dolphin/Source/Core/VideoCommon/BPMemory.h
2017-07-30 17:43:59 +10:00

1073 lines
23 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <string>
#include "Common/BitField.h"
#include "Common/CommonTypes.h"
#pragma pack(4)
enum
{
BPMEM_GENMODE = 0x00,
BPMEM_DISPLAYCOPYFILTER = 0x01, // 0x01 + 4
BPMEM_IND_MTXA = 0x06, // 0x06 + (3 * 3)
BPMEM_IND_MTXB = 0x07, // 0x07 + (3 * 3)
BPMEM_IND_MTXC = 0x08, // 0x08 + (3 * 3)
BPMEM_IND_IMASK = 0x0F,
BPMEM_IND_CMD = 0x10, // 0x10 + 16
BPMEM_SCISSORTL = 0x20,
BPMEM_SCISSORBR = 0x21,
BPMEM_LINEPTWIDTH = 0x22,
BPMEM_PERF0_TRI = 0x23,
BPMEM_PERF0_QUAD = 0x24,
BPMEM_RAS1_SS0 = 0x25,
BPMEM_RAS1_SS1 = 0x26,
BPMEM_IREF = 0x27,
BPMEM_TREF = 0x28, // 0x28 + 8
BPMEM_SU_SSIZE = 0x30, // 0x30 + (2 * 8)
BPMEM_SU_TSIZE = 0x31, // 0x31 + (2 * 8)
BPMEM_ZMODE = 0x40,
BPMEM_BLENDMODE = 0x41,
BPMEM_CONSTANTALPHA = 0x42,
BPMEM_ZCOMPARE = 0x43,
BPMEM_FIELDMASK = 0x44,
BPMEM_SETDRAWDONE = 0x45,
BPMEM_BUSCLOCK0 = 0x46,
BPMEM_PE_TOKEN_ID = 0x47,
BPMEM_PE_TOKEN_INT_ID = 0x48,
BPMEM_EFB_TL = 0x49,
BPMEM_EFB_BR = 0x4A,
BPMEM_EFB_ADDR = 0x4B,
BPMEM_MIPMAP_STRIDE = 0x4D,
BPMEM_COPYYSCALE = 0x4E,
BPMEM_CLEAR_AR = 0x4F,
BPMEM_CLEAR_GB = 0x50,
BPMEM_CLEAR_Z = 0x51,
BPMEM_TRIGGER_EFB_COPY = 0x52,
BPMEM_COPYFILTER0 = 0x53,
BPMEM_COPYFILTER1 = 0x54,
BPMEM_CLEARBBOX1 = 0x55,
BPMEM_CLEARBBOX2 = 0x56,
BPMEM_CLEAR_PIXEL_PERF = 0x57,
BPMEM_REVBITS = 0x58,
BPMEM_SCISSOROFFSET = 0x59,
BPMEM_PRELOAD_ADDR = 0x60,
BPMEM_PRELOAD_TMEMEVEN = 0x61,
BPMEM_PRELOAD_TMEMODD = 0x62,
BPMEM_PRELOAD_MODE = 0x63,
BPMEM_LOADTLUT0 = 0x64,
BPMEM_LOADTLUT1 = 0x65,
BPMEM_TEXINVALIDATE = 0x66,
BPMEM_PERF1 = 0x67,
BPMEM_FIELDMODE = 0x68,
BPMEM_BUSCLOCK1 = 0x69,
BPMEM_TX_SETMODE0 = 0x80, // 0x80 + 4
BPMEM_TX_SETMODE1 = 0x84, // 0x84 + 4
BPMEM_TX_SETIMAGE0 = 0x88, // 0x88 + 4
BPMEM_TX_SETIMAGE1 = 0x8C, // 0x8C + 4
BPMEM_TX_SETIMAGE2 = 0x90, // 0x90 + 4
BPMEM_TX_SETIMAGE3 = 0x94, // 0x94 + 4
BPMEM_TX_SETTLUT = 0x98, // 0x98 + 4
BPMEM_TX_SETMODE0_4 = 0xA0, // 0xA0 + 4
BPMEM_TX_SETMODE1_4 = 0xA4, // 0xA4 + 4
BPMEM_TX_SETIMAGE0_4 = 0xA8, // 0xA8 + 4
BPMEM_TX_SETIMAGE1_4 = 0xAC, // 0xA4 + 4
BPMEM_TX_SETIMAGE2_4 = 0xB0, // 0xB0 + 4
BPMEM_TX_SETIMAGE3_4 = 0xB4, // 0xB4 + 4
BPMEM_TX_SETTLUT_4 = 0xB8, // 0xB8 + 4
BPMEM_TEV_COLOR_ENV = 0xC0, // 0xC0 + (2 * 16)
BPMEM_TEV_ALPHA_ENV = 0xC1, // 0xC1 + (2 * 16)
BPMEM_TEV_COLOR_RA = 0xE0, // 0xE0 + (2 * 4)
BPMEM_TEV_COLOR_BG = 0xE1, // 0xE1 + (2 * 4)
BPMEM_FOGRANGE = 0xE8, // 0xE8 + 6
BPMEM_FOGPARAM0 = 0xEE,
BPMEM_FOGBMAGNITUDE = 0xEF,
BPMEM_FOGBEXPONENT = 0xF0,
BPMEM_FOGPARAM3 = 0xF1,
BPMEM_FOGCOLOR = 0xF2,
BPMEM_ALPHACOMPARE = 0xF3,
BPMEM_BIAS = 0xF4,
BPMEM_ZTEX2 = 0xF5,
BPMEM_TEV_KSEL = 0xF6, // 0xF6 + 8
BPMEM_BP_MASK = 0xFE,
};
// Tev/combiner things
// TEV scaling type
enum : u32
{
TEVSCALE_1 = 0,
TEVSCALE_2 = 1,
TEVSCALE_4 = 2,
TEVDIVIDE_2 = 3
};
enum : u32
{
TEVCMP_R8 = 0,
TEVCMP_GR16 = 1,
TEVCMP_BGR24 = 2,
TEVCMP_RGB8 = 3
};
// TEV combiner operator
enum : u32
{
TEVOP_ADD = 0,
TEVOP_SUB = 1,
TEVCMP_R8_GT = 8,
TEVCMP_R8_EQ = 9,
TEVCMP_GR16_GT = 10,
TEVCMP_GR16_EQ = 11,
TEVCMP_BGR24_GT = 12,
TEVCMP_BGR24_EQ = 13,
TEVCMP_RGB8_GT = 14,
TEVCMP_RGB8_EQ = 15,
TEVCMP_A8_GT = TEVCMP_RGB8_GT,
TEVCMP_A8_EQ = TEVCMP_RGB8_EQ
};
// TEV color combiner input
enum : u32
{
TEVCOLORARG_CPREV = 0,
TEVCOLORARG_APREV = 1,
TEVCOLORARG_C0 = 2,
TEVCOLORARG_A0 = 3,
TEVCOLORARG_C1 = 4,
TEVCOLORARG_A1 = 5,
TEVCOLORARG_C2 = 6,
TEVCOLORARG_A2 = 7,
TEVCOLORARG_TEXC = 8,
TEVCOLORARG_TEXA = 9,
TEVCOLORARG_RASC = 10,
TEVCOLORARG_RASA = 11,
TEVCOLORARG_ONE = 12,
TEVCOLORARG_HALF = 13,
TEVCOLORARG_KONST = 14,
TEVCOLORARG_ZERO = 15
};
// TEV alpha combiner input
enum : u32
{
TEVALPHAARG_APREV = 0,
TEVALPHAARG_A0 = 1,
TEVALPHAARG_A1 = 2,
TEVALPHAARG_A2 = 3,
TEVALPHAARG_TEXA = 4,
TEVALPHAARG_RASA = 5,
TEVALPHAARG_KONST = 6,
TEVALPHAARG_ZERO = 7
};
// TEV output registers
enum : u32
{
GX_TEVPREV = 0,
GX_TEVREG0 = 1,
GX_TEVREG1 = 2,
GX_TEVREG2 = 3
};
// Z-texture formats
enum : u32
{
TEV_ZTEX_TYPE_U8 = 0,
TEV_ZTEX_TYPE_U16 = 1,
TEV_ZTEX_TYPE_U24 = 2
};
// Z texture operator
enum : u32
{
ZTEXTURE_DISABLE = 0,
ZTEXTURE_ADD = 1,
ZTEXTURE_REPLACE = 2
};
// TEV bias value
enum : u32
{
TEVBIAS_ZERO = 0,
TEVBIAS_ADDHALF = 1,
TEVBIAS_SUBHALF = 2,
TEVBIAS_COMPARE = 3
};
// Indirect texture format
enum : u32
{
ITF_8 = 0,
ITF_5 = 1,
ITF_4 = 2,
ITF_3 = 3
};
// Indirect texture bias
enum : u32
{
ITB_NONE = 0,
ITB_S = 1,
ITB_T = 2,
ITB_ST = 3,
ITB_U = 4,
ITB_SU = 5,
ITB_TU = 6,
ITB_STU = 7
};
// Indirect texture bump alpha
enum : u32
{
ITBA_OFF = 0,
ITBA_S = 1,
ITBA_T = 2,
ITBA_U = 3
};
// Indirect texture wrap value
enum : u32
{
ITW_OFF = 0,
ITW_256 = 1,
ITW_128 = 2,
ITW_64 = 3,
ITW_32 = 4,
ITW_16 = 5,
ITW_0 = 6
};
union IND_MTXA
{
struct
{
s32 ma : 11;
s32 mb : 11;
u32 s0 : 2; // bits 0-1 of scale factor
u32 rid : 8;
};
u32 hex;
};
union IND_MTXB
{
struct
{
s32 mc : 11;
s32 md : 11;
u32 s1 : 2; // bits 2-3 of scale factor
u32 rid : 8;
};
u32 hex;
};
union IND_MTXC
{
struct
{
s32 me : 11;
s32 mf : 11;
u32 s2 : 2; // bits 4-5 of scale factor
u32 rid : 8;
};
u32 hex;
};
struct IND_MTX
{
IND_MTXA col0;
IND_MTXB col1;
IND_MTXC col2;
};
union IND_IMASK
{
struct
{
u32 mask : 24;
u32 rid : 8;
};
u32 hex;
};
struct TevStageCombiner
{
union ColorCombiner
{
// abc=8bit,d=10bit
BitField<0, 4, u32> d; // TEVSELCC_X
BitField<4, 4, u32> c; // TEVSELCC_X
BitField<8, 4, u32> b; // TEVSELCC_X
BitField<12, 4, u32> a; // TEVSELCC_X
BitField<16, 2, u32> bias;
BitField<18, 1, u32> op;
BitField<19, 1, u32> clamp;
BitField<20, 2, u32> shift;
BitField<22, 2, u32> dest; // 1,2,3
u32 hex;
};
union AlphaCombiner
{
BitField<0, 2, u32> rswap;
BitField<2, 2, u32> tswap;
BitField<4, 3, u32> d; // TEVSELCA_
BitField<7, 3, u32> c; // TEVSELCA_
BitField<10, 3, u32> b; // TEVSELCA_
BitField<13, 3, u32> a; // TEVSELCA_
BitField<16, 2, u32> bias; // GXTevBias
BitField<18, 1, u32> op;
BitField<19, 1, u32> clamp;
BitField<20, 2, u32> shift;
BitField<22, 2, u32> dest; // 1,2,3
u32 hex;
};
ColorCombiner colorC;
AlphaCombiner alphaC;
};
// several discoveries:
// GXSetTevIndBumpST(tevstage, indstage, matrixind)
// if ( matrix == 2 ) realmat = 6; // 10
// else if ( matrix == 3 ) realmat = 7; // 11
// else if ( matrix == 1 ) realmat = 5; // 9
// GXSetTevIndirect(tevstage, indstage, 0, 3, realmat, 6, 6, 0, 0, 0)
// GXSetTevIndirect(tevstage+1, indstage, 0, 3, realmat+4, 6, 6, 1, 0, 0)
// GXSetTevIndirect(tevstage+2, indstage, 0, 0, 0, 0, 0, 1, 0, 0)
union TevStageIndirect
{
BitField<0, 2, u32> bt; // Indirect tex stage ID
BitField<2, 2, u32> fmt; // Format: ITF_X
BitField<4, 3, u32> bias; // ITB_X
BitField<7, 2, u32> bs; // ITBA_X, indicates which coordinate will become the 'bump alpha'
BitField<9, 4, u32> mid; // Matrix ID to multiply offsets with
BitField<13, 3, u32> sw; // ITW_X, wrapping factor for S of regular coord
BitField<16, 3, u32> tw; // ITW_X, wrapping factor for T of regular coord
BitField<19, 1, u32> lb_utclod; // Use modified or unmodified texture
// coordinates for LOD computation
BitField<20, 1, u32> fb_addprev; // 1 if the texture coordinate results from the previous TEV
// stage should be added
struct
{
u32 hex : 21;
u32 unused : 11;
};
// If bs and mid are zero, the result of the stage is independent of
// the texture sample data, so we can skip sampling the texture.
bool IsActive() const { return bs != ITBA_OFF || mid != 0; }
};
union TwoTevStageOrders
{
BitField<0, 3, u32> texmap0; // Indirect tex stage texmap
BitField<3, 3, u32> texcoord0;
BitField<6, 1, u32> enable0; // 1 if should read from texture
BitField<7, 3, u32> colorchan0; // RAS1_CC_X
BitField<12, 3, u32> texmap1;
BitField<15, 3, u32> texcoord1;
BitField<18, 1, u32> enable1; // 1 if should read from texture
BitField<19, 3, u32> colorchan1; // RAS1_CC_X
BitField<24, 8, u32> rid;
u32 hex;
u32 getTexMap(int i) const { return i ? texmap1.Value() : texmap0.Value(); }
u32 getTexCoord(int i) const { return i ? texcoord1.Value() : texcoord0.Value(); }
u32 getEnable(int i) const { return i ? enable1.Value() : enable0.Value(); }
u32 getColorChan(int i) const { return i ? colorchan1.Value() : colorchan0.Value(); }
};
union TEXSCALE
{
struct
{
u32 ss0 : 4; // Indirect tex stage 0, 2^(-ss0)
u32 ts0 : 4; // Indirect tex stage 0
u32 ss1 : 4; // Indirect tex stage 1
u32 ts1 : 4; // Indirect tex stage 1
u32 pad : 8;
u32 rid : 8;
};
u32 hex;
};
union RAS1_IREF
{
struct
{
u32 bi0 : 3; // Indirect tex stage 0 ntexmap
u32 bc0 : 3; // Indirect tex stage 0 ntexcoord
u32 bi1 : 3;
u32 bc1 : 3;
u32 bi2 : 3;
u32 bc3 : 3;
u32 bi4 : 3;
u32 bc4 : 3;
u32 rid : 8;
};
u32 hex;
u32 getTexCoord(int i) const { return (hex >> (6 * i + 3)) & 7; }
u32 getTexMap(int i) const { return (hex >> (6 * i)) & 7; }
};
// Texture structs
union TexMode0
{
enum TextureFilter : u32
{
TEXF_NONE = 0,
TEXF_POINT = 1,
TEXF_LINEAR = 2
};
struct
{
u32 wrap_s : 2;
u32 wrap_t : 2;
u32 mag_filter : 1;
u32 min_filter : 3;
u32 diag_lod : 1;
s32 lod_bias : 8;
u32 pad0 : 2;
u32 max_aniso : 2;
u32 lod_clamp : 1;
};
u32 hex;
};
union TexMode1
{
struct
{
u32 min_lod : 8;
u32 max_lod : 8;
};
u32 hex;
};
union TexImage0
{
struct
{
u32 width : 10; // Actually w-1
u32 height : 10; // Actually h-1
u32 format : 4;
};
u32 hex;
};
union TexImage1
{
struct
{
u32 tmem_even : 15; // TMEM line index for even LODs
u32 cache_width : 3;
u32 cache_height : 3;
u32 image_type : 1; // 1 if this texture is managed manually (0 means we'll autofetch the
// texture data whenever it changes)
};
u32 hex;
};
union TexImage2
{
struct
{
u32 tmem_odd : 15; // tmem line index for odd LODs
u32 cache_width : 3;
u32 cache_height : 3;
};
u32 hex;
};
union TexImage3
{
struct
{
u32 image_base : 24; // address in memory >> 5 (was 20 for GC)
};
u32 hex;
};
union TexTLUT
{
struct
{
u32 tmem_offset : 10;
u32 tlut_format : 2;
};
u32 hex;
};
union ZTex1
{
BitField<0, 24, u32> bias;
u32 hex;
};
union ZTex2
{
BitField<0, 2, u32> type; // TEV_Z_TYPE_X
BitField<2, 2, u32> op; // GXZTexOp
u32 hex;
};
struct FourTexUnits
{
TexMode0 texMode0[4];
TexMode1 texMode1[4];
TexImage0 texImage0[4];
TexImage1 texImage1[4];
TexImage2 texImage2[4];
TexImage3 texImage3[4];
TexTLUT texTlut[4];
u32 unknown[4];
};
// Geometry/other structs
union GenMode
{
enum CullMode : u32
{
CULL_NONE = 0,
CULL_BACK = 1, // cull back-facing primitives
CULL_FRONT = 2, // cull front-facing primitives
CULL_ALL = 3, // cull all primitives
};
BitField<0, 4, u32> numtexgens;
BitField<4, 3, u32> numcolchans;
// 1 bit unused?
BitField<8, 1, u32> flat_shading; // unconfirmed
BitField<9, 1, u32> multisampling;
BitField<10, 4, u32> numtevstages;
BitField<14, 2, CullMode> cullmode;
BitField<16, 3, u32> numindstages;
BitField<19, 1, u32> zfreeze;
u32 hex;
};
union LPSize
{
struct
{
u32 linesize : 8; // in 1/6th pixels
u32 pointsize : 8; // in 1/6th pixels
u32 lineoff : 3;
u32 pointoff : 3;
u32 lineaspect : 1; // interlacing: adjust for pixels having AR of 1/2
u32 padding : 1;
};
u32 hex;
};
union X12Y12
{
struct
{
u32 y : 12;
u32 x : 12;
};
u32 hex;
};
union X10Y10
{
struct
{
u32 x : 10;
u32 y : 10;
};
u32 hex;
};
// Framebuffer/pixel stuff (incl fog)
union BlendMode
{
enum BlendFactor : u32
{
ZERO = 0,
ONE = 1,
SRCCLR = 2, // for dst factor
INVSRCCLR = 3, // for dst factor
DSTCLR = SRCCLR, // for src factor
INVDSTCLR = INVSRCCLR, // for src factor
SRCALPHA = 4,
INVSRCALPHA = 5,
DSTALPHA = 6,
INVDSTALPHA = 7
};
enum LogicOp : u32
{
CLEAR = 0,
AND = 1,
AND_REVERSE = 2,
COPY = 3,
AND_INVERTED = 4,
NOOP = 5,
XOR = 6,
OR = 7,
NOR = 8,
EQUIV = 9,
INVERT = 10,
OR_REVERSE = 11,
COPY_INVERTED = 12,
OR_INVERTED = 13,
NAND = 14,
SET = 15
};
BitField<0, 1, u32> blendenable;
BitField<1, 1, u32> logicopenable;
BitField<2, 1, u32> dither;
BitField<3, 1, u32> colorupdate;
BitField<4, 1, u32> alphaupdate;
BitField<5, 3, BlendFactor> dstfactor;
BitField<8, 3, BlendFactor> srcfactor;
BitField<11, 1, u32> subtract;
BitField<12, 4, LogicOp> logicmode;
u32 hex;
};
union FogParam0
{
struct
{
u32 mantissa : 11;
u32 exponent : 8;
u32 sign : 1;
};
float GetA() const;
u32 hex;
};
union FogParam3
{
BitField<0, 11, u32> c_mant;
BitField<11, 8, u32> c_exp;
BitField<19, 1, u32> c_sign;
BitField<20, 1, u32> proj; // 0 - perspective, 1 - orthographic
BitField<21, 3, u32> fsel; // 0 - off, 2 - linear, 4 - exp, 5 - exp2, 6 -
// backward exp, 7 - backward exp2
// amount to subtract from eyespacez after range adjustment
float GetC() const;
u32 hex;
};
union FogRangeKElement
{
BitField<0, 12, u32> HI;
BitField<12, 12, u32> LO;
BitField<24, 8, u32> regid;
// TODO: Which scaling coefficient should we use here? This is just a guess!
float GetValue(int i) const { return (i ? HI.Value() : LO.Value()) / 256.f; }
u32 HEX;
};
struct FogRangeParams
{
union RangeBase
{
BitField<0, 10, u32> Center; // viewport center + 342
BitField<10, 1, u32> Enabled;
BitField<24, 8, u32> regid;
u32 hex;
};
RangeBase Base;
FogRangeKElement K[5];
};
// final eq: ze = A/(B_MAG - (Zs>>B_SHF));
struct FogParams
{
FogParam0 a;
u32 b_magnitude;
u32 b_shift; // b's exp + 1?
FogParam3 c_proj_fsel;
union FogColor
{
BitField<0, 8, u32> b;
BitField<8, 8, u32> g;
BitField<16, 8, u32> r;
u32 hex;
};
FogColor color; // 0:b 8:g 16:r - nice!
};
union ZMode
{
enum CompareMode : u32
{
NEVER = 0,
LESS = 1,
EQUAL = 2,
LEQUAL = 3,
GREATER = 4,
NEQUAL = 5,
GEQUAL = 6,
ALWAYS = 7
};
BitField<0, 1, u32> testenable;
BitField<1, 3, CompareMode> func;
BitField<4, 1, u32> updateenable;
u32 hex;
};
union ConstantAlpha
{
BitField<0, 8, u32> alpha;
BitField<8, 1, u32> enable;
u32 hex;
};
union FieldMode
{
struct
{
u32 texLOD : 1; // adjust vert tex LOD computation to account for interlacing
};
u32 hex;
};
union FieldMask
{
struct
{
// If bit is not set, do not write field to EFB
u32 odd : 1;
u32 even : 1;
};
u32 hex;
};
union PEControl
{
enum PixelFormat : u32
{
RGB8_Z24 = 0,
RGBA6_Z24 = 1,
RGB565_Z16 = 2,
Z24 = 3,
Y8 = 4,
U8 = 5,
V8 = 6,
YUV420 = 7,
INVALID_FMT = 0xffffffff, // Used by Dolphin to represent a missing value.
};
enum DepthFormat : u32
{
ZLINEAR = 0,
ZNEAR = 1,
ZMID = 2,
ZFAR = 3,
// It seems these Z formats aren't supported/were removed ?
ZINV_LINEAR = 4,
ZINV_NEAR = 5,
ZINV_MID = 6,
ZINV_FAR = 7
};
BitField<0, 3, PixelFormat> pixel_format;
BitField<3, 3, DepthFormat> zformat;
BitField<6, 1, u32> early_ztest;
u32 hex;
};
// Texture coordinate stuff
union TCInfo
{
struct
{
u32 scale_minus_1 : 16;
u32 range_bias : 1;
u32 cylindric_wrap : 1;
// These bits only have effect in the s field of TCoordInfo
u32 line_offset : 1;
u32 point_offset : 1;
};
u32 hex;
};
struct TCoordInfo
{
TCInfo s;
TCInfo t;
};
union TevReg
{
u64 hex;
// Access to individual registers
BitField<0, 32, u64> low;
BitField<32, 32, u64> high;
// TODO: Check if Konst uses all 11 bits or just 8
// Low register
BitField<0, 11, s64> red;
BitField<12, 11, s64> alpha;
BitField<23, 1, u64> type_ra;
// High register
BitField<32, 11, s64> blue;
BitField<44, 11, s64> green;
BitField<55, 1, u64> type_bg;
};
union TevKSel
{
BitField<0, 2, u32> swap1;
BitField<2, 2, u32> swap2;
BitField<4, 5, u32> kcsel0;
BitField<9, 5, u32> kasel0;
BitField<14, 5, u32> kcsel1;
BitField<19, 5, u32> kasel1;
u32 hex;
u32 getKC(int i) const { return i ? kcsel1.Value() : kcsel0.Value(); }
u32 getKA(int i) const { return i ? kasel1.Value() : kasel0.Value(); }
};
union AlphaTest
{
enum CompareMode : u32
{
NEVER = 0,
LESS = 1,
EQUAL = 2,
LEQUAL = 3,
GREATER = 4,
NEQUAL = 5,
GEQUAL = 6,
ALWAYS = 7
};
enum Op : u32
{
AND = 0,
OR = 1,
XOR = 2,
XNOR = 3
};
BitField<0, 8, u32> ref0;
BitField<8, 8, u32> ref1;
BitField<16, 3, CompareMode> comp0;
BitField<19, 3, CompareMode> comp1;
BitField<22, 2, Op> logic;
u32 hex;
enum TEST_RESULT
{
UNDETERMINED = 0,
FAIL = 1,
PASS = 2,
};
__forceinline TEST_RESULT TestResult() const
{
switch (logic)
{
case AND:
if (comp0 == ALWAYS && comp1 == ALWAYS)
return PASS;
if (comp0 == NEVER || comp1 == NEVER)
return FAIL;
break;
case OR:
if (comp0 == ALWAYS || comp1 == ALWAYS)
return PASS;
if (comp0 == NEVER && comp1 == NEVER)
return FAIL;
break;
case XOR:
if ((comp0 == ALWAYS && comp1 == NEVER) || (comp0 == NEVER && comp1 == ALWAYS))
return PASS;
if ((comp0 == ALWAYS && comp1 == ALWAYS) || (comp0 == NEVER && comp1 == NEVER))
return FAIL;
break;
case XNOR:
if ((comp0 == ALWAYS && comp1 == NEVER) || (comp0 == NEVER && comp1 == ALWAYS))
return FAIL;
if ((comp0 == ALWAYS && comp1 == ALWAYS) || (comp0 == NEVER && comp1 == NEVER))
return PASS;
break;
default:
return UNDETERMINED;
}
return UNDETERMINED;
}
};
union UPE_Copy
{
u32 Hex;
BitField<0, 1, u32> clamp0; // if set clamp top
BitField<1, 1, u32> clamp1; // if set clamp bottom
BitField<2, 1, u32> yuv; // if set, color conversion from RGB to YUV
BitField<3, 4, u32> target_pixel_format; // realformat is (fmt/2)+((fmt&1)*8).... for some reason
// the msb is the lsb (pattern: cycling right shift)
BitField<7, 2, u32> gamma; // gamma correction.. 0 = 1.0 ; 1 = 1.7 ; 2 = 2.2 ; 3 is reserved
BitField<9, 1, u32>
half_scale; // "mipmap" filter... 0 = no filter (scale 1:1) ; 1 = box filter (scale 2:1)
BitField<10, 1, u32> scale_invert; // if set vertical scaling is on
BitField<11, 1, u32> clear;
BitField<12, 2, u32> frame_to_field; // 0 progressive ; 1 is reserved ; 2 = interlaced (even
// lines) ; 3 = interlaced 1 (odd lines)
BitField<14, 1, u32> copy_to_xfb;
BitField<15, 1, u32> intensity_fmt; // if set, is an intensity format (I4,I8,IA4,IA8)
BitField<16, 1, u32>
auto_conv; // if 0 automatic color conversion by texture format and pixel type
u32 tp_realFormat() const { return target_pixel_format / 2 + (target_pixel_format & 1) * 8; }
};
union BPU_PreloadTileInfo
{
u32 hex;
struct
{
u32 count : 15;
u32 type : 2;
};
};
struct BPS_TmemConfig
{
u32 preload_addr;
u32 preload_tmem_even;
u32 preload_tmem_odd;
BPU_PreloadTileInfo preload_tile_info;
u32 tlut_src;
u32 tlut_dest;
u32 texinvalidate;
};
// All of BP memory
struct BPCmd
{
int address;
int changes;
int newvalue;
};
struct BPMemory
{
GenMode genMode;
u32 display_copy_filter[4]; // 01-04
u32 unknown; // 05
// indirect matrices (set by GXSetIndTexMtx, selected by TevStageIndirect::mid)
// abc form a 2x3 offset matrix, there's 3 such matrices
// the 3 offset matrices can either be indirect type, S-type, or T-type
// 6bit scale factor s is distributed across IND_MTXA/B/C.
// before using matrices scale by 2^-(s-17)
IND_MTX indmtx[3]; // 06-0e GXSetIndTexMtx, 2x3 matrices
IND_IMASK imask; // 0f
TevStageIndirect tevind[16]; // 10 GXSetTevIndirect
X12Y12 scissorTL; // 20
X12Y12 scissorBR; // 21
LPSize lineptwidth; // 22 line and point width
u32 sucounter; // 23
u32 rascounter; // 24
TEXSCALE texscale[2]; // 25-26 GXSetIndTexCoordScale
RAS1_IREF tevindref; // 27 GXSetIndTexOrder
TwoTevStageOrders tevorders[8]; // 28-2F
TCoordInfo texcoords[8]; // 0x30 s,t,s,t,s,t,s,t...
ZMode zmode; // 40
BlendMode blendmode; // 41
ConstantAlpha dstalpha; // 42
PEControl zcontrol; // 43 GXSetZCompLoc, GXPixModeSync
FieldMask fieldmask; // 44
u32 drawdone; // 45, bit1=1 if end of list
u32 unknown5; // 46 clock?
u32 petoken; // 47
u32 petokenint; // 48
X10Y10 copyTexSrcXY; // 49
X10Y10 copyTexSrcWH; // 4a
u32 copyTexDest; // 4b// 4b == CopyAddress (GXDispCopy and GXTexCopy use it)
u32 unknown6; // 4c
u32 copyMipMapStrideChannels; // 4d usually set to 4 when dest is single channel, 8 when dest is
// 2 channel, 16 when dest is RGBA
// also, doubles whenever mipmap box filter option is set (excent on RGBA). Probably to do with
// number of bytes to look at when smoothing
u32 dispcopyyscale; // 4e
u32 clearcolorAR; // 4f
u32 clearcolorGB; // 50
u32 clearZValue; // 51
UPE_Copy triggerEFBCopy; // 52
u32 copyfilter[2]; // 53,54
u32 boundbox0; // 55
u32 boundbox1; // 56
u32 unknown7[2]; // 57,58
X10Y10 scissorOffset; // 59
u32 unknown8[6]; // 5a,5b,5c,5d, 5e,5f
BPS_TmemConfig tmem_config; // 60-66
u32 metric; // 67
FieldMode fieldmode; // 68
u32 unknown10[7]; // 69-6F
u32 unknown11[16]; // 70-7F
FourTexUnits tex[2]; // 80-bf
TevStageCombiner combiners[16]; // 0xC0-0xDF
TevReg tevregs[4]; // 0xE0
FogRangeParams fogRange; // 0xE8
FogParams fog; // 0xEE,0xEF,0xF0,0xF1,0xF2
AlphaTest alpha_test; // 0xF3
ZTex1 ztex1; // 0xf4,0xf5
ZTex2 ztex2;
TevKSel tevksel[8]; // 0xf6,0xf7,f8,f9,fa,fb,fc,fd
u32 bpMask; // 0xFE
u32 unknown18; // ff
bool UseEarlyDepthTest() const { return zcontrol.early_ztest && zmode.testenable; }
bool UseLateDepthTest() const { return !zcontrol.early_ztest && zmode.testenable; }
};
#pragma pack()
extern BPMemory bpmem;
void LoadBPReg(u32 value0);
void LoadBPRegPreprocess(u32 value0);
void GetBPRegInfo(const u8* data, std::string* name, std::string* desc);