dolphin/Source/Core/VideoBackends/OGL/PostProcessing.cpp

360 lines
10 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/CommonPaths.h"
#include "Common/FileUtil.h"
#include "Common/StringUtil.h"
#include "VideoBackends/OGL/FramebufferManager.h"
#include "VideoBackends/OGL/GLUtil.h"
#include "VideoBackends/OGL/PostProcessing.h"
#include "VideoBackends/OGL/ProgramShaderCache.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace OGL
{
static char s_vertex_workaround_shader[] =
"in vec4 rawpos;\n"
"out vec2 uv0;\n"
"uniform vec4 src_rect;\n"
"void main(void) {\n"
" gl_Position = vec4(rawpos.xy, 0.0, 1.0);\n"
" uv0 = rawpos.zw * src_rect.zw + src_rect.xy;\n"
"}\n";
static char s_vertex_shader[] =
"out vec2 uv0;\n"
"uniform vec4 src_rect;\n"
"void main(void) {\n"
" vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n"
" gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n"
" uv0 = rawpos * src_rect.zw + src_rect.xy;\n"
"}\n";
// Anaglyph Red-Cyan shader based on Dubois algorithm
// Constants taken from the paper:
// "Conversion of a Stereo Pair to Anaglyph with
// the Least-Squares Projection Method"
// Eric Dubois, March 2009
static char s_anaglyph_shader[] =
"void main() {\n"
" vec3 l = SampleLayer(0).rgb;\n"
" vec3 r = SampleLayer(1).rgb;\n"
" vec3 lr = vec3(0.437,0.449,0.164);\n"
" vec3 lg = vec3(-0.062,-0.062,-0.024);\n"
" vec3 lb = vec3(-0.048,-0.050,-0.017);\n"
" vec3 rr = vec3(-0.011,-0.032,-0.007);\n"
" vec3 rg = vec3(0.377,0.761,0.009);\n"
" vec3 rb = vec3(-0.026,-0.093,1.234);\n"
" vec3 c0 = vec3(dot(l, lr), dot(l, lg), dot(l, lb));\n"
" vec3 c1 = vec3(dot(r, rr), dot(r, rg), dot(r, rb));\n"
" SetOutput(vec4(c0 + c1, SampleLayer(0).a));\n"
"}\n";
static const char s_default_shader[] = "void main() { SetOutput(Sample()); }\n";
OpenGLPostProcessing::OpenGLPostProcessing()
: m_initialized(false)
, m_anaglyph(false)
{
CreateHeader();
m_attribute_workaround = DriverDetails::HasBug(DriverDetails::BUG_BROKENATTRIBUTELESS);
if (m_attribute_workaround)
{
glGenBuffers(1, &m_attribute_vbo);
glGenVertexArrays(1, &m_attribute_vao);
}
}
OpenGLPostProcessing::~OpenGLPostProcessing()
{
m_shader.Destroy();
if (m_attribute_workaround)
{
glDeleteBuffers(1, &m_attribute_vbo);
glDeleteVertexArrays(1, &m_attribute_vao);
}
}
void OpenGLPostProcessing::BlitFromTexture(TargetRectangle src, TargetRectangle dst,
int src_texture, int src_width, int src_height, int layer)
{
ApplyShader();
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glViewport(dst.left, dst.bottom, dst.GetWidth(), dst.GetHeight());
if (m_attribute_workaround)
glBindVertexArray(m_attribute_vao);
else
OpenGL_BindAttributelessVAO();
m_shader.Bind();
glUniform4f(m_uniform_resolution, (float)src_width, (float)src_height, 1.0f / (float)src_width, 1.0f / (float)src_height);
glUniform4f(m_uniform_src_rect, src.left / (float) src_width, src.bottom / (float) src_height,
src.GetWidth() / (float) src_width, src.GetHeight() / (float) src_height);
glUniform1ui(m_uniform_time, (GLuint)m_timer.GetTimeElapsed());
glUniform1i(m_uniform_layer, layer);
if (m_config.IsDirty())
{
for (auto& it : m_config.GetOptions())
{
if (it.second.m_dirty)
{
switch (it.second.m_type)
{
case PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_BOOL:
glUniform1i(m_uniform_bindings[it.first], it.second.m_bool_value);
break;
case PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_INTEGER:
switch (it.second.m_integer_values.size())
{
case 1:
glUniform1i(m_uniform_bindings[it.first], it.second.m_integer_values[0]);
break;
case 2:
glUniform2i(m_uniform_bindings[it.first],
it.second.m_integer_values[0],
it.second.m_integer_values[1]);
break;
case 3:
glUniform3i(m_uniform_bindings[it.first],
it.second.m_integer_values[0],
it.second.m_integer_values[1],
it.second.m_integer_values[2]);
break;
case 4:
glUniform4i(m_uniform_bindings[it.first],
it.second.m_integer_values[0],
it.second.m_integer_values[1],
it.second.m_integer_values[2],
it.second.m_integer_values[3]);
break;
}
break;
case PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_FLOAT:
switch (it.second.m_float_values.size())
{
case 1:
glUniform1f(m_uniform_bindings[it.first], it.second.m_float_values[0]);
break;
case 2:
glUniform2f(m_uniform_bindings[it.first],
it.second.m_float_values[0],
it.second.m_float_values[1]);
break;
case 3:
glUniform3f(m_uniform_bindings[it.first],
it.second.m_float_values[0],
it.second.m_float_values[1],
it.second.m_float_values[2]);
break;
case 4:
glUniform4f(m_uniform_bindings[it.first],
it.second.m_float_values[0],
it.second.m_float_values[1],
it.second.m_float_values[2],
it.second.m_float_values[3]);
break;
}
break;
}
it.second.m_dirty = false;
}
}
m_config.SetDirty(false);
}
glActiveTexture(GL_TEXTURE0+9);
glBindTexture(GL_TEXTURE_2D_ARRAY, src_texture);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
void OpenGLPostProcessing::ApplyShader()
{
// shader didn't changed
if (m_initialized && m_config.GetShader() == g_ActiveConfig.sPostProcessingShader &&
((g_ActiveConfig.iStereoMode == STEREO_ANAGLYPH) == m_anaglyph))
return;
m_shader.Destroy();
m_uniform_bindings.clear();
// load shader code
std::string code = "";
if (g_ActiveConfig.iStereoMode == STEREO_ANAGLYPH)
code = s_anaglyph_shader;
else if (g_ActiveConfig.sPostProcessingShader != "")
code = m_config.LoadShader();
if (code == "")
code = s_default_shader;
code = LoadShaderOptions(code);
const char* vertex_shader = s_vertex_shader;
if (m_attribute_workaround)
vertex_shader = s_vertex_workaround_shader;
// and compile it
if (!ProgramShaderCache::CompileShader(m_shader, vertex_shader, code.c_str()))
{
ERROR_LOG(VIDEO, "Failed to compile post-processing shader %s", m_config.GetShader().c_str());
code = LoadShaderOptions(s_default_shader);
ProgramShaderCache::CompileShader(m_shader, vertex_shader, code.c_str());
}
// read uniform locations
m_uniform_resolution = glGetUniformLocation(m_shader.glprogid, "resolution");
m_uniform_time = glGetUniformLocation(m_shader.glprogid, "time");
m_uniform_src_rect = glGetUniformLocation(m_shader.glprogid, "src_rect");
m_uniform_layer = glGetUniformLocation(m_shader.glprogid, "layer");
if (m_attribute_workaround)
{
GLfloat vertices[] = {
-1.f, -1.f, 0.f, 0.f,
1.f, -1.f, 1.f, 0.f,
-1.f, 1.f, 0.f, 1.f,
1.f, 1.f, 1.f, 1.f,
};
glBindBuffer(GL_ARRAY_BUFFER, m_attribute_vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindVertexArray(m_attribute_vao);
glEnableVertexAttribArray(SHADER_POSITION_ATTRIB);
glVertexAttribPointer(SHADER_POSITION_ATTRIB, 4, GL_FLOAT, 0, 0, nullptr);
}
for (const auto& it : m_config.GetOptions())
{
std::string glsl_name = "option_" + it.first;
m_uniform_bindings[it.first] = glGetUniformLocation(m_shader.glprogid, glsl_name.c_str());
}
m_anaglyph = g_ActiveConfig.iStereoMode == STEREO_ANAGLYPH;
m_initialized = true;
}
void OpenGLPostProcessing::CreateHeader()
{
m_glsl_header =
// Required variables
// Shouldn't be accessed directly by the PP shader
// Texture sampler
"SAMPLER_BINDING(8) uniform sampler2D samp8;\n"
"SAMPLER_BINDING(9) uniform sampler2DArray samp9;\n"
// Output variable
"out float4 ocol0;\n"
// Input coordinates
"in float2 uv0;\n"
// Resolution
"uniform float4 resolution;\n"
// Time
"uniform uint time;\n"
// Layer
"uniform int layer;\n"
// Interfacing functions
"float4 Sample()\n"
"{\n"
"\treturn texture(samp9, float3(uv0, layer));\n"
"}\n"
"float4 SampleLocation(float2 location)\n"
"{\n"
"\treturn texture(samp9, float3(location, layer));\n"
"}\n"
"float4 SampleLayer(int layer)\n"
"{\n"
"\treturn texture(samp9, float3(uv0, layer));\n"
"}\n"
"#define SampleOffset(offset) textureOffset(samp9, float3(uv0, layer), offset)\n"
"float4 SampleFontLocation(float2 location)\n"
"{\n"
"\treturn texture(samp8, location);\n"
"}\n"
"float2 GetResolution()\n"
"{\n"
"\treturn resolution.xy;\n"
"}\n"
"float2 GetInvResolution()\n"
"{\n"
"\treturn resolution.zw;\n"
"}\n"
"float2 GetCoordinates()\n"
"{\n"
"\treturn uv0;\n"
"}\n"
"uint GetTime()\n"
"{\n"
"\treturn time;\n"
"}\n"
"void SetOutput(float4 color)\n"
"{\n"
"\tocol0 = color;\n"
"}\n"
"#define GetOption(x) (option_##x)\n"
"#define OptionEnabled(x) (option_##x != 0)\n";
}
std::string OpenGLPostProcessing::LoadShaderOptions(const std::string& code)
{
std::string glsl_options = "";
m_uniform_bindings.clear();
for (const auto& it : m_config.GetOptions())
{
if (it.second.m_type == PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_BOOL)
{
glsl_options += StringFromFormat("uniform int option_%s;\n", it.first.c_str());
}
else if (it.second.m_type == PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_INTEGER)
{
u32 count = static_cast<u32>(it.second.m_integer_values.size());
if (count == 1)
glsl_options += StringFromFormat("uniform int option_%s;\n", it.first.c_str());
else
glsl_options += StringFromFormat("uniform int%d option_%s;\n", count, it.first.c_str());
}
else if (it.second.m_type == PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_FLOAT)
{
u32 count = static_cast<u32>(it.second.m_float_values.size());
if (count == 1)
glsl_options += StringFromFormat("uniform float option_%s;\n", it.first.c_str());
else
glsl_options += StringFromFormat("uniform float%d option_%s;\n", count, it.first.c_str());
}
m_uniform_bindings[it.first] = 0;
}
return m_glsl_header + glsl_options + code;
}
} // namespace OGL