dolphin/Source/Core/VideoCommon/RenderBase.cpp
2017-05-26 00:53:58 -07:00

987 lines
29 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#include "VideoCommon/RenderBase.h"
#include <cinttypes>
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include <tuple>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/FileUtil.h"
#include "Common/Flag.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Profiler.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "Common/Timer.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/Movie.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/PostProcessing.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
// TODO: Move these out of here.
int frameCount;
int OSDChoice;
static int OSDTime;
std::unique_ptr<Renderer> g_renderer;
// The maximum depth that is written to the depth buffer should never exceed this value.
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
// floating-point round-trip errors. However the console GPU doesn't ever write a value
// to the depth buffer that exceeds 2^24 - 1.
const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
static float AspectToWidescreen(float aspect)
{
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
Renderer::Renderer(int backbuffer_width, int backbuffer_height)
: m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height),
m_last_efb_scale(g_ActiveConfig.iEFBScale)
{
FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
UpdateActiveConfig();
UpdateDrawRectangle();
CalculateTargetSize();
OSDChoice = 0;
OSDTime = 0;
if (SConfig::GetInstance().bWii)
{
m_aspect_wide = SConfig::GetInstance().m_wii_aspect_ratio != 0;
}
}
Renderer::~Renderer()
{
ShutdownFrameDumping();
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
}
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma)
{
CheckFifoRecording();
if (!fbStride || !fbHeight)
return;
m_xfb_written = true;
if (g_ActiveConfig.bUseXFB)
{
FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma);
}
else
{
// The timing is not predictable here. So try to use the XFB path to dump frames.
u64 ticks = CoreTiming::GetTicks();
// below div two to convert from bytes to pixels - it expects width, not stride
Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, ticks, Gamma);
}
}
int Renderer::EFBToScaledX(int x) const
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, m_target_rectangle);
default:
return x * (int)m_efb_scale_numeratorX / (int)m_efb_scale_denominatorX;
};
}
int Renderer::EFBToScaledY(int y) const
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, m_target_rectangle);
default:
return y * (int)m_efb_scale_numeratorY / (int)m_efb_scale_denominatorY;
};
}
float Renderer::EFBToScaledXf(float x) const
{
return x * ((float)GetTargetWidth() / (float)EFB_WIDTH);
}
float Renderer::EFBToScaledYf(float y) const
{
return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT);
}
std::tuple<int, int> Renderer::CalculateTargetScale(int x, int y) const
{
if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
{
return std::make_tuple(x, y);
}
const int scaled_x =
x * static_cast<int>(m_efb_scale_numeratorX) / static_cast<int>(m_efb_scale_denominatorX);
const int scaled_y =
y * static_cast<int>(m_efb_scale_numeratorY) / static_cast<int>(m_efb_scale_denominatorY);
return std::make_tuple(scaled_x, scaled_y);
}
// return true if target size changed
bool Renderer::CalculateTargetSize()
{
m_last_efb_scale = g_ActiveConfig.iEFBScale;
int new_efb_width = 0;
int new_efb_height = 0;
// TODO: Ugly. Clean up
switch (m_last_efb_scale)
{
case SCALE_AUTO:
case SCALE_AUTO_INTEGRAL:
new_efb_width = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, m_target_rectangle);
new_efb_height =
FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, m_target_rectangle);
if (m_last_efb_scale == SCALE_AUTO_INTEGRAL)
{
m_efb_scale_numeratorX = m_efb_scale_numeratorY =
std::max((new_efb_width - 1) / EFB_WIDTH + 1, (new_efb_height - 1) / EFB_HEIGHT + 1);
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
new_efb_width = EFBToScaledX(EFB_WIDTH);
new_efb_height = EFBToScaledY(EFB_HEIGHT);
}
else
{
m_efb_scale_numeratorX = new_efb_width;
m_efb_scale_denominatorX = EFB_WIDTH;
m_efb_scale_numeratorY = new_efb_height;
m_efb_scale_denominatorY = EFB_HEIGHT;
}
break;
case SCALE_1X:
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 1;
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
break;
case SCALE_1_5X:
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 3;
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2;
break;
case SCALE_2X:
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 2;
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
break;
case SCALE_2_5X:
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 5;
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2;
break;
default:
m_efb_scale_numeratorX = m_efb_scale_numeratorY = m_last_efb_scale - 3;
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize;
if (max_size < EFB_WIDTH * m_efb_scale_numeratorX / m_efb_scale_denominatorX)
{
m_efb_scale_numeratorX = m_efb_scale_numeratorY = (max_size / EFB_WIDTH);
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
}
break;
}
if (m_last_efb_scale > SCALE_AUTO_INTEGRAL)
std::tie(new_efb_width, new_efb_height) = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT);
if (new_efb_width != m_target_width || new_efb_height != m_target_height)
{
m_target_width = new_efb_width;
m_target_height = new_efb_height;
PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1));
return true;
}
return false;
}
std::tuple<TargetRectangle, TargetRectangle>
Renderer::ConvertStereoRectangle(const TargetRectangle& rc) const
{
// Resize target to half its original size
TargetRectangle draw_rc = rc;
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
{
// The height may be negative due to flipped rectangles
int height = rc.bottom - rc.top;
draw_rc.top += height / 4;
draw_rc.bottom -= height / 4;
}
else
{
int width = rc.right - rc.left;
draw_rc.left += width / 4;
draw_rc.right -= width / 4;
}
// Create two target rectangle offset to the sides of the backbuffer
TargetRectangle left_rc = draw_rc;
TargetRectangle right_rc = draw_rc;
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
{
left_rc.top -= m_backbuffer_height / 4;
left_rc.bottom -= m_backbuffer_height / 4;
right_rc.top += m_backbuffer_height / 4;
right_rc.bottom += m_backbuffer_height / 4;
}
else
{
left_rc.left -= m_backbuffer_width / 4;
left_rc.right -= m_backbuffer_width / 4;
right_rc.left += m_backbuffer_width / 4;
right_rc.right += m_backbuffer_width / 4;
}
return std::make_tuple(left_rc, right_rc);
}
void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion)
{
// We must not hold the lock while waiting for the screenshot to complete.
{
std::lock_guard<std::mutex> lk(m_screenshot_lock);
m_screenshot_name = filename;
m_screenshot_request.Set();
}
if (wait_for_completion)
{
// This is currently only used by Android, and it was using a wait time of 2 seconds.
m_screenshot_completed.WaitFor(std::chrono::seconds(2));
}
}
// Create On-Screen-Messages
void Renderer::DrawDebugText()
{
std::string final_yellow, final_cyan;
if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount)
{
if (g_ActiveConfig.bShowFPS)
final_cyan += StringFromFormat("FPS: %u", m_fps_counter.GetFPS());
if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount)
final_cyan += " - ";
if (SConfig::GetInstance().m_ShowFrameCount)
{
final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame());
if (Movie::IsPlayingInput())
final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64,
Movie::GetCurrentInputCount(), Movie::GetTotalInputCount());
}
final_cyan += "\n";
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowLag)
{
final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount());
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowInputDisplay)
{
final_cyan += Movie::GetInputDisplay();
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowRTC)
{
final_cyan += Movie::GetRTCDisplay();
final_yellow += "\n";
}
// OSD Menu messages
if (OSDChoice > 0)
{
OSDTime = Common::Timer::GetTimeMs() + 3000;
OSDChoice = -OSDChoice;
}
if ((u32)OSDTime > Common::Timer::GetTimeMs())
{
std::string res_text;
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO:
res_text = "Auto (fractional)";
break;
case SCALE_AUTO_INTEGRAL:
res_text = "Auto (integral)";
break;
case SCALE_1X:
res_text = "Native";
break;
case SCALE_1_5X:
res_text = "1.5x";
break;
case SCALE_2X:
res_text = "2x";
break;
case SCALE_2_5X:
res_text = "2.5x";
break;
default:
res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale - 3);
break;
}
const char* ar_text = "";
switch (g_ActiveConfig.iAspectRatio)
{
case ASPECT_AUTO:
ar_text = "Auto";
break;
case ASPECT_STRETCH:
ar_text = "Stretch";
break;
case ASPECT_ANALOG:
ar_text = "Force 4:3";
break;
case ASPECT_ANALOG_WIDE:
ar_text = "Force 16:9";
}
const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM";
// The rows
const std::string lines[] = {
std::string("Internal Resolution: ") + res_text,
std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
std::string("Copy EFB: ") + efbcopy_text,
std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
SConfig::GetInstance().m_EmulationSpeed <= 0 ?
"Speed Limit: Unlimited" :
StringFromFormat("Speed Limit: %li%%",
std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)),
};
enum
{
lines_count = sizeof(lines) / sizeof(*lines)
};
// The latest changed setting in yellow
for (int i = 0; i != lines_count; ++i)
{
if (OSDChoice == -i - 1)
final_yellow += lines[i];
final_yellow += '\n';
}
// The other settings in cyan
for (int i = 0; i != lines_count; ++i)
{
if (OSDChoice != -i - 1)
final_cyan += lines[i];
final_cyan += '\n';
}
}
final_cyan += Common::Profiler::ToString();
if (g_ActiveConfig.bOverlayStats)
final_cyan += Statistics::ToString();
if (g_ActiveConfig.bOverlayProjStats)
final_cyan += Statistics::ToStringProj();
// and then the text
RenderText(final_cyan, 20, 20, 0xFF00FFFF);
RenderText(final_yellow, 20, 20, 0xFFFFFF00);
}
float Renderer::CalculateDrawAspectRatio(int target_width, int target_height) const
{
// The dimensions are the sizes that are used to create the EFB/backbuffer textures, so
// they should always be greater than zero.
_assert_(target_width > 0 && target_height > 0);
if (g_ActiveConfig.iAspectRatio == ASPECT_STRETCH)
{
// If stretch is enabled, we prefer the aspect ratio of the window.
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
(static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
}
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && m_aspect_wide))
{
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
AspectToWidescreen(VideoInterface::GetAspectRatio());
}
else
{
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
VideoInterface::GetAspectRatio();
}
}
std::tuple<float, float> Renderer::ScaleToDisplayAspectRatio(const int width,
const int height) const
{
// Scale either the width or height depending the content aspect ratio.
// This way we preserve as much resolution as possible when scaling.
float ratio = CalculateDrawAspectRatio(width, height);
if (ratio >= 1.0f)
{
// Preserve horizontal resolution, scale vertically.
return std::make_tuple(static_cast<float>(width), static_cast<float>(height) * ratio);
}
// Preserve vertical resolution, scale horizontally.
return std::make_tuple(static_cast<float>(width) / ratio, static_cast<float>(height));
}
TargetRectangle Renderer::CalculateFrameDumpDrawRectangle() const
{
// No point including any borders in the frame dump image, since they'd have to be cropped anyway.
TargetRectangle rc;
rc.left = 0;
rc.top = 0;
// If full-resolution frame dumping is disabled, just use the window draw rectangle.
// Also do this if RealXFB is enabled, since the image has been downscaled for the XFB copy
// anyway, and there's no point writing an upscaled frame with no filtering.
if (!g_ActiveConfig.bInternalResolutionFrameDumps || g_ActiveConfig.RealXFBEnabled())
{
// But still remove the borders, since the caller expects this.
rc.right = m_target_rectangle.GetWidth();
rc.bottom = m_target_rectangle.GetHeight();
return rc;
}
// Grab the dimensions of the EFB textures, we scale either of these depending on the ratio.
u32 efb_width, efb_height;
std::tie(efb_width, efb_height) = g_framebuffer_manager->GetTargetSize();
float draw_width, draw_height;
std::tie(draw_width, draw_height) = ScaleToDisplayAspectRatio(efb_width, efb_height);
rc.right = static_cast<int>(std::ceil(draw_width));
rc.bottom = static_cast<int>(std::ceil(draw_height));
return rc;
}
void Renderer::UpdateDrawRectangle()
{
float FloatGLWidth = static_cast<float>(m_backbuffer_width);
float FloatGLHeight = static_cast<float>(m_backbuffer_height);
float FloatXOffset = 0;
float FloatYOffset = 0;
// The rendering window size
const float WinWidth = FloatGLWidth;
const float WinHeight = FloatGLHeight;
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if (g_ActiveConfig.bWidescreenHack)
{
float source_aspect = VideoInterface::GetAspectRatio();
if (m_aspect_wide)
source_aspect = AspectToWidescreen(source_aspect);
float target_aspect;
switch (g_ActiveConfig.iAspectRatio)
{
case ASPECT_STRETCH:
target_aspect = WinWidth / WinHeight;
break;
case ASPECT_ANALOG:
target_aspect = VideoInterface::GetAspectRatio();
break;
case ASPECT_ANALOG_WIDE:
target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio());
break;
default:
// ASPECT_AUTO
target_aspect = source_aspect;
break;
}
float adjust = source_aspect / target_aspect;
if (adjust > 1)
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1 / adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
// Check for force-settings and override.
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
float Ratio = CalculateDrawAspectRatio(m_backbuffer_width, m_backbuffer_height);
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
if (Ratio >= 0.995f && Ratio <= 1.005f)
{
// If we're very close already, don't scale.
Ratio = 1.0f;
}
else if (Ratio > 1.0f)
{
// Scale down and center in the X direction.
FloatGLWidth /= Ratio;
FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
}
// The window is too high, we have to limit the height
else
{
// Scale down and center in the Y direction.
FloatGLHeight *= Ratio;
FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
}
}
// -----------------------------------------------------------------------
// Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9.
// Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
// ------------------
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
{
Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio();
if (Ratio <= 1.0f)
{
Ratio = 1.0f / Ratio;
}
// The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is
// adjusted)
float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
// The new width and height
FloatGLWidth = FloatGLWidth * Ratio;
FloatGLHeight = FloatGLHeight * Ratio;
// Adjust the X and Y offset
FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
}
int XOffset = (int)(FloatXOffset + 0.5f);
int YOffset = (int)(FloatYOffset + 0.5f);
int iWhidth = (int)ceil(FloatGLWidth);
int iHeight = (int)ceil(FloatGLHeight);
iWhidth -=
iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders
iHeight -= iHeight % 4;
m_target_rectangle.left = XOffset;
m_target_rectangle.top = YOffset;
m_target_rectangle.right = XOffset + iWhidth;
m_target_rectangle.bottom = YOffset + iHeight;
}
void Renderer::SetWindowSize(int width, int height)
{
width = std::max(width, 1);
height = std::max(height, 1);
// Scale the window size by the EFB scale.
std::tie(width, height) = CalculateTargetScale(width, height);
float scaled_width, scaled_height;
std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height);
if (g_ActiveConfig.bCrop)
{
// Force 4:3 or 16:9 by cropping the image.
float current_aspect = scaled_width / scaled_height;
float expected_aspect = (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && m_aspect_wide)) ?
(16.0f / 9.0f) :
(4.0f / 3.0f);
if (current_aspect > expected_aspect)
{
// keep height, crop width
scaled_width = scaled_height * expected_aspect;
}
else
{
// keep width, crop height
scaled_height = scaled_width / expected_aspect;
}
}
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
// UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
// encoders, so do that here too to match it
width -= width % 4;
height -= height % 4;
// Track the last values of width/height to avoid sending a window resize event every frame.
if (width != m_last_window_request_width || height != m_last_window_request_height)
{
m_last_window_request_width = width;
m_last_window_request_height = height;
Host_RequestRenderWindowSize(width, height);
}
}
void Renderer::CheckFifoRecording()
{
bool wasRecording = g_bRecordFifoData;
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
if (g_bRecordFifoData)
{
if (!wasRecording)
{
RecordVideoMemory();
}
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase,
CommandProcessor::fifo.CPEnd);
}
}
void Renderer::RecordVideoMemory()
{
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
u32 cpmem[256] = {};
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
// that split here.
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
FillCPMemoryArray(cpmem);
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
texMem);
}
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
u64 ticks, float Gamma)
{
// Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode.
if (!SConfig::GetInstance().bWii)
{
size_t flush_count_4_3, flush_count_anamorphic;
std::tie(flush_count_4_3, flush_count_anamorphic) =
g_vertex_manager->ResetFlushAspectRatioCount();
size_t flush_total = flush_count_4_3 + flush_count_anamorphic;
// Modify the threshold based on which aspect ratio we're already using: if
// the game's in 4:3, it probably won't switch to anamorphic, and vice-versa.
if (m_aspect_wide)
m_aspect_wide = !(flush_count_4_3 > 0.75 * flush_total);
else
m_aspect_wide = flush_count_anamorphic > 0.75 * flush_total;
}
// TODO: merge more generic parts into VideoCommon
SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, ticks, Gamma);
if (m_xfb_written)
m_fps_counter.Update();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
Core::Callback_VideoCopiedToXFB(m_xfb_written ||
(g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
m_xfb_written = false;
}
bool Renderer::IsFrameDumping()
{
if (m_screenshot_request.IsSet())
return true;
#if defined(HAVE_FFMPEG)
if (SConfig::GetInstance().m_DumpFrames)
return true;
#endif
ShutdownFrameDumping();
return false;
}
void Renderer::ShutdownFrameDumping()
{
if (!m_frame_dump_thread_running.IsSet())
return;
FinishFrameData();
m_frame_dump_thread_running.Clear();
m_frame_dump_start.Set();
}
void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state,
bool swap_upside_down)
{
FinishFrameData();
m_frame_dump_config = FrameDumpConfig{data, w, h, stride, swap_upside_down, state};
if (!m_frame_dump_thread_running.IsSet())
{
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
m_frame_dump_thread_running.Set();
m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this);
}
m_frame_dump_start.Set();
m_frame_dump_frame_running = true;
}
void Renderer::FinishFrameData()
{
if (!m_frame_dump_frame_running)
return;
m_frame_dump_done.Wait();
m_frame_dump_frame_running = false;
}
void Renderer::RunFrameDumps()
{
Common::SetCurrentThreadName("FrameDumping");
bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages;
bool frame_dump_started = false;
// If Dolphin was compiled without libav, we only support dumping to images.
#if !defined(HAVE_FFMPEG)
if (dump_to_avi)
{
WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. "
"Frame dump will be saved as images instead.");
dump_to_avi = false;
}
#endif
while (true)
{
m_frame_dump_start.Wait();
if (!m_frame_dump_thread_running.IsSet())
break;
auto config = m_frame_dump_config;
if (config.upside_down)
{
config.data = config.data + (config.height - 1) * config.stride;
config.stride = -config.stride;
}
// Save screenshot
if (m_screenshot_request.TestAndClear())
{
std::lock_guard<std::mutex> lk(m_screenshot_lock);
if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height,
false))
OSD::AddMessage("Screenshot saved to " + m_screenshot_name);
// Reset settings
m_screenshot_name.clear();
m_screenshot_completed.Set();
}
if (SConfig::GetInstance().m_DumpFrames)
{
if (!frame_dump_started)
{
if (dump_to_avi)
frame_dump_started = StartFrameDumpToAVI(config);
else
frame_dump_started = StartFrameDumpToImage(config);
// Stop frame dumping if we fail to start.
if (!frame_dump_started)
SConfig::GetInstance().m_DumpFrames = false;
}
// If we failed to start frame dumping, don't write a frame.
if (frame_dump_started)
{
if (dump_to_avi)
DumpFrameToAVI(config);
else
DumpFrameToImage(config);
}
}
m_frame_dump_done.Set();
}
if (frame_dump_started)
{
// No additional cleanup is needed when dumping to images.
if (dump_to_avi)
StopFrameDumpToAVI();
}
}
#if defined(HAVE_FFMPEG)
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
{
return AVIDump::Start(config.width, config.height);
}
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
{
AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state);
}
void Renderer::StopFrameDumpToAVI()
{
AVIDump::Stop();
}
#else
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
{
return false;
}
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
{
}
void Renderer::StopFrameDumpToAVI()
{
}
#endif // defined(HAVE_FFMPEG)
std::string Renderer::GetFrameDumpNextImageFileName() const
{
return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(),
m_frame_dump_image_counter);
}
bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config)
{
m_frame_dump_image_counter = 1;
if (!SConfig::GetInstance().m_DumpFramesSilent)
{
// Only check for the presence of the first image to confirm overwriting.
// A previous run will always have at least one image, and it's safe to assume that if the user
// has allowed the first image to be overwritten, this will apply any remaining images as well.
std::string filename = GetFrameDumpNextImageFileName();
if (File::Exists(filename))
{
if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str()))
return false;
}
}
return true;
}
void Renderer::DumpFrameToImage(const FrameDumpConfig& config)
{
std::string filename = GetFrameDumpNextImageFileName();
TextureToPng(config.data, config.stride, filename, config.width, config.height, false);
m_frame_dump_image_counter++;
}
bool Renderer::UseVertexDepthRange() const
{
// We can't compute the depth range in the vertex shader if we don't support depth clamp.
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
return false;
// We need a full depth range if a ztexture is used.
if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest)
return true;
// If an inverted depth range is unsupported, we also need to check if the range is inverted.
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f)
return true;
// If an oversized depth range or a ztexture is used, we need to calculate the depth range
// in the vertex shader.
return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
}