dolphin/Source/Core/VideoCommon/Src/VertexLoader.cpp
Lioncash 8da425b008 Formatting cleanup for VideoCommon.
Block braces on new lines.

Also killed off trailing whitespace and dangling elses.

Spaced some things out to make them more readable (only in places where it looked like a bit of a clusterfuck).
2013-04-24 09:21:54 -04:00

739 lines
23 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <assert.h>
#include "Common.h"
#include "VideoCommon.h"
#include "VideoConfig.h"
#include "MemoryUtil.h"
#include "StringUtil.h"
#include "x64Emitter.h"
#include "x64ABI.h"
#include "PixelEngine.h"
#include "Host.h"
#include "LookUpTables.h"
#include "Statistics.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "BPMemory.h"
#include "DataReader.h"
#include "VertexManagerBase.h"
#include "VertexLoader_Position.h"
#include "VertexLoader_Normal.h"
#include "VertexLoader_Color.h"
#include "VertexLoader_TextCoord.h"
//BBox
#include "XFMemory.h"
extern float GC_ALIGNED16(g_fProjectionMatrix[16]);
#ifndef _M_GENERIC
#ifndef __APPLE__
#define USE_JIT
#endif
#endif
#define COMPILED_CODE_SIZE 4096
NativeVertexFormat *g_nativeVertexFmt;
#ifndef _WIN32
#undef inline
#define inline
#endif
// Matrix components are first in GC format but later in PC format - we need to store it temporarily
// when decoding each vertex.
static u8 s_curposmtx;
static u8 s_curtexmtx[8];
static int s_texmtxwrite = 0;
static int s_texmtxread = 0;
static int loop_counter;
// Vertex loaders read these. Although the scale ones should be baked into the shader.
int tcIndex;
int colIndex;
TVtxAttr* pVtxAttr;
int colElements[2];
float posScale;
float tcScale[8];
// bbox must read vertex position, so convert it to this buffer
static float s_bbox_vertex_buffer[3];
static u8 *s_bbox_pCurBufferPointer_orig;
static const float fractionTable[32] = {
1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3),
1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7),
1.0f / (1U << 8), 1.0f / (1U << 9), 1.0f / (1U << 10), 1.0f / (1U << 11),
1.0f / (1U << 12), 1.0f / (1U << 13), 1.0f / (1U << 14), 1.0f / (1U << 15),
1.0f / (1U << 16), 1.0f / (1U << 17), 1.0f / (1U << 18), 1.0f / (1U << 19),
1.0f / (1U << 20), 1.0f / (1U << 21), 1.0f / (1U << 22), 1.0f / (1U << 23),
1.0f / (1U << 24), 1.0f / (1U << 25), 1.0f / (1U << 26), 1.0f / (1U << 27),
1.0f / (1U << 28), 1.0f / (1U << 29), 1.0f / (1U << 30), 1.0f / (1U << 31),
};
using namespace Gen;
void LOADERDECL PosMtx_ReadDirect_UByte()
{
s_curposmtx = DataReadU8() & 0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
void LOADERDECL PosMtx_Write()
{
DataWrite<u8>(s_curposmtx);
DataWrite<u8>(0);
DataWrite<u8>(0);
DataWrite<u8>(0);
}
void LOADERDECL UpdateBoundingBoxPrepare()
{
if (!PixelEngine::bbox_active)
return;
// set our buffer as videodata buffer, so we will get a copy of the vertex positions
// this is a big hack, but so we can use the same converting function then without bbox
s_bbox_pCurBufferPointer_orig = VertexManager::s_pCurBufferPointer;
VertexManager::s_pCurBufferPointer = (u8*)s_bbox_vertex_buffer;
}
void LOADERDECL UpdateBoundingBox()
{
if (!PixelEngine::bbox_active)
return;
// reset videodata pointer
VertexManager::s_pCurBufferPointer = s_bbox_pCurBufferPointer_orig;
// copy vertex pointers
memcpy(VertexManager::s_pCurBufferPointer, s_bbox_vertex_buffer, 12);
VertexManager::s_pCurBufferPointer += 12;
// We must transform the just loaded point by the current world and projection matrix - in software.
// Then convert to screen space and update the bounding box.
float p[3] = {s_bbox_vertex_buffer[0], s_bbox_vertex_buffer[1], s_bbox_vertex_buffer[2]};
const float *world_matrix = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
const float *proj_matrix = &g_fProjectionMatrix[0];
float t[3];
t[0] = p[0] * world_matrix[0] + p[1] * world_matrix[1] + p[2] * world_matrix[2] + world_matrix[3];
t[1] = p[0] * world_matrix[4] + p[1] * world_matrix[5] + p[2] * world_matrix[6] + world_matrix[7];
t[2] = p[0] * world_matrix[8] + p[1] * world_matrix[9] + p[2] * world_matrix[10] + world_matrix[11];
float o[3];
o[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3];
o[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7];
o[2] = t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15];
o[0] /= o[2];
o[1] /= o[2];
// Max width seems to be 608, while max height is 480
// Here height is set to 484 as BBox bottom always seems to be off by a few pixels
o[0] = (o[0] + 1.0f) * 304.0f;
o[1] = (1.0f - o[1]) * 242.0f;
if (o[0] < PixelEngine::bbox[0]) PixelEngine::bbox[0] = (u16) std::max(0.0f, o[0]);
if (o[0] > PixelEngine::bbox[1]) PixelEngine::bbox[1] = (u16) o[0];
if (o[1] < PixelEngine::bbox[2]) PixelEngine::bbox[2] = (u16) std::max(0.0f, o[1]);
if (o[1] > PixelEngine::bbox[3]) PixelEngine::bbox[3] = (u16) o[1];
}
void LOADERDECL TexMtx_ReadDirect_UByte()
{
s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
void LOADERDECL TexMtx_Write_Float()
{
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}
void LOADERDECL TexMtx_Write_Float2()
{
DataWrite(0.f);
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}
void LOADERDECL TexMtx_Write_Float4()
{
DataWrite(0.f);
DataWrite(0.f);
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
// Just to fill out with 0.
DataWrite(0.f);
}
VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr)
{
m_compiledCode = NULL;
m_numLoadedVertices = 0;
m_VertexSize = 0;
m_numPipelineStages = 0;
m_NativeFmt = g_vertex_manager->CreateNativeVertexFormat();
loop_counter = 0;
VertexLoader_Normal::Init();
VertexLoader_Position::Init();
VertexLoader_TextCoord::Init();
m_VtxDesc = vtx_desc;
SetVAT(vtx_attr.g0.Hex, vtx_attr.g1.Hex, vtx_attr.g2.Hex);
#ifdef USE_JIT
AllocCodeSpace(COMPILED_CODE_SIZE);
CompileVertexTranslator();
WriteProtect();
#else
CompileVertexTranslator();
#endif
}
VertexLoader::~VertexLoader()
{
#ifdef USE_JIT
FreeCodeSpace();
#endif
delete m_NativeFmt;
}
void VertexLoader::CompileVertexTranslator()
{
m_VertexSize = 0;
const TVtxAttr &vtx_attr = m_VtxAttr;
#ifdef USE_JIT
if (m_compiledCode)
PanicAlert("Trying to recompile a vertex translator");
m_compiledCode = GetCodePtr();
ABI_EmitPrologue(4);
// Start loop here
const u8 *loop_start = GetCodePtr();
// Reset component counters if present in vertex format only.
if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord ||
m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord)
{
WriteSetVariable(32, &tcIndex, Imm32(0));
}
if (m_VtxDesc.Color0 || m_VtxDesc.Color1)
{
WriteSetVariable(32, &colIndex, Imm32(0));
}
if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx ||
m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx)
{
WriteSetVariable(32, &s_texmtxwrite, Imm32(0));
WriteSetVariable(32, &s_texmtxread, Imm32(0));
}
#endif
// Colors
const u32 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
// TextureCoord
// Since m_VtxDesc.Text7Coord is broken across a 32 bit word boundary, retrieve its value manually.
// If we didn't do this, the vertex format would be read as one bit offset from where it should be, making
// 01 become 00, and 10/11 become 01
const u32 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, (const u32)((m_VtxDesc.Hex >> 31) & 3)
};
// Reset pipeline
m_numPipelineStages = 0;
// It's a bit ugly that we poke inside m_NativeFmt in this function. Planning to fix this.
m_NativeFmt->m_components = 0;
// Position in pc vertex format.
int nat_offset = 0;
PortableVertexDeclaration vtx_decl;
memset(&vtx_decl, 0, sizeof(vtx_decl));
for (int i = 0; i < 8; i++)
{
vtx_decl.texcoord_offset[i] = -1;
}
// m_VBVertexStride for texmtx and posmtx is computed later when writing.
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_ReadDirect_UByte);
m_NativeFmt->m_components |= VB_HAS_POSMTXIDX;
m_VertexSize += 1;
}
if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Write vertex position loader
if(g_ActiveConfig.bUseBBox)
{
WriteCall(UpdateBoundingBoxPrepare);
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
WriteCall(UpdateBoundingBox);
}
else
{
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
}
m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements);
nat_offset += 12;
// Normals
vtx_decl.num_normals = 0;
if (m_VtxDesc.Normal != NOT_PRESENT)
{
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal,
m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal,
m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
if (pFunc == 0)
{
char temp[256];
sprintf(temp,"%i %i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
Host_SysMessage("VertexLoader_Normal::GetFunction returned zero!");
}
WriteCall(pFunc);
vtx_decl.num_normals = vtx_attr.NormalElements ? 3 : 1;
vtx_decl.normal_offset[0] = -1;
vtx_decl.normal_offset[1] = -1;
vtx_decl.normal_offset[2] = -1;
vtx_decl.normal_gl_type = VAR_FLOAT;
vtx_decl.normal_gl_size = 3;
vtx_decl.normal_offset[0] = nat_offset;
nat_offset += 12;
if (vtx_attr.NormalElements)
{
vtx_decl.normal_offset[1] = nat_offset;
nat_offset += 12;
vtx_decl.normal_offset[2] = nat_offset;
nat_offset += 12;
}
int numNormals = (m_VtxAttr.NormalElements == 1) ? NRM_THREE : NRM_ONE;
m_NativeFmt->m_components |= VB_HAS_NRM0;
if (numNormals == NRM_THREE)
m_NativeFmt->m_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
vtx_decl.color_gl_type = VAR_UNSIGNED_BYTE;
vtx_decl.color_offset[0] = -1;
vtx_decl.color_offset[1] = -1;
for (int i = 0; i < 2; i++)
{
m_NativeFmt->m_components |= VB_HAS_COL0 << i;
switch (col[i])
{
case NOT_PRESENT:
m_NativeFmt->m_components &= ~(VB_HAS_COL0 << i);
vtx_decl.color_offset[i] = -1;
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break;
case FORMAT_24B_888: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break;
case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break;
case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break;
case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break;
case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX8:
m_VertexSize += 1;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX16:
m_VertexSize += 2;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
default: _assert_(0); break;
}
break;
}
// Common for the three bottom cases
if (col[i] != NOT_PRESENT)
{
vtx_decl.color_offset[i] = nat_offset;
nat_offset += 4;
}
}
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++)
{
vtx_decl.texcoord_offset[i] = -1;
const int format = m_VtxAttr.texCoord[i].Format;
const int elements = m_VtxAttr.texCoord[i].Elements;
if (tc[i] == NOT_PRESENT)
{
m_NativeFmt->m_components &= ~(VB_HAS_UV0 << i);
}
else
{
_assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", tc[i]);
_assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format);
_assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elements!\n(elements = %d)", elements);
m_NativeFmt->m_components |= VB_HAS_UV0 << i;
WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements));
m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements);
}
if (m_NativeFmt->m_components & (VB_HAS_TEXMTXIDX0 << i))
{
if (tc[i] != NOT_PRESENT)
{
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
vtx_decl.texcoord_offset[i] = nat_offset;
vtx_decl.texcoord_gl_type[i] = VAR_FLOAT;
vtx_decl.texcoord_size[i] = 3;
nat_offset += 12;
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
}
else
{
m_NativeFmt->m_components |= VB_HAS_UV0 << i; // have to include since using now
vtx_decl.texcoord_offset[i] = nat_offset;
vtx_decl.texcoord_gl_type[i] = VAR_FLOAT;
vtx_decl.texcoord_size[i] = 4;
nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes
WriteCall(TexMtx_Write_Float4);
}
}
else
{
if (tc[i] != NOT_PRESENT)
{
vtx_decl.texcoord_offset[i] = nat_offset;
vtx_decl.texcoord_gl_type[i] = VAR_FLOAT;
vtx_decl.texcoord_size[i] = vtx_attr.texCoord[i].Elements ? 2 : 1;
nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1);
}
}
if (tc[i] == NOT_PRESENT)
{
// if there's more tex coords later, have to write a dummy call
int j = i + 1;
for (; j < 8; ++j)
{
if (tc[j] != NOT_PRESENT)
{
WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right!
break;
}
}
// tricky!
if (j == 8 && !((m_NativeFmt->m_components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1))))
{
// no more tex coords and tex matrices, so exit loop
break;
}
}
}
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_Write);
vtx_decl.posmtx_offset = nat_offset;
nat_offset += 4;
}
else
{
vtx_decl.posmtx_offset = -1;
}
native_stride = nat_offset;
vtx_decl.stride = native_stride;
#ifdef USE_JIT
// End loop here
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)&loop_counter));
SUB(32, MatR(RAX), Imm8(1));
#else
SUB(32, M(&loop_counter), Imm8(1));
#endif
J_CC(CC_NZ, loop_start, true);
ABI_EmitEpilogue(4);
#endif
m_NativeFmt->Initialize(vtx_decl);
}
void VertexLoader::WriteCall(TPipelineFunction func)
{
#ifdef USE_JIT
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)func));
CALLptr(R(RAX));
#else
CALL((void*)func);
#endif
#else
m_PipelineStages[m_numPipelineStages++] = func;
#endif
}
// ARMTODO: This should be done in a better way
#ifndef _M_GENERIC
void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address)
{
#ifdef USE_JIT
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, dest, MatR(RAX));
#else
MOV(bits, dest, M(address));
#endif
#endif
}
void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value)
{
#ifdef USE_JIT
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, MatR(RAX), value);
#else
MOV(bits, M(address), value);
#endif
#endif
}
#endif
int VertexLoader::SetupRunVertices(int vtx_attr_group, int primitive, int const count)
{
m_numLoadedVertices += count;
// Flush if our vertex format is different from the currently set.
if (g_nativeVertexFmt != NULL && g_nativeVertexFmt != m_NativeFmt)
{
// We really must flush here. It's possible that the native representations
// of the two vtx formats are the same, but we have no way to easily check that
// now.
VertexManager::Flush();
// Also move the Set() here?
}
g_nativeVertexFmt = m_NativeFmt;
if (bpmem.genMode.cullmode == 3 && primitive < 5)
{
// if cull mode is none, ignore triangles and quads
DataSkip(count * m_VertexSize);
return 0;
}
m_NativeFmt->EnableComponents(m_NativeFmt->m_components);
// Load position and texcoord scale factors.
m_VtxAttr.PosFrac = g_VtxAttr[vtx_attr_group].g0.PosFrac;
m_VtxAttr.texCoord[0].Frac = g_VtxAttr[vtx_attr_group].g0.Tex0Frac;
m_VtxAttr.texCoord[1].Frac = g_VtxAttr[vtx_attr_group].g1.Tex1Frac;
m_VtxAttr.texCoord[2].Frac = g_VtxAttr[vtx_attr_group].g1.Tex2Frac;
m_VtxAttr.texCoord[3].Frac = g_VtxAttr[vtx_attr_group].g1.Tex3Frac;
m_VtxAttr.texCoord[4].Frac = g_VtxAttr[vtx_attr_group].g2.Tex4Frac;
m_VtxAttr.texCoord[5].Frac = g_VtxAttr[vtx_attr_group].g2.Tex5Frac;
m_VtxAttr.texCoord[6].Frac = g_VtxAttr[vtx_attr_group].g2.Tex6Frac;
m_VtxAttr.texCoord[7].Frac = g_VtxAttr[vtx_attr_group].g2.Tex7Frac;
pVtxAttr = &m_VtxAttr;
posScale = fractionTable[m_VtxAttr.PosFrac];
if (m_NativeFmt->m_components & VB_HAS_UVALL)
for (int i = 0; i < 8; i++)
tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac];
for (int i = 0; i < 2; i++)
colElements[i] = m_VtxAttr.color[i].Elements;
VertexManager::PrepareForAdditionalData(primitive, count, native_stride);
return count;
}
void VertexLoader::RunVertices(int vtx_attr_group, int primitive, int const count)
{
auto const new_count = SetupRunVertices(vtx_attr_group, primitive, count);
ConvertVertices(new_count);
VertexManager::AddVertices(primitive, new_count);
}
void VertexLoader::ConvertVertices ( int count )
{
#ifdef USE_JIT
if (count > 0)
{
loop_counter = count;
((void (*)())(void*)m_compiledCode)();
}
#else
for (int s = 0; s < count; s++)
{
tcIndex = 0;
colIndex = 0;
s_texmtxwrite = s_texmtxread = 0;
for (int i = 0; i < m_numPipelineStages; i++)
m_PipelineStages[i]();
PRIM_LOG("\n");
}
#endif
}
void VertexLoader::RunCompiledVertices(int vtx_attr_group, int primitive, int const count, u8* Data)
{
auto const new_count = SetupRunVertices(vtx_attr_group, primitive, count);
memcpy_gc(VertexManager::s_pCurBufferPointer, Data, native_stride * new_count);
VertexManager::s_pCurBufferPointer += native_stride * new_count;
DataSkip(new_count * m_VertexSize);
VertexManager::AddVertices(primitive, new_count);
}
void VertexLoader::SetVAT(u32 _group0, u32 _group1, u32 _group2)
{
VAT vat;
vat.g0.Hex = _group0;
vat.g1.Hex = _group1;
vat.g2.Hex = _group2;
m_VtxAttr.PosElements = vat.g0.PosElements;
m_VtxAttr.PosFormat = vat.g0.PosFormat;
m_VtxAttr.PosFrac = vat.g0.PosFrac;
m_VtxAttr.NormalElements = vat.g0.NormalElements;
m_VtxAttr.NormalFormat = vat.g0.NormalFormat;
m_VtxAttr.color[0].Elements = vat.g0.Color0Elements;
m_VtxAttr.color[0].Comp = vat.g0.Color0Comp;
m_VtxAttr.color[1].Elements = vat.g0.Color1Elements;
m_VtxAttr.color[1].Comp = vat.g0.Color1Comp;
m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements;
m_VtxAttr.texCoord[0].Format = vat.g0.Tex0CoordFormat;
m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac;
m_VtxAttr.ByteDequant = vat.g0.ByteDequant;
m_VtxAttr.NormalIndex3 = vat.g0.NormalIndex3;
m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements;
m_VtxAttr.texCoord[1].Format = vat.g1.Tex1CoordFormat;
m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac;
m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements;
m_VtxAttr.texCoord[2].Format = vat.g1.Tex2CoordFormat;
m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac;
m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements;
m_VtxAttr.texCoord[3].Format = vat.g1.Tex3CoordFormat;
m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac;
m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements;
m_VtxAttr.texCoord[4].Format = vat.g1.Tex4CoordFormat;
m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac;
m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements;
m_VtxAttr.texCoord[5].Format = vat.g2.Tex5CoordFormat;
m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac;
m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements;
m_VtxAttr.texCoord[6].Format = vat.g2.Tex6CoordFormat;
m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac;
m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements;
m_VtxAttr.texCoord[7].Format = vat.g2.Tex7CoordFormat;
m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac;
if(!m_VtxAttr.ByteDequant) {
ERROR_LOG(VIDEO, "ByteDequant is set to zero");
}
};
void VertexLoader::AppendToString(std::string *dest) const
{
dest->reserve(250);
static const char *posMode[4] = {
"Inv",
"Dir",
"I8",
"I16",
};
static const char *posFormats[5] = {
"u8", "s8", "u16", "s16", "flt",
};
static const char *colorFormat[8] = {
"565",
"888",
"888x",
"4444",
"6666",
"8888",
"Inv",
"Inv",
};
dest->append(StringFromFormat("%ib skin: %i P: %i %s-%s ",
m_VertexSize, m_VtxDesc.PosMatIdx,
m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat]));
if (m_VtxDesc.Normal)
{
dest->append(StringFromFormat("Nrm: %i %s-%s ",
m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat]));
}
u32 color_mode[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++)
{
if (color_mode[i])
{
dest->append(StringFromFormat("C%i: %i %s-%s ", i, m_VtxAttr.color[i].Elements, posMode[color_mode[i]], colorFormat[m_VtxAttr.color[i].Comp]));
}
}
u32 tex_mode[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord
};
for (int i = 0; i < 8; i++)
{
if (tex_mode[i])
{
dest->append(StringFromFormat("T%i: %i %s-%s ",
i, m_VtxAttr.texCoord[i].Elements, posMode[tex_mode[i]], posFormats[m_VtxAttr.texCoord[i].Format]));
}
}
dest->append(StringFromFormat(" - %i v\n", m_numLoadedVertices));
}