUtil.h"
#include "Common/IOFile.h"
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
#include "Common/Swap.h"
#include "Core/Boot/DolReader.h"
#include "Core/IOS/ES/Formats.h"
#include "DiscIO/Blob.h"
#include "DiscIO/DiscUtils.h"
#include "DiscIO/VolumeDisc.h"
#include "DiscIO/VolumeWii.h"
#include "DiscIO/WiiEncryptionCache.h"
namespace DiscIO
{
// Reads as many bytes as the vector fits (or less, if the file is smaller).
// Returns the number of bytes read.
static size_t ReadFileToVector(const std::string& path, std::vector<u8>* vector);
static void PadToAddress(u64 start_address, u64* address, u64* length, u8** buffer);
static void Write32(u32 data, u32 offset, std::vector<u8>* buffer);
enum class PartitionType : u32
{
Game = 0,
Update = 1,
Channel = 2,
// There are more types used by Super Smash Bros. Brawl, but they don't have special names
};
// 0xFF is an arbitrarily picked value. Note that we can't use 0x00, because that means NTSC-J
constexpr u32 INVALID_REGION = 0xFF;
constexpr u32 PARTITION_DATA_OFFSET = 0x20000;
constexpr u8 ENTRY_SIZE = 0x0c;
constexpr u8 FILE_ENTRY = 0;
constexpr u8 DIRECTORY_ENTRY = 1;
DiscContent::DiscContent(u64 offset, u64 size, ContentSource source)
: m_offset(offset), m_size(size), m_content_source(std::move(source))
{
}
DiscContent::DiscContent(u64 offset) : m_offset(offset)
{
}
u64 DiscContent::GetOffset() const
{
return m_offset;
}
u64 DiscContent::GetEndOffset() const
{
return m_offset + m_size;
}
u64 DiscContent::GetSize() const
{
return m_size;
}
bool DiscContent::Read(u64* offset, u64* length, u8** buffer, DirectoryBlobReader* blob) const
{
if (m_size == 0)
return true;
DEBUG_ASSERT(*offset >= m_offset);
const u64 offset_in_content = *offset - m_offset;
if (offset_in_content < m_size)
{
const u64 bytes_to_read = std::min(m_size - offset_in_content, *length);
if (std::holds_alternative<ContentFile>(m_content_source))
{
const auto& content = std::get<ContentFile>(m_content_source);
File::IOFile file(content.m_filename, "rb");
if (!file.Seek(content.m_offset + offset_in_content, File::SeekOrigin::Begin) ||
!file.ReadBytes(*buffer, bytes_to_read))
{
return false;
}
}
else if (std::holds_alternative<ContentMemory>(m_content_source))
{
const auto& content = std::get<ContentMemory>(m_content_source);
std::copy_n(content->begin() + offset_in_content, bytes_to_read, *buffer);
}
else if (std::holds_alternative<ContentPartition>(m_content_source))
{
const auto& content = std::get<ContentPartition>(m_content_source);
const u64 decrypted_size = m_size * VolumeWii::BLOCK_DATA_SIZE / VolumeWii::BLOCK_TOTAL_SIZE;
if (!blob->EncryptPartitionData(content.m_offset + offset_in_content, bytes_to_read, *buffer,
content.m_partition_data_offset, decrypted_size))
{
return false;
}
}
else if (std::holds_alternative<ContentVolume>(m_content_source))
{
const auto& source = std::get<ContentVolume>(m_content_source);
if (!blob->GetWrappedVolume()->Read(source.m_offset + offset_in_content, bytes_to_read,
*buffer, source.m_partition))
{
return false;
}
}
else if (std::holds_alternative<ContentFixedByte>(m_content_source))
{
const ContentFixedByte& source = std::get<ContentFixedByte>(m_content_source);
std::fill_n(*buffer, bytes_to_read, source.m_byte);
}
else
{
PanicAlertFmt("DirectoryBlob: Invalid content source in DiscContent.");
return false;
}
*length -= bytes_to_read;
*buffer += bytes_to_read;
*offset += bytes_to_read;
}
return true;
}
void DiscContentContainer::Add(u64 offset, u64 size, ContentSource source)
{
if (size != 0)
m_contents.emplace(offset, size, std::move(source));
}
u64 DiscContentContainer::CheckSizeAndAdd(u64 offset, const std::string& path)
{
const u64 size = File::GetSize(path);
Add(offset, size, ContentFile{path, 0});
return size;
}
u64 DiscContentContainer::CheckSizeAndAdd(u64 offset, u64 max_size, const std::string& path)
{
const u64 size = std::min(File::GetSize(path), max_size);
Add(offset, size, ContentFile{path, 0});
return size;
}
bool DiscContentContainer::Read(u64 offset, u64 length, u8* buffer, DirectoryBlobReader* blob) const
{
// Determine which DiscContent the offset refers to
std::set<DiscContent>::const_iterator it = m_contents.upper_bound(DiscContent(offset));
while (it != m_contents.end() && length > 0)
{
// Zero fill to start of DiscContent data
PadToAddress(it->GetOffset(), &offset, &length, &buffer);
if (length == 0)
return true;
if (!it->Read(&offset, &length, &buffer, blob))
return false;
++it;
DEBUG_ASSERT(it == m_contents.end() || it->GetOffset() >= offset);
}
// Zero fill if we went beyond the last DiscContent
std::fill_n(buffer, static_cast<size_t>(length), 0);
return true;
}
static std::optional<PartitionType> ParsePartitionDirectoryName(const std::string& name)
{
if (name.size() < 2)
return {};
if (!strcasecmp(name.c_str(), "DATA"))
return PartitionType::Game;
if (!strcasecmp(name.c_str(), "UPDATE"))
return PartitionType::Update;
if (!strcasecmp(name.c_str(), "CHANNEL"))
return PartitionType::Channel;
if (name[0] == 'P' || name[0] == 'p')
{
// e.g. "P-HA8E" (normally only used for Super Smash Bros. Brawl's VC partitions)
if (name[1] == '-' && name.size() == 6)
{
const u32 result = Common::swap32(reinterpret_cast<const u8*>(name.data() + 2));
return static_cast<PartitionType>(result);
}
// e.g. "P0"
if (std::all_of(name.cbegin() + 1, name.cend(), [](char c) { return c >= '0' && c <= '9'; }))
{
u32 result;
if (TryParse(name.substr(1), &result))
return static_cast<PartitionType>(result);
}
}
return {};
}
static bool IsDirectorySeparator(char c)
{
return c == '/'
#ifdef _WIN32
|| c == '\\'
#endif
;
}
static bool PathCharactersEqual(char a, char b)
{
return a == b || (IsDirectorySeparator(a) && IsDirectorySeparator(b));
}
static bool PathEndsWith(const std::string& path, const std::string& suffix)
{
if (suffix.size() > path.size())
return false;
std::string::const_iterator path_iterator = path.cend() - suffix.size();
std::string::const_iterator suffix_iterator = suffix.cbegin();
while (path_iterator != path.cend())
{
if (!PathCharactersEqual(*path_iterator, *suffix_iterator))
return false;
path_iterator++;
suffix_iterator++;
}
return true;
}
static bool IsValidDirectoryBlob(const std::string& dol_path, std::string* partition_root,
std::string* true_root = nullptr)
{
if (!PathEndsWith(dol_path, "/sys/main.dol"))
return false;
const size_t chars_to_remove = std::string("sys/main.dol").size();
*partition_root = dol_path.substr(0, dol_path.size() - chars_to_remove);
if (File::GetSize(*partition_root + "sys/boot.bin") < 0x20)
return false;
#ifdef _WIN32
constexpr const char* dir_separator = "/\\";
#else
constexpr char dir_separator = '/';
#endif
if (true_root)
{
*true_root =
dol_path.substr(0, dol_path.find_last_of(dir_separator, partition_root->size() - 2) + 1);
}
return true;
}
static bool ExistsAndIsValidDirectoryBlob(const std::string& dol_path)
{
std::string partition_root;
return File::Exists(dol_path) && IsValidDirectoryBlob(dol_path, &partition_root);
}
static bool IsInFilesDirectory(const std::string& path)
{
size_t files_pos = std::string::npos;
while (true)
{
files_pos = path.rfind("files", files_pos);
if (files_pos == std::string::npos)
return false;
const size_t slash_before_pos = files_pos - 1;
const size_t slash_after_pos = files_pos + 5;
if ((files_pos == 0 || IsDirectorySeparator(path[slash_before_pos])) &&
(slash_after_pos == path.size() || (IsDirectorySeparator(path[slash_after_pos]))) &&
ExistsAndIsValidDirectoryBlob(path.substr(0, files_pos) + "sys/main.dol"))
{
return true;
}
--files_pos;
}
}
static bool IsMainDolForNonGamePartition(const std::string& path)
{
std::string partition_root, true_root;
if (!IsValidDirectoryBlob(path, &partition_root, &true_root))
return false; // This is not a /sys/main.dol
std::string partition_directory_name = partition_root.substr(true_root.size());
partition_directory_name.pop_back(); // Remove trailing slash
const std::optional<PartitionType> partition_type =
ParsePartitionDirectoryName(partition_directory_name);
if (!partition_type || *partition_type == PartitionType::Game)
return false; // volume_path is the game partition's /sys/main.dol
const File::FSTEntry true_root_entry = File::ScanDirectoryTree(true_root, false);
for (const File::FSTEntry& entry : true_root_entry.children)
{
if (entry.isDirectory &&
ParsePartitionDirectoryName(entry.virtualName) == PartitionType::Game &&
ExistsAndIsValidDirectoryBlob(entry.physicalName + "/sys/main.dol"))
{
return true; // volume_path is the /sys/main.dol for a non-game partition
}
}
return false; // volume_path is the game partition's /sys/main.dol
}
bool ShouldHideFromGameList(const std::string& volume_path)
{
return IsInFilesDirectory(volume_path) || IsMainDolForNonGamePartition(volume_path);
}
std::unique_ptr<DirectoryBlobReader> DirectoryBlobReader::Create(const std::string& dol_path)
{
std::string partition_root, true_root;
if (!IsValidDirectoryBlob(dol_path, &partition_root, &true_root))
return nullptr;
return std::unique_ptr<DirectoryBlobReader>(new DirectoryBlobReader(partition_root, true_root));
}
std::unique_ptr<DirectoryBlobReader> DirectoryBlobReader::Create(
std::unique_ptr<DiscIO::VolumeDisc> volume,
const std::function<void(std::vector<FSTBuilderNode>* fst_nodes)>& sys_callback,
const std::function<void(std::vector<FSTBuilderNode>* fst_nodes, FSTBuilderNode* dol_node)>&
fst_callback)
{
if (!volume)
return nullptr;
return std::unique_ptr<DirectoryBlobReader>(
new DirectoryBlobReader(std::move(volume), sys_callback, fst_callback));
}
DirectoryBlobReader::DirectoryBlobReader(const std::string& game_partition_root,
const std::string& true_root)
: m_encryption_cache(this)
{
DirectoryBlobPartition game_partition(game_partition_root, {});
m_is_wii = game_partition.IsWii();
if (!m_is_wii)
{
m_gamecube_pseudopartition = std::move(game_partition);
m_data_size = m_gamecube_pseudopartition.GetDataSize();
m_encrypted = false;
}
else
{
std::vector<u8> disc_header(DISCHEADER_SIZE);
game_partition.GetContents().Read(DISCHEADER_ADDRESS, DISCHEADER_SIZE, disc_header.data(),
this);
SetNonpartitionDiscHeaderFromFile(disc_header, game_partition_root);
SetWiiRegionDataFromFile(game_partition_root);
std::vector<PartitionWithType> partitions;
partitions.emplace_back(std::move(game_partition), PartitionType::Game);
std::string game_partition_directory_name = game_partition_root.substr(true_root.size());
game_partition_directory_name.pop_back(); // Remove trailing slash
if (ParsePartitionDirectoryName(game_partition_directory_name) == PartitionType::Game)
{
const File::FSTEntry true_root_entry = File::ScanDirectoryTree(true_root, false);
for (const File::FSTEntry& entry : true_root_entry.children)
{
if (entry.isDirectory)
{
const std::optional<PartitionType> type = ParsePartitionDirectoryName(entry.virtualName);
if (type && *type != PartitionType::Game)
{
partitions.emplace_back(DirectoryBlobPartition(entry.physicalName + "/", m_is_wii),
*type);
}
}
}
}
SetPartitions(std::move(partitions));
}
}
DirectoryBlobReader::DirectoryBlobReader(
std::unique_ptr<DiscIO::VolumeDisc> volume,
const std::function<void(std::vector<FSTBuilderNode>* fst_nodes)>& sys_callback,
const std::function<void(std::vector<FSTBuilderNode>* fst_nodes, FSTBuilderNode* dol_node)>&
fst_callback)
: m_encryption_cache(this), m_wrapped_volume(std::move(volume))
{
DirectoryBlobPartition game_partition(m_wrapped_volume.get(),
m_wrapped_volume->GetGamePartition(), std::nullopt,
sys_callback, fst_callback, this);
m_is_wii = game_partition.IsWii();
if (!m_is_wii)
{
m_gamecube_pseudopartition = std::move(game_partition);
m_data_size = m_gamecube_pseudopartition.GetDataSize();
m_encrypted = false;
}
else
{
std::vector<u8> header_bin(WII_NONPARTITION_DISCHEADER_SIZE);
if (!m_wrapped_volume->Read(WII_NONPARTITION_DISCHEADER_ADDRESS,
WII_NONPARTITION_DISCHEADER_SIZE, header_bin.data(),
PARTITION_NONE))
{
header_bin.clear();
}
std::vector<u8> disc_header(DISCHEADER_SIZE);
game_partition.GetContents().Read(DISCHEADER_ADDRESS, DISCHEADER_SIZE, disc_header.data(),
this);
SetNonpartitionDiscHeader(disc_header, std::move(header_bin));
std::vector<u8> wii_region_data(WII_REGION_DATA_SIZE);
if (!m_wrapped_volume->Read(WII_REGION_DATA_ADDRESS, WII_REGION_DATA_SIZE,
wii_region_data.data(), PARTITION_NONE))
{
wii_region_data.clear();
}
SetWiiRegionData(wii_region_data, "volume");
std::vector<PartitionWithType> partitions;
partitions.emplace_back(std::move(game_partition), PartitionType::Game);
for (Partition partition : m_wrapped_volume->GetPartitions())
{
if (partition == m_wrapped_volume->GetGamePartition())
continue;
auto type = m_wrapped_volume->GetPartitionType(partition);
if (type)
{
partitions.emplace_back(DirectoryBlobPartition(m_wrapped_volume.get(), partition, m_is_wii,
nullptr, nullptr, this),
static_cast<PartitionType>(*type));
}
}
SetPartitions(std::move(partitions));
}
}
DirectoryBlobReader::DirectoryBlobReader(const DirectoryBlobReader& rhs)
: m_gamecube_pseudopartition(rhs.m_gamecube_pseudopartition),
m_nonpartition_contents(rhs.m_nonpartition_contents), m_partitions(rhs.m_partitions),
m_encryption_cache(this), m_is_wii(rhs.m_is_wii), m_encrypted(rhs.m_encrypted),
m_data_size(rhs.m_data_size),
m_wrapped_volume(rhs.m_wrapped_volume ?
CreateDisc(rhs.m_wrapped_volume->GetBlobReader().CopyReader()) :
nullptr)
{
}
bool DirectoryBlobReader::Read(u64 offset, u64 length, u8* buffer)
{
if (offset + length > m_data_size)
return false;
return (m_is_wii ? m_nonpartition_contents : m_gamecube_pseudopartition.GetContents())
.Read(offset, length, buffer, this);
}
const DirectoryBlobPartition* DirectoryBlobReader::GetPartition(u64 offset, u64 size,
u64 partition_data_offset) const
{
const auto it = m_partitions.find(partition_data_offset);
if (it == m_partitions.end())
return nullptr;
if (offset + size > it->second.GetDataSize())
return nullptr;
return &it->second;
}
bool DirectoryBlobReader::SupportsReadWiiDecrypted(u64 offset, u64 size,
u64 partition_data_offset) const
{
return static_cast<bool>(GetPartition(offset, size, partition_data_offset));
}
bool DirectoryBlobReader::ReadWiiDecrypted(u64 offset, u64 size, u8* buffer,
u64 partition_data_offset)
{
const DirectoryBlobPartition* partition = GetPartition(offset, size, partition_data_offset);
if (!partition)
return false;
return partition->GetContents().Read(offset, size, buffer, this);
}
bool DirectoryBlobReader::EncryptPartitionData(u64 offset, u64 size, u8* buffer,
u64 partition_data_offset,
u64 partition_data_decrypted_size)
{
auto it = m_partitions.find(partition_data_offset);
if (it == m_partitions.end())
return false;
if (!m_encrypted)
return it->second.GetContents().Read(offset, size, buffer, this);
return m_encryption_cache.EncryptGroups(offset, size, buffer, partition_data_offset,
partition_data_decrypted_size, it->second.GetKey());
}
BlobType DirectoryBlobReader::GetBlobType() const
{
return BlobType::DIRECTORY;
}
std::unique_ptr<BlobReader> DirectoryBlobReader::CopyReader() const
{
return std::unique_ptr<DirectoryBlobReader>(new DirectoryBlobReader(*this));
}
u64 DirectoryBlobReader::GetRawSize() const
{
// Not implemented
return 0;
}
u64 DirectoryBlobReader::GetDataSize() const
{
return m_data_size;
}
void DirectoryBlobReader::SetNonpartitionDiscHeaderFromFile(const std::vector<u8>& partition_header,
const std::string& game_partition_root)
{
std::vector<u8> header_bin(WII_NONPARTITION_DISCHEADER_SIZE);
const size_t header_bin_bytes_read =
ReadFileToVector(game_partition_root + "disc/header.bin", &header_bin);
header_bin.resize(header_bin_bytes_read);
SetNonpartitionDiscHeader(partition_header, std::move(header_bin));
}
void DirectoryBlobReader::SetNonpartitionDiscHeader(const std::vector<u8>& partition_header,
std::vector<u8> header_bin)
{
const size_t header_bin_size = header_bin.size();
header_bin.resize(WII_NONPARTITION_DISCHEADER_SIZE);
// If header.bin is missing or smaller than expected, use the content of sys/boot.bin instead
if (header_bin_size < header_bin.size())
{
std::copy(partition_header.data() + header_bin_size,
partition_header.data() + header_bin.size(), header_bin.data() + header_bin_size);
}
// 0x60 and 0x61 are the only differences between the partition and non-partition headers
if (header_bin_size < 0x60)
header_bin[0x60] = 0;
if (header_bin_size < 0x61)
header_bin[0x61] = 0;
m_encrypted =
std::all_of(header_bin.data() + 0x60, header_bin.data() + 0x64, [](u8 x) { return x == 0; });
m_nonpartition_contents.Add(WII_NONPARTITION_DISCHEADER_ADDRESS, std::move(header_bin));
}
void DirectoryBlobReader::SetWiiRegionDataFromFile(const std::string& game_partition_root)
{
std::vector<u8> wii_region_data(WII_REGION_DATA_SIZE);
const std::string region_bin_path = game_partition_root + "disc/region.bin";
const size_t bytes_read = ReadFileToVector(region_bin_path, &wii_region_data);
wii_region_data.resize(bytes_read);
SetWiiRegionData(wii_region_data, region_bin_path);
}
void DirectoryBlobReader::SetWiiRegionData(const std::vector<u8>& wii_region_data,
const std::string& log_path)
{
std::vector<u8> region_data(0x10, 0x00);
region_data.resize(WII_REGION_DATA_SIZE, 0x80);
Write32(INVALID_REGION, 0, &region_data);
std::copy_n(wii_region_data.begin(),
std::min<size_t>(wii_region_data.size(), WII_REGION_DATA_SIZE), region_data.begin());
if (wii_region_data.size() < 0x4)
ERROR_LOG_FMT(DISCIO, "Couldn't read region from {}", log_path);
else if (wii_region_data.size() < 0x20)
ERROR_LOG_FMT(DISCIO, "Couldn't read age ratings from {}", log_path);
m_nonpartition_contents.Add(WII_REGION_DATA_ADDRESS, std::move(region_data));
}
void DirectoryBlobReader::SetPartitions(std::vector<PartitionWithType>&& partitions)
{
std::ranges::sort(partitions, [](const PartitionWithType& lhs, const PartitionWithType& rhs) {
if (lhs.type == rhs.type)
return lhs.partition.GetRootDirectory() < rhs.partition.GetRootDirectory();
// Ascending sort by partition type, except Update (1) comes before before Game (0)
return (lhs.type > PartitionType::Update || rhs.type > PartitionType::Update) ?
lhs.type < rhs.type :
lhs.type > rhs.type;
});
u32 subtable_1_size = 0;
while (subtable_1_size < partitions.size() && subtable_1_size < 3 &&
partitions[subtable_1_size].type <= PartitionType::Channel)
{
++subtable_1_size;
}
const u32 subtable_2_size = static_cast<u32>(partitions.size() - subtable_1_size);
constexpr u32 PARTITION_TABLE_ADDRESS = 0x40000;
constexpr u32 PARTITION_SUBTABLE1_OFFSET = 0x20;
constexpr u32 PARTITION_SUBTABLE2_OFFSET = 0x40;
std::vector<u8> partition_table(PARTITION_SUBTABLE2_OFFSET + subtable_2_size * 8);
Write32(subtable_1_size, 0x0, &partition_table);
Write32((PARTITION_TABLE_ADDRESS + PARTITION_SUBTABLE1_OFFSET) >> 2, 0x4, &partition_table);
if (subtable_2_size != 0)
{
Write32(subtable_2_size, 0x8, &partition_table);
Write32((PARTITION_TABLE_ADDRESS + PARTITION_SUBTABLE2_OFFSET) >> 2, 0xC, &partition_table);
}
constexpr u64 STANDARD_UPDATE_PARTITION_ADDRESS = 0x50000;
constexpr u64 STANDARD_GAME_PARTITION_ADDRESS = 0xF800000;
u64 partition_address = STANDARD_UPDATE_PARTITION_ADDRESS;
u64 offset_in_table = PARTITION_SUBTABLE1_OFFSET;
for (size_t i = 0; i < partitions.size(); ++i)
{
if (i == subtable_1_size)
offset_in_table = PARTITION_SUBTABLE2_OFFSET;
if (partitions[i].type == PartitionType::Game)
partition_address = std::max(partition_address, STANDARD_GAME_PARTITION_ADDRESS);
Write32(static_cast<u32>(partition_address >> 2), offset_in_table, &partition_table);
offset_in_table += 4;
Write32(static_cast<u32>(partitions[i].type), offset_in_table, &partition_table);
offset_in_table += 4;
SetPartitionHeader(&partitions[i].partition, partition_address);
const u64 data_size =
Common::AlignUp(partitions[i].partition.GetDataSize(), VolumeWii::BLOCK_DATA_SIZE);
partitions[i].partition.SetDataSize(data_size);
const u64 encrypted_data_size =
(data_size / VolumeWii::BLOCK_DATA_SIZE) * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 partition_data_offset = partition_address + PARTITION_DATA_OFFSET;
m_partitions.emplace(partition_data_offset, std::move(partitions[i].partition));
m_nonpartition_contents.Add(partition_data_offset, encrypted_data_size,
ContentPartition{0, partition_data_offset});
const u64 unaligned_next_partition_address = VolumeWii::OffsetInHashedPartitionToRawOffset(
data_size, Partition(partition_address), PARTITION_DATA_OFFSET);
partition_address = Common::AlignUp(unaligned_next_partition_address, 0x10000ull);
}
m_data_size = partition_address;
m_nonpartition_contents.Add(PARTITION_TABLE_ADDRESS, std::move(partition_table));
}
// This function sets the header that's shortly before the start of the encrypted
// area, not the header that's right at the beginning of the encrypted area
void DirectoryBlobReader::SetPartitionHeader(DirectoryBlobPartition* partition,
u64 partition_address)
{
constexpr u32 TMD_OFFSET = 0x2c0;
constexpr u32 H3_OFFSET = 0x4000;
const std::optional<DiscIO::Partition>& wrapped_partition = partition->GetWrappedPartition();
const std::string& partition_root = partition->GetRootDirectory();
u64 ticket_size;
if (wrapped_partition)
{
std::vector<u8> new_ticket = m_wrapped_volume->GetTicket(*wrapped_partition).GetBytes();
if (new_ticket.size() > WII_PARTITION_TICKET_SIZE)
new_ticket.resize(WII_PARTITION_TICKET_SIZE);
ticket_size = new_ticket.size();
m_nonpartition_contents.Add(partition_address + WII_PARTITION_TICKET_ADDRESS,
std::move(new_ticket));
}
else
{
ticket_size = m_nonpartition_contents.CheckSizeAndAdd(
partition_address + WII_PARTITION_TICKET_ADDRESS, WII_PARTITION_TICKET_SIZE,
partition_root + "ticket.bin");
}
u64 tmd_size;
if (wrapped_partition)
{
std::vector<u8> new_tmd = m_wrapped_volume->GetTMD(*wrapped_partition).GetBytes();
if (new_tmd.size() > IOS::ES::MAX_TMD_SIZE)
new_tmd.resize(IOS::ES::MAX_TMD_SIZE);
tmd_size = new_tmd.size();
m_nonpartition_contents.Add(partition_address + TMD_OFFSET, std::move(new_tmd));
}
else
{
tmd_size = m_nonpartition_contents.CheckSizeAndAdd(
partition_address + TMD_OFFSET, IOS::ES::MAX_TMD_SIZE, partition_root + "tmd.bin");
}
const u64 cert_offset = Common::AlignUp(TMD_OFFSET + tmd_size, 0x20ull);
const u64 max_cert_size = H3_OFFSET - cert_offset;
u64 cert_size;
if (wrapped_partition)
{
std::vector<u8> new_cert = m_wrapped_volume->GetCertificateChain(*wrapped_partition);
if (new_cert.size() > max_cert_size)
new_cert.resize(max_cert_size);
cert_size = new_cert.size();
m_nonpartition_contents.Add(partition_address + cert_offset, std::move(new_cert));
}
else
{
cert_size = m_nonpartition_contents.CheckSizeAndAdd(partition_address + cert_offset,
max_cert_size, partition_root + "cert.bin");
}
if (wrapped_partition)
{
if (m_wrapped_volume->HasWiiHashes())
{
const std::optional<u64> offset = m_wrapped_volume->ReadSwappedAndShifted(
wrapped_partition->offset + WII_PARTITION_H3_OFFSET_ADDRESS, PARTITION_NONE);
if (offset)
{
std::vector<u8> new_h3(WII_PARTITION_H3_SIZE);
if (m_wrapped_volume->Read(wrapped_partition->offset + *offset, new_h3.size(),
new_h3.data(), PARTITION_NONE))
{
m_nonpartition_contents.Add(partition_address + H3_OFFSET, std::move(new_h3));
}
}
}
}
else
{
m_nonpartition_contents.CheckSizeAndAdd(partition_address + H3_OFFSET, WII_PARTITION_H3_SIZE,
partition_root + "h3.bin");
}
constexpr u32 PARTITION_HEADER_SIZE = 0x1c;
const u64 data_size = Common::AlignUp(partition->GetDataSize(), 0x7c00) / 0x7c00 * 0x8000;
std::vector<u8> partition_header(PARTITION_HEADER_SIZE);
Write32(static_cast<u32>(tmd_size), 0x0, &partition_header);
Write32(TMD_OFFSET >> 2, 0x4, &partition_header);
Write32(static_cast<u32>(cert_size), 0x8, &partition_header);
Write32(static_cast<u32>(cert_offset >> 2), 0x0C, &partition_header);
Write32(H3_OFFSET >> 2, 0x10, &partition_header);
Write32(PARTITION_DATA_OFFSET >> 2, 0x14, &partition_header);
Write32(static_cast<u32>(data_size >> 2), 0x18, &partition_header);
m_nonpartition_contents.Add(partition_address + WII_PARTITION_TICKET_SIZE,
std::move(partition_header));
std::vector<u8> ticket_buffer(ticket_size);
m_nonpartition_contents.Read(partition_address + WII_PARTITION_TICKET_ADDRESS, ticket_size,
ticket_buffer.data(), this);
IOS::ES::TicketReader ticket(std::move(ticket_buffer));
if (ticket.IsValid())
partition->SetKey(ticket.GetTitleKey());
}
static void GenerateBuilderNodesFromFileSystem(const DiscIO::VolumeDisc& volume,
const DiscIO::Partition& partition,
std::vector<FSTBuilderNode>* nodes,
const FileInfo& parent_info)
{
for (const FileInfo& file_info : parent_info)
{
if (file_info.IsDirectory())
{
std::vector<FSTBuilderNode> child_nodes;
GenerateBuilderNodesFromFileSystem(volume, partition, &child_nodes, file_info);
nodes->emplace_back(FSTBuilderNode{file_info.GetName(), file_info.GetTotalChildren(),
std::move(child_nodes)});
}
else
{
std::vector<BuilderContentSource> source;
source.emplace_back(BuilderContentSource{0, file_info.GetSize(),
ContentVolume{file_info.GetOffset(), partition}});
nodes->emplace_back(
FSTBuilderNode{file_info.GetName(), file_info.GetSize(), std::move(source)});
}
}
}
DirectoryBlobPartition::DirectoryBlobPartition(const std::string& root_directory,
std::optional<bool> is_wii)
: m_root_directory(root_directory)
{
std::vector<u8> disc_header(DISCHEADER_SIZE);
if (ReadFileToVector(m_root_directory + "sys/boot.bin", &disc_header) < 0x20)
ERROR_LOG_FMT(DISCIO, "{} doesn't exist or is too small", m_root_directory + "sys/boot.bin");
SetDiscType(is_wii, disc_header);
SetBI2FromFile(m_root_directory + "sys/bi2.bin");
const u64 dol_address = SetApploaderFromFile(m_root_directory + "sys/apploader.img");
const u64 fst_address =
SetDOLFromFile(m_root_directory + "sys/main.dol", dol_address, &disc_header);
BuildFSTFromFolder(m_root_directory + "files/", fst_address, &disc_header);
m_contents.Add(DISCHEADER_ADDRESS, disc_header);
}
static void FillSingleFileNode(FSTBuilderNode* node, std::vector<u8> data)
{
std::vector<BuilderContentSource> contents;
const size_t size = data.size();
contents.emplace_back(
BuilderContentSource{0, size, std::make_shared<std::vector<u8>>(std::move(data))});
node->m_size = size;
node->m_content = std::move(contents);
}
static FSTBuilderNode BuildSingleFileNode(std::string filename, std::vector<u8> data,
void* userdata)
{
FSTBuilderNode node{std::move(filename), 0, {}, userdata};
FillSingleFileNode(&node, std::move(data));
return node;
}
static std::vector<u8> ExtractNodeToVector(std::vector<FSTBuilderNode>* nodes, void* userdata,
DirectoryBlobReader* blob)
{
std::vector<u8> data;
const auto it =
std::find_if(nodes->begin(), nodes->end(), [&userdata](const FSTBuilderNode& node) {
return node.m_user_data == userdata;
});
if (it == nodes->end() || !it->IsFile())
return data;
DiscContentContainer tmp;
for (auto& content : it->GetFileContent())
tmp.Add(content.m_offset, content.m_size, std::move(content.m_source));
data.resize(it->m_size);
tmp.Read(0, it->m_size, data.data(), blob);
return data;
}
DirectoryBlobPartition::DirectoryBlobPartition(
DiscIO::VolumeDisc* volume, const DiscIO::Partition& partition, std::optional<bool> is_wii,
const std::function<void(std::vector<FSTBuilderNode>* fst_nodes)>& sys_callback,
const std::function<void(std::vector<FSTBuilderNode>* fst_nodes, FSTBuilderNode* dol_node)>&
fst_callback,
DirectoryBlobReader* blob)
: m_wrapped_partition(partition)
{
std::vector<FSTBuilderNode> sys_nodes;
std::vector<u8> disc_header(DISCHEADER_SIZE);
if (!volume->Read(DISCHEADER_ADDRESS, DISCHEADER_SIZE, disc_header.data(), partition))
disc_header.clear();
sys_nodes.emplace_back(BuildSingleFileNode("boot.bin", std::move(disc_header), &disc_header));
std::vector<u8> bi2(BI2_SIZE);
if (!volume->Read(BI2_ADDRESS, BI2_SIZE, bi2.data(), partition))
bi2.clear();
sys_nodes.emplace_back(BuildSingleFileNode("bi2.bin", std::move(bi2), &bi2));
std::vector<u8> apploader;
const auto apploader_size = GetApploaderSize(*volume, partition);
auto& apploader_node = sys_nodes.emplace_back(FSTBuilderNode{"apploader.img", 0, {}, &apploader});
if (apploader_size)
{
apploader.resize(*apploader_size);
if (!volume->Read(APPLOADER_ADDRESS, *apploader_size, apploader.data(), partition))
apploader.clear();
FillSingleFileNode(&apploader_node, std::move(apploader));
}
if (sys_callback)
sys_callback(&sys_nodes);
disc_header = ExtractNodeToVector(&sys_nodes, &disc_header, blob);
disc_header.resize(DISCHEADER_SIZE);
SetDiscType(is_wii, disc_header);
SetBI2(ExtractNodeToVector(&sys_nodes, &bi2, blob));
const u64 new_dol_address =
SetApploader(ExtractNodeToVector(&sys_nodes, &apploader, blob), "apploader");
FSTBuilderNode dol_node{"main.dol", 0, {}};
const auto dol_offset = GetBootDOLOffset(*volume, partition);
if (dol_offset)
{
const auto dol_size = GetBootDOLSize(*volume, partition, *dol_offset);
if (dol_size)
{
std::vector<BuilderContentSource> dol_contents;
dol_contents.emplace_back(
BuilderContentSource{0, *dol_size, ContentVolume{*dol_offset, partition}});
dol_node.m_size = *dol_size;
dol_node.m_content = std::move(dol_contents);
}
}
std::vector<FSTBuilderNode> nodes;
const FileSystem* fs = volume->GetFileSystem(partition);
if (fs && fs->IsValid())
GenerateBuilderNodesFromFileSystem(*volume, partition, &nodes, fs->GetRoot());
if (fst_callback)
fst_callback(&nodes, &dol_node);
const u64 new_fst_address = SetDOL(std::move(dol_node), new_dol_address, &disc_header);
BuildFST(std::move(nodes), new_fst_address, &disc_header);
m_contents.Add(DISCHEADER_ADDRESS, disc_header);
}
void DirectoryBlobPartition::SetDiscType(std::optional<bool> is_wii,
const std::vector<u8>& disc_header)
{
if (is_wii.has_value())
{
m_is_wii = *is_wii;
}
else
{
m_is_wii = Common::swap32(&disc_header[0x18]) == WII_DISC_MAGIC;
const bool is_gc = Common::swap32(&disc_header[0x1c]) == GAMECUBE_DISC_MAGIC;
if (m_is_wii == is_gc)
{
ERROR_LOG_FMT(DISCIO, "Couldn't detect disc type based on disc header; assuming {}",
m_is_wii ? "Wii" : "GameCube");
}
}
m_address_shift = m_is_wii ? 2 : 0;
}
void DirectoryBlobPartition::SetBI2FromFile(const std::string& bi2_path)
{
std::vector<u8> bi2(BI2_SIZE);
if (!m_is_wii)
Write32(INVALID_REGION, 0x18, &bi2);
const size_t bytes_read = ReadFileToVector(bi2_path, &bi2);
if (!m_is_wii && bytes_read < 0x1C)
ERROR_LOG_FMT(DISCIO, "Couldn't read region from {}", bi2_path);
m_contents.Add(BI2_ADDRESS, std::move(bi2));
}
void DirectoryBlobPartition::SetBI2(std::vector<u8> bi2)
{
const size_t bi2_size = bi2.size();
bi2.resize(BI2_SIZE);
if (!m_is_wii && bi2_size < 0x1C)
Write32(INVALID_REGION, 0x18, &bi2);
m_contents.Add(BI2_ADDRESS, std::move(bi2));
}
u64 DirectoryBlobPartition::SetApploaderFromFile(const std::string& path)
{
File::IOFile file(path, "rb");
std::vector<u8> apploader(file.GetSize());
file.ReadBytes(apploader.data(), apploader.size());
return SetApploader(std::move(apploader), path);
}
u64 DirectoryBlobPartition::SetApploader(std::vector<u8> apploader, const std::string& log_path)
{
bool success = false;
if (apploader.size() < 0x20)
{
ERROR_LOG_FMT(DISCIO, "{} couldn't be accessed or is too small", log_path);
}
else
{
const size_t apploader_size =
0x20 + Common::swap32(*(u32*)&apploader[0x14]) + Common::swap32(*(u32*)&apploader[0x18]);
if (apploader_size != apploader.size())
ERROR_LOG_FMT(DISCIO, "{} is the wrong size... Is it really an apploader?", log_path);
else
success = true;
}
if (!success)
{
apploader.resize(0x20);
// Make sure BS2 HLE doesn't try to run the apploader
Write32(static_cast<u32>(-1), 0x10, &apploader);
}
size_t apploader_size = apploader.size();
m_contents.Add(APPLOADER_ADDRESS, std::move(apploader));
// Return DOL address, 32 byte aligned (plus 32 byte padding)
return Common::AlignUp(APPLOADER_ADDRESS + apploader_size + 0x20, 0x20ull);
}
u64 DirectoryBlobPartition::SetDOLFromFile(const std::string& path, u64 dol_address,
std::vector<u8>* disc_header)
{
const u64 dol_size = m_contents.CheckSizeAndAdd(dol_address, path);
Write32(static_cast<u32>(dol_address >> m_address_shift), 0x0420, disc_header);
// Return FST address, 32 byte aligned (plus 32 byte padding)
return Common::AlignUp(dol_address + dol_size + 0x20, 0x20ull);
}
u64 DirectoryBlobPartition::SetDOL(FSTBuilderNode dol_node, u64 dol_address,
std::vector<u8>* disc_header)
{
for (auto& content : dol_node.GetFileContent())
m_contents.Add(dol_address + content.m_offset, content.m_size, std::move(content.m_source));
Write32(static_cast<u32>(dol_address >> m_address_shift), 0x0420, disc_header);
// Return FST address, 32 byte aligned (plus 32 byte padding)
return Common::AlignUp(dol_address + dol_node.m_size + 0x20, 0x20ull);
}
static std::vector<FSTBuilderNode> ConvertFSTEntriesToBuilderNodes(const File::FSTEntry& parent)
{
std::vector<FSTBuilderNode> nodes;
nodes.reserve(parent.children.size());
for (const File::FSTEntry& entry : parent.children)
{
std::variant<std::vector<BuilderContentSource>, std::vector<FSTBuilderNode>> content;
if (entry.isDirectory)
{
content = ConvertFSTEntriesToBuilderNodes(entry);
}
else
{
content =
std::vector<BuilderContentSource>{{0, entry.size, ContentFile{entry.physicalName, 0}}};
}
nodes.emplace_back(FSTBuilderNode{entry.virtualName, entry.size, std::move(content)});
}
return nodes;
}
void DirectoryBlobPartition::BuildFSTFromFolder(const std::string& fst_root_path, u64 fst_address,
std::vector<u8>* disc_header)
{
auto nodes = ConvertFSTEntriesToBuilderNodes(File::ScanDirectoryTree(fst_root_path, true));
BuildFST(std::move(nodes), fst_address, disc_header);
}
static void ConvertUTF8NamesToSHIFTJIS(std::vector<FSTBuilderNode>* fst)
{
for (FSTBuilderNode& entry : *fst)
{
if (entry.IsFolder())
ConvertUTF8NamesToSHIFTJIS(&entry.GetFolderContent());
entry.m_filename = UTF8ToSHIFTJIS(entry.m_filename);
}
}
static u32 ComputeNameSize(const std::vector<FSTBuilderNode>& files)
{
u32 name_size = 0;
for (const FSTBuilderNode& entry : files)
{
if (entry.IsFolder())
name_size += ComputeNameSize(entry.GetFolderContent());
name_size += static_cast<u32>(entry.m_filename.length() + 1);
}
return name_size;
}
static size_t RecalculateFolderSizes(std::vector<FSTBuilderNode>* fst)
{
size_t size = 0;
for (FSTBuilderNode& entry : *fst)
{
++size;
if (entry.IsFile())
continue;
entry.m_size = RecalculateFolderSizes(&entry.GetFolderContent());
size += entry.m_size;
}
return size;
}
void DirectoryBlobPartition::BuildFST(std::vector<FSTBuilderNode> root_nodes, u64 fst_address,
std::vector<u8>* disc_header)
{
ConvertUTF8NamesToSHIFTJIS(&root_nodes);
u32 name_table_size = Common::AlignUp(ComputeNameSize(root_nodes), 1ull << m_address_shift);
// 1 extra for the root entry
u64 total_entries = RecalculateFolderSizes(&root_nodes) + 1;
const u64 name_table_offset = total_entries * ENTRY_SIZE;
std::vector<u8> fst_data(name_table_offset + name_table_size);
// 32 KiB aligned start of data on disc
u64 current_data_address = Common::AlignUp(fst_address + fst_data.size(), 0x8000ull);
u32 fst_offset = 0; // Offset within FST data
u32 name_offset = 0; // Offset within name table
u32 root_offset = 0; // Offset of root of FST
// write root entry
WriteEntryData(&fst_data, &fst_offset, DIRECTORY_ENTRY, 0, 0, total_entries, m_address_shift);
WriteDirectory(&fst_data, &root_nodes, &fst_offset, &name_offset, &current_data_address,
root_offset, name_table_offset);
// overflow check, compare the aligned name offset with the aligned name table size
ASSERT(Common::AlignUp(name_offset, 1ull << m_address_shift) == name_table_size);
// write FST size and location
Write32((u32)(fst_address >> m_address_shift), 0x0424, disc_header);
Write32((u32)(fst_data.size() >> m_address_shift), 0x0428, disc_header);
Write32((u32)(fst_data.size() >> m_address_shift), 0x042c, disc_header);
m_contents.Add(fst_address, std::move(fst_data));
m_data_size = current_data_address;
}
void DirectoryBlobPartition::WriteEntryData(std::vector<u8>* fst_data, u32* entry_offset, u8 type,
u32 name_offset, u64 data_offset, u64 length,
u32 address_shift)
{
(*fst_data)[(*entry_offset)++] = type;
(*fst_data)[(*entry_offset)++] = (name_offset >> 16) & 0xff;
(*fst_data)[(*entry_offset)++] = (name_offset >> 8) & 0xff;
(*fst_data)[(*entry_offset)++] = (name_offset)&0xff;
Write32((u32)(data_offset >> address_shift), *entry_offset, fst_data);
*entry_offset += 4;
Write32((u32)length, *entry_offset, fst_data);
*entry_offset += 4;
}
void DirectoryBlobPartition::WriteEntryName(std::vector<u8>* fst_data, u32* name_offset,
const std::string& name, u64 name_table_offset)
{
strncpy((char*)&(*fst_data)[*name_offset + name_table_offset], name.c_str(), name.length() + 1);
*name_offset += (u32)(name.length() + 1);
}
void DirectoryBlobPartition::WriteDirectory(std::vector<u8>* fst_data,
std::vector<FSTBuilderNode>* parent_entries,
u32* fst_offset, u32* name_offset, u64* data_offset,
u32 parent_entry_index, u64 name_table_offset)
{
std::vector<FSTBuilderNode>& sorted_entries = *parent_entries;
// Sort for determinism
std::sort(sorted_entries.begin(), sorted_entries.end(),
[](const FSTBuilderNode& one, const FSTBuilderNode& two) {
std::string one_upper = one.m_filename;
std::string two_upper = two.m_filename;
Common::ToUpper(&one_upper);
Common::ToUpper(&two_upper);
return one_upper == two_upper ? one.m_filename < two.m_filename :
one_upper < two_upper;
});
for (FSTBuilderNode& entry : sorted_entries)
{
if (entry.IsFolder())
{
u32 entry_index = *fst_offset / ENTRY_SIZE;
WriteEntryData(fst_data, fst_offset, DIRECTORY_ENTRY, *name_offset, parent_entry_index,
entry_index + entry.m_size + 1, 0);
WriteEntryName(fst_data, name_offset, entry.m_filename, name_table_offset);
auto& child_nodes = entry.GetFolderContent();
WriteDirectory(fst_data, &child_nodes, fst_offset, name_offset, data_offset, entry_index,
name_table_offset);
}
else
{
// put entry in FST
WriteEntryData(fst_data, fst_offset, FILE_ENTRY, *name_offset, *data_offset, entry.m_size,
m_address_shift);
WriteEntryName(fst_data, name_offset, entry.m_filename, name_table_offset);
// write entry to virtual disc
auto& contents = entry.GetFileContent();
for (BuilderContentSource& content : contents)
{
m_contents.Add(*data_offset + content.m_offset, content.m_size,
std::move(content.m_source));
}
// 32 KiB aligned - many games are fine with less alignment, but not all
*data_offset = Common::AlignUp(*data_offset + entry.m_size, 0x8000ull);
}
}
}
static size_t ReadFileToVector(const std::string& path, std::vector<u8>* vector)
{
File::IOFile file(path, "rb");
size_t bytes_read;
file.ReadArray<u8>(vector->data(), std::min<u64>(file.GetSize(), vector->size()), &bytes_read);
return bytes_read;
}
static void PadToAddress(u64 start_address, u64* address, u64* length, u8** buffer)
{
if (start_address > *address && *length > 0)
{
u64 padBytes = std::min(start_address - *address, *length);
memset(*buffer, 0, (size_t)padBytes);
*length -= padBytes;
*buffer += padBytes;
*address += padBytes;
}
}
static void Write32(u32 data, u32 offset, std::vector<u8>* buffer)
{
(*buffer)[offset++] = (data >> 24);
(*buffer)[offset++] = (data >> 16) & 0xff;
(*buffer)[offset++] = (data >> 8) & 0xff;
(*buffer)[offset] = data & 0xff;
}
} // namespace DiscIO