dolphin/Source/Core/Common/Arm64Emitter.cpp
JosJuice 1d106ceaf5 JitArm64: Optimize ConvertSingleToDouble, part 2
If we can prove that FCVT will provide a correct conversion,
we can use FCVT. This makes the common case a bit faster
and the less likely cases (unfortunately including zero,
which FCVT actually can convert correctly) a bit slower.
2021-04-25 15:56:19 +02:00

4363 lines
120 KiB
C++

// Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstring>
#include <optional>
#include <tuple>
#include <utility>
#include <vector>
#include "Common/Align.h"
#include "Common/Arm64Emitter.h"
#include "Common/Assert.h"
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#ifdef _WIN32
#include <Windows.h>
#endif
namespace Arm64Gen
{
namespace
{
uint64_t LargestPowerOf2Divisor(uint64_t value)
{
return value & -(int64_t)value;
}
// For ADD/SUB
std::optional<std::pair<u32, bool>> IsImmArithmetic(uint64_t input)
{
if (input < 4096)
return std::pair{static_cast<u32>(input), false};
if ((input & 0xFFF000) == input)
return std::pair{static_cast<u32>(input >> 12), true};
return std::nullopt;
}
// For AND/TST/ORR/EOR etc
std::optional<std::tuple<u32, u32, u32>> IsImmLogical(u64 value, u32 width)
{
bool negate = false;
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
if (value & 1)
{
// If the low bit is 1, negate the value, and set a flag to remember that we
// did (so that we can adjust the return values appropriately).
negate = true;
value = ~value;
}
constexpr int kWRegSizeInBits = 32;
if (width == kWRegSizeInBits)
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// The most-significant 32 bits may not be zero (ie. negate is true) so
// shift the value left before duplicating it.
value <<= kWRegSizeInBits;
value |= value >> kWRegSizeInBits;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
uint64_t a = LargestPowerOf2Divisor(value);
uint64_t value_plus_a = value + a;
uint64_t b = LargestPowerOf2Divisor(value_plus_a);
uint64_t value_plus_a_minus_b = value_plus_a - b;
uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
int d, clz_a, out_n;
uint64_t mask;
if (c != 0)
{
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
clz_a = Common::CountLeadingZeros(a);
int clz_c = Common::CountLeadingZeros(c);
d = clz_a - clz_c;
mask = ((UINT64_C(1) << d) - 1);
out_n = 0;
}
else
{
// Handle degenerate cases.
//
// If any of those 'find lowest set bit' operations didn't find a set bit at
// all, then the word will have been zero thereafter, so in particular the
// last lowest_set_bit operation will have returned zero. So we can test for
// all the special case conditions in one go by seeing if c is zero.
if (a == 0)
{
// The input was zero (or all 1 bits, which will come to here too after we
// inverted it at the start of the function), for which we just return
// false.
return std::nullopt;
}
else
{
// Otherwise, if c was zero but a was not, then there's just one stretch
// of set bits in our word, meaning that we have the trivial case of
// d == 64 and only one 'repetition'. Set up all the same variables as in
// the general case above, and set the N bit in the output.
clz_a = Common::CountLeadingZeros(a);
d = 64;
mask = ~UINT64_C(0);
out_n = 1;
}
}
// If the repeat period d is not a power of two, it can't be encoded.
if (!MathUtil::IsPow2<u64>(d))
return std::nullopt;
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
if (((b - a) & ~mask) != 0)
return std::nullopt;
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
static const std::array<uint64_t, 6> multipliers = {{
0x0000000000000001UL,
0x0000000100000001UL,
0x0001000100010001UL,
0x0101010101010101UL,
0x1111111111111111UL,
0x5555555555555555UL,
}};
const int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
// Ensure that the index to the multipliers array is within bounds.
DEBUG_ASSERT((multiplier_idx >= 0) && (static_cast<size_t>(multiplier_idx) < multipliers.size()));
const u64 multiplier = multipliers[multiplier_idx];
const u64 candidate = (b - a) * multiplier;
// The candidate pattern doesn't match our input value, so fail.
if (value != candidate)
return std::nullopt;
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
const int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
int s = clz_a - clz_b;
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
int r;
if (negate)
{
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
s = d - s;
r = (clz_b + 1) & (d - 1);
}
else
{
r = (clz_a + 1) & (d - 1);
}
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (-d << 1) with our computed s to form imms.
return std::tuple{
static_cast<u32>(out_n),
static_cast<u32>(((-d << 1) | (s - 1)) & 0x3f),
static_cast<u32>(r),
};
}
float FPImm8ToFloat(u8 bits)
{
const u32 sign = bits >> 7;
const u32 bit6 = (bits >> 6) & 1;
const u32 exp = ((!bit6) << 7) | (0x7C * bit6) | ((bits >> 4) & 3);
const u32 mantissa = (bits & 0xF) << 19;
const u32 f = (sign << 31) | (exp << 23) | mantissa;
return Common::BitCast<float>(f);
}
std::optional<u8> FPImm8FromFloat(float value)
{
const u32 f = Common::BitCast<u32>(value);
const u32 mantissa4 = (f & 0x7FFFFF) >> 19;
const u32 exponent = (f >> 23) & 0xFF;
const u32 sign = f >> 31;
if ((exponent >> 7) == ((exponent >> 6) & 1))
return std::nullopt;
const u8 imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4;
const float new_float = FPImm8ToFloat(imm8);
if (new_float != value)
return std::nullopt;
return imm8;
}
} // Anonymous namespace
void ARM64XEmitter::SetCodePtrUnsafe(u8* ptr)
{
m_code = ptr;
}
void ARM64XEmitter::SetCodePtr(u8* ptr, u8* end, bool write_failed)
{
SetCodePtrUnsafe(ptr);
m_lastCacheFlushEnd = ptr;
}
const u8* ARM64XEmitter::GetCodePtr() const
{
return m_code;
}
u8* ARM64XEmitter::GetWritableCodePtr()
{
return m_code;
}
void ARM64XEmitter::ReserveCodeSpace(u32 bytes)
{
for (u32 i = 0; i < bytes / 4; i++)
BRK(0);
}
u8* ARM64XEmitter::AlignCode16()
{
int c = int((u64)m_code & 15);
if (c)
ReserveCodeSpace(16 - c);
return m_code;
}
u8* ARM64XEmitter::AlignCodePage()
{
int c = int((u64)m_code & 4095);
if (c)
ReserveCodeSpace(4096 - c);
return m_code;
}
void ARM64XEmitter::Write32(u32 value)
{
std::memcpy(m_code, &value, sizeof(u32));
m_code += sizeof(u32);
}
void ARM64XEmitter::FlushIcache()
{
FlushIcacheSection(m_lastCacheFlushEnd, m_code);
m_lastCacheFlushEnd = m_code;
}
void ARM64XEmitter::FlushIcacheSection(u8* start, u8* end)
{
if (start == end)
return;
#if defined(IOS)
// Header file says this is equivalent to: sys_icache_invalidate(start, end - start);
sys_cache_control(kCacheFunctionPrepareForExecution, start, end - start);
#elif defined(WIN32)
FlushInstructionCache(GetCurrentProcess(), start, end - start);
#else
// Don't rely on GCC's __clear_cache implementation, as it caches
// icache/dcache cache line sizes, that can vary between cores on
// big.LITTLE architectures.
u64 addr, ctr_el0;
static size_t icache_line_size = 0xffff, dcache_line_size = 0xffff;
size_t isize, dsize;
__asm__ volatile("mrs %0, ctr_el0" : "=r"(ctr_el0));
isize = 4 << ((ctr_el0 >> 0) & 0xf);
dsize = 4 << ((ctr_el0 >> 16) & 0xf);
// use the global minimum cache line size
icache_line_size = isize = icache_line_size < isize ? icache_line_size : isize;
dcache_line_size = dsize = dcache_line_size < dsize ? dcache_line_size : dsize;
addr = (u64)start & ~(u64)(dsize - 1);
for (; addr < (u64)end; addr += dsize)
// use "civac" instead of "cvau", as this is the suggested workaround for
// Cortex-A53 errata 819472, 826319, 827319 and 824069.
__asm__ volatile("dc civac, %0" : : "r"(addr) : "memory");
__asm__ volatile("dsb ish" : : : "memory");
addr = (u64)start & ~(u64)(isize - 1);
for (; addr < (u64)end; addr += isize)
__asm__ volatile("ic ivau, %0" : : "r"(addr) : "memory");
__asm__ volatile("dsb ish" : : : "memory");
__asm__ volatile("isb" : : : "memory");
#endif
}
// Exception generation
static const u32 ExcEnc[][3] = {
{0, 0, 1}, // SVC
{0, 0, 2}, // HVC
{0, 0, 3}, // SMC
{1, 0, 0}, // BRK
{2, 0, 0}, // HLT
{5, 0, 1}, // DCPS1
{5, 0, 2}, // DCPS2
{5, 0, 3}, // DCPS3
};
// Arithmetic generation
static const u32 ArithEnc[] = {
0x058, // ADD
0x258, // SUB
};
// Conditional Select
static const u32 CondSelectEnc[][2] = {
{0, 0}, // CSEL
{0, 1}, // CSINC
{1, 0}, // CSINV
{1, 1}, // CSNEG
};
// Data-Processing (1 source)
static const u32 Data1SrcEnc[][2] = {
{0, 0}, // RBIT
{0, 1}, // REV16
{0, 2}, // REV32
{0, 3}, // REV64
{0, 4}, // CLZ
{0, 5}, // CLS
};
// Data-Processing (2 source)
static const u32 Data2SrcEnc[] = {
0x02, // UDIV
0x03, // SDIV
0x08, // LSLV
0x09, // LSRV
0x0A, // ASRV
0x0B, // RORV
0x10, // CRC32B
0x11, // CRC32H
0x12, // CRC32W
0x14, // CRC32CB
0x15, // CRC32CH
0x16, // CRC32CW
0x13, // CRC32X (64bit Only)
0x17, // XRC32CX (64bit Only)
};
// Data-Processing (3 source)
static const u32 Data3SrcEnc[][2] = {
{0, 0}, // MADD
{0, 1}, // MSUB
{1, 0}, // SMADDL (64Bit Only)
{1, 1}, // SMSUBL (64Bit Only)
{2, 0}, // SMULH (64Bit Only)
{5, 0}, // UMADDL (64Bit Only)
{5, 1}, // UMSUBL (64Bit Only)
{6, 0}, // UMULH (64Bit Only)
};
// Logical (shifted register)
static const u32 LogicalEnc[][2] = {
{0, 0}, // AND
{0, 1}, // BIC
{1, 0}, // OOR
{1, 1}, // ORN
{2, 0}, // EOR
{2, 1}, // EON
{3, 0}, // ANDS
{3, 1}, // BICS
};
// Load/Store Exclusive
static const u32 LoadStoreExcEnc[][5] = {
{0, 0, 0, 0, 0}, // STXRB
{0, 0, 0, 0, 1}, // STLXRB
{0, 0, 1, 0, 0}, // LDXRB
{0, 0, 1, 0, 1}, // LDAXRB
{0, 1, 0, 0, 1}, // STLRB
{0, 1, 1, 0, 1}, // LDARB
{1, 0, 0, 0, 0}, // STXRH
{1, 0, 0, 0, 1}, // STLXRH
{1, 0, 1, 0, 0}, // LDXRH
{1, 0, 1, 0, 1}, // LDAXRH
{1, 1, 0, 0, 1}, // STLRH
{1, 1, 1, 0, 1}, // LDARH
{2, 0, 0, 0, 0}, // STXR
{3, 0, 0, 0, 0}, // (64bit) STXR
{2, 0, 0, 0, 1}, // STLXR
{3, 0, 0, 0, 1}, // (64bit) STLXR
{2, 0, 0, 1, 0}, // STXP
{3, 0, 0, 1, 0}, // (64bit) STXP
{2, 0, 0, 1, 1}, // STLXP
{3, 0, 0, 1, 1}, // (64bit) STLXP
{2, 0, 1, 0, 0}, // LDXR
{3, 0, 1, 0, 0}, // (64bit) LDXR
{2, 0, 1, 0, 1}, // LDAXR
{3, 0, 1, 0, 1}, // (64bit) LDAXR
{2, 0, 1, 1, 0}, // LDXP
{3, 0, 1, 1, 0}, // (64bit) LDXP
{2, 0, 1, 1, 1}, // LDAXP
{3, 0, 1, 1, 1}, // (64bit) LDAXP
{2, 1, 0, 0, 1}, // STLR
{3, 1, 0, 0, 1}, // (64bit) STLR
{2, 1, 1, 0, 1}, // LDAR
{3, 1, 1, 0, 1}, // (64bit) LDAR
};
void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr)
{
bool b64Bit = Is64Bit(Rt);
s64 distance = (s64)ptr - (s64)m_code;
ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64,
__func__, distance);
distance >>= 2;
ASSERT_MSG(DYNA_REC, distance >= -0x40000 && distance <= 0x3FFFF,
"%s: Received too large distance: %" PRIx64, __func__, distance);
Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | (((u32)distance << 5) & 0xFFFFE0) |
DecodeReg(Rt));
}
void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr)
{
bool b64Bit = Is64Bit(Rt);
s64 distance = (s64)ptr - (s64)m_code;
ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64,
__func__, distance);
distance >>= 2;
ASSERT_MSG(DYNA_REC, distance >= -0x3FFF && distance < 0x3FFF,
"%s: Received too large distance: %" PRIx64, __func__, distance);
Write32((b64Bit << 31) | (0x36 << 24) | (op << 24) | (bits << 19) |
(((u32)distance << 5) & 0x7FFE0) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 op, const void* ptr)
{
s64 distance = (s64)ptr - s64(m_code);
ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64,
__func__, distance);
distance >>= 2;
ASSERT_MSG(DYNA_REC, distance >= -0x2000000LL && distance <= 0x1FFFFFFLL,
"%s: Received too large distance: %" PRIx64, __func__, distance);
Write32((op << 31) | (0x5 << 26) | (distance & 0x3FFFFFF));
}
void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn)
{
Write32((0x6B << 25) | (opc << 21) | (op2 << 16) | (op3 << 10) | (DecodeReg(Rn) << 5) | op4);
}
void ARM64XEmitter::EncodeExceptionInst(u32 instenc, u32 imm)
{
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFFF), "%s: Exception instruction too large immediate: %d",
__func__, imm);
Write32((0xD4 << 24) | (ExcEnc[instenc][0] << 21) | (imm << 5) | (ExcEnc[instenc][1] << 2) |
ExcEnc[instenc][2]);
}
void ARM64XEmitter::EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt)
{
Write32((0x354 << 22) | (op0 << 19) | (op1 << 16) | (CRn << 12) | (CRm << 8) | (op2 << 5) |
DecodeReg(Rt));
}
void ARM64XEmitter::EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn,
ARM64Reg Rm, ArithOption Option)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (flags << 29) | (ArithEnc[instenc] << 21) |
(Option.IsExtended() ? (1 << 21) : 0) | (DecodeReg(Rm) << 16) | Option.GetData() |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn,
ARM64Reg Rm)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0xD0 << 21) | (DecodeReg(Rm) << 16) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond)
{
bool b64Bit = Is64Bit(Rn);
ASSERT_MSG(DYNA_REC, !(imm & ~0x1F), "%s: too large immediate: %d", __func__, imm);
ASSERT_MSG(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __func__, nzcv);
Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | (imm << 16) | (cond << 12) |
(1 << 11) | (DecodeReg(Rn) << 5) | nzcv);
}
void ARM64XEmitter::EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv,
CCFlags cond)
{
bool b64Bit = Is64Bit(Rm);
ASSERT_MSG(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __func__, nzcv);
Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | (DecodeReg(Rm) << 16) |
(cond << 12) | (DecodeReg(Rn) << 5) | nzcv);
}
void ARM64XEmitter::EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm,
CCFlags cond)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (CondSelectEnc[instenc][0] << 30) | (0xD4 << 21) |
(DecodeReg(Rm) << 16) | (cond << 12) | (CondSelectEnc[instenc][1] << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (0x2D6 << 21) | (Data1SrcEnc[instenc][0] << 16) |
(Data1SrcEnc[instenc][1] << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (0x0D6 << 21) | (DecodeReg(Rm) << 16) | (Data2SrcEnc[instenc] << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm,
ARM64Reg Ra)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (0xD8 << 21) | (Data3SrcEnc[instenc][0] << 21) | (DecodeReg(Rm) << 16) |
(Data3SrcEnc[instenc][1] << 15) | (DecodeReg(Ra) << 10) | (DecodeReg(Rn) << 5) |
DecodeReg(Rd));
}
void ARM64XEmitter::EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm,
ArithOption Shift)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (LogicalEnc[instenc][0] << 29) | (0x5 << 25) |
(LogicalEnc[instenc][1] << 21) | Shift.GetData() | (DecodeReg(Rm) << 16) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm)
{
bool b64Bit = Is64Bit(Rt);
bool bVec = IsVector(Rt);
ASSERT_MSG(DYNA_REC, !(imm & 0xFFFFF), "%s: offset too large %d", __func__, imm);
if (b64Bit && bitop != 0x2) // LDRSW(0x2) uses 64bit reg, doesn't have 64bit bit set
bitop |= 0x1;
Write32((bitop << 30) | (bVec << 26) | (0x18 << 24) | (imm << 5) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn,
ARM64Reg Rt)
{
Write32((LoadStoreExcEnc[instenc][0] << 30) | (0x8 << 24) | (LoadStoreExcEnc[instenc][1] << 23) |
(LoadStoreExcEnc[instenc][2] << 22) | (LoadStoreExcEnc[instenc][3] << 21) |
(DecodeReg(Rs) << 16) | (LoadStoreExcEnc[instenc][4] << 15) | (DecodeReg(Rt2) << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn,
u32 imm)
{
bool b64Bit = Is64Bit(Rt);
bool b128Bit = IsQuad(Rt);
bool bVec = IsVector(Rt);
if (b128Bit)
imm >>= 4;
else if (b64Bit)
imm >>= 3;
else
imm >>= 2;
ASSERT_MSG(DYNA_REC, !(imm & ~0xF), "%s: offset too large %d", __func__, imm);
u32 opc = 0;
if (b128Bit)
opc = 2;
else if (b64Bit && bVec)
opc = 1;
else if (b64Bit && !bVec)
opc = 2;
Write32((opc << 30) | (bVec << 26) | (op << 22) | (imm << 15) | (DecodeReg(Rt2) << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
bool b64Bit = Is64Bit(Rt);
bool bVec = IsVector(Rt);
u32 offset = imm & 0x1FF;
ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s: offset too large %d", __func__, imm);
Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (offset << 12) | (op2 << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size)
{
bool b64Bit = Is64Bit(Rt);
bool bVec = IsVector(Rt);
if (size == 64)
imm >>= 3;
else if (size == 32)
imm >>= 2;
else if (size == 16)
imm >>= 1;
ASSERT_MSG(DYNA_REC, imm >= 0, "%s(IndexType::Unsigned): offset must be positive %d", __func__,
imm);
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFF), "%s(IndexType::Unsigned): offset too large %d", __func__,
imm);
Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (imm << 10) | (DecodeReg(Rn) << 5) |
DecodeReg(Rt));
}
void ARM64XEmitter::EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
bool b64Bit = Is64Bit(Rd);
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFFF), "%s: immediate out of range: %d", __func__, imm);
Write32((b64Bit << 31) | (op << 29) | (0x25 << 23) | (static_cast<u32>(pos) << 21) | (imm << 5) |
DecodeReg(Rd));
}
void ARM64XEmitter::EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
bool b64Bit = Is64Bit(Rd);
Write32((b64Bit << 31) | (op << 29) | (0x26 << 23) | (b64Bit << 22) | (immr << 16) |
(imms << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn,
ArithOption Rm)
{
const int decoded_Rm = DecodeReg(Rm.GetReg());
Write32((size << 30) | (opc << 22) | (0x1C1 << 21) | (decoded_Rm << 16) | Rm.GetData() |
(1 << 11) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn,
ARM64Reg Rd)
{
bool b64Bit = Is64Bit(Rd);
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFF), "%s: immediate too large: %x", __func__, imm);
Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0x11 << 24) | (shift << 22) | (imm << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms,
int n)
{
// Sometimes Rd is fixed to SP, but can still be 32bit or 64bit.
// Use Rn to determine bitness here.
bool b64Bit = Is64Bit(Rn);
Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (n << 22) | (immr << 16) | (imms << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2,
ARM64Reg Rn, s32 imm)
{
bool b64Bit = Is64Bit(Rt);
u32 type_encode = 0;
switch (type)
{
case IndexType::Signed:
type_encode = 0b010;
break;
case IndexType::Post:
type_encode = 0b001;
break;
case IndexType::Pre:
type_encode = 0b011;
break;
case IndexType::Unsigned:
ASSERT_MSG(DYNA_REC, false, "%s doesn't support IndexType::Unsigned!", __func__);
break;
}
if (b64Bit)
{
op |= 0b10;
imm >>= 3;
}
else
{
imm >>= 2;
}
ASSERT_MSG(DYNA_REC, imm >= -64 && imm < 64, "imm too large for load/store pair!");
Write32((op << 30) | (0b101 << 27) | (type_encode << 23) | (load << 22) | ((imm & 0x7F) << 15) |
(DecodeReg(Rt2) << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64XEmitter::EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm)
{
Write32((op << 31) | ((imm & 0x3) << 29) | (0x10 << 24) | ((imm & 0x1FFFFC) << 3) |
DecodeReg(Rd));
}
void ARM64XEmitter::EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __func__,
imm);
Write32((size << 30) | (0b111 << 27) | (op << 22) | ((imm & 0x1FF) << 12) | (DecodeReg(Rn) << 5) |
DecodeReg(Rt));
}
static constexpr bool IsInRangeImm19(s64 distance)
{
return (distance >= -0x40000 && distance <= 0x3FFFF);
}
static constexpr bool IsInRangeImm14(s64 distance)
{
return (distance >= -0x2000 && distance <= 0x1FFF);
}
static constexpr bool IsInRangeImm26(s64 distance)
{
return (distance >= -0x2000000 && distance <= 0x1FFFFFF);
}
static constexpr u32 MaskImm19(s64 distance)
{
return distance & 0x7FFFF;
}
static constexpr u32 MaskImm14(s64 distance)
{
return distance & 0x3FFF;
}
static constexpr u32 MaskImm26(s64 distance)
{
return distance & 0x3FFFFFF;
}
// FixupBranch branching
void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch)
{
bool Not = false;
u32 inst = 0;
s64 distance = (s64)(m_code - branch.ptr);
distance >>= 2;
switch (branch.type)
{
case FixupBranch::Type::CBNZ:
Not = true;
[[fallthrough]];
case FixupBranch::Type::CBZ:
{
ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %" PRIx64,
__func__, static_cast<int>(branch.type), distance);
const bool b64Bit = Is64Bit(branch.reg);
inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | (MaskImm19(distance) << 5) |
DecodeReg(branch.reg);
}
break;
case FixupBranch::Type::BConditional:
ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %" PRIx64,
__func__, static_cast<int>(branch.type), distance);
inst = (0x2A << 25) | (MaskImm19(distance) << 5) | branch.cond;
break;
case FixupBranch::Type::TBNZ:
Not = true;
[[fallthrough]];
case FixupBranch::Type::TBZ:
{
ASSERT_MSG(DYNA_REC, IsInRangeImm14(distance), "%s(%d): Received too large distance: %" PRIx64,
__func__, static_cast<int>(branch.type), distance);
inst = ((branch.bit & 0x20) << 26) | (0x1B << 25) | (Not << 24) | ((branch.bit & 0x1F) << 19) |
(MaskImm14(distance) << 5) | DecodeReg(branch.reg);
}
break;
case FixupBranch::Type::B:
ASSERT_MSG(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %" PRIx64,
__func__, static_cast<int>(branch.type), distance);
inst = (0x5 << 26) | MaskImm26(distance);
break;
case FixupBranch::Type::BL:
ASSERT_MSG(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %" PRIx64,
__func__, static_cast<int>(branch.type), distance);
inst = (0x25 << 26) | MaskImm26(distance);
break;
}
std::memcpy(branch.ptr, &inst, sizeof(inst));
}
FixupBranch ARM64XEmitter::CBZ(ARM64Reg Rt)
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::CBZ;
branch.reg = Rt;
NOP();
return branch;
}
FixupBranch ARM64XEmitter::CBNZ(ARM64Reg Rt)
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::CBNZ;
branch.reg = Rt;
NOP();
return branch;
}
FixupBranch ARM64XEmitter::B(CCFlags cond)
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::BConditional;
branch.cond = cond;
NOP();
return branch;
}
FixupBranch ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bit)
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::TBZ;
branch.reg = Rt;
branch.bit = bit;
NOP();
return branch;
}
FixupBranch ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bit)
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::TBNZ;
branch.reg = Rt;
branch.bit = bit;
NOP();
return branch;
}
FixupBranch ARM64XEmitter::B()
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::B;
NOP();
return branch;
}
FixupBranch ARM64XEmitter::BL()
{
FixupBranch branch{};
branch.ptr = m_code;
branch.type = FixupBranch::Type::BL;
NOP();
return branch;
}
// Compare and Branch
void ARM64XEmitter::CBZ(ARM64Reg Rt, const void* ptr)
{
EncodeCompareBranchInst(0, Rt, ptr);
}
void ARM64XEmitter::CBNZ(ARM64Reg Rt, const void* ptr)
{
EncodeCompareBranchInst(1, Rt, ptr);
}
// Conditional Branch
void ARM64XEmitter::B(CCFlags cond, const void* ptr)
{
s64 distance = (s64)ptr - (s64)m_code;
distance >>= 2;
ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance),
"%s: Received too large distance: %p->%p %" PRIi64 " %" PRIx64, __func__, m_code, ptr,
distance, distance);
Write32((0x54 << 24) | (MaskImm19(distance) << 5) | cond);
}
// Test and Branch
void ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bits, const void* ptr)
{
EncodeTestBranchInst(0, Rt, bits, ptr);
}
void ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bits, const void* ptr)
{
EncodeTestBranchInst(1, Rt, bits, ptr);
}
// Unconditional Branch
void ARM64XEmitter::B(const void* ptr)
{
EncodeUnconditionalBranchInst(0, ptr);
}
void ARM64XEmitter::BL(const void* ptr)
{
EncodeUnconditionalBranchInst(1, ptr);
}
void ARM64XEmitter::QuickCallFunction(ARM64Reg scratchreg, const void* func)
{
s64 distance = (s64)func - (s64)m_code;
distance >>= 2; // Can only branch to opcode-aligned (4) addresses
if (!IsInRangeImm26(distance))
{
MOVI2R(scratchreg, (uintptr_t)func);
BLR(scratchreg);
}
else
{
BL(func);
}
}
// Unconditional Branch (register)
void ARM64XEmitter::BR(ARM64Reg Rn)
{
EncodeUnconditionalBranchInst(0, 0x1F, 0, 0, Rn);
}
void ARM64XEmitter::BLR(ARM64Reg Rn)
{
EncodeUnconditionalBranchInst(1, 0x1F, 0, 0, Rn);
}
void ARM64XEmitter::RET(ARM64Reg Rn)
{
EncodeUnconditionalBranchInst(2, 0x1F, 0, 0, Rn);
}
void ARM64XEmitter::ERET()
{
EncodeUnconditionalBranchInst(4, 0x1F, 0, 0, ARM64Reg::SP);
}
void ARM64XEmitter::DRPS()
{
EncodeUnconditionalBranchInst(5, 0x1F, 0, 0, ARM64Reg::SP);
}
// Exception generation
void ARM64XEmitter::SVC(u32 imm)
{
EncodeExceptionInst(0, imm);
}
void ARM64XEmitter::HVC(u32 imm)
{
EncodeExceptionInst(1, imm);
}
void ARM64XEmitter::SMC(u32 imm)
{
EncodeExceptionInst(2, imm);
}
void ARM64XEmitter::BRK(u32 imm)
{
EncodeExceptionInst(3, imm);
}
void ARM64XEmitter::HLT(u32 imm)
{
EncodeExceptionInst(4, imm);
}
void ARM64XEmitter::DCPS1(u32 imm)
{
EncodeExceptionInst(5, imm);
}
void ARM64XEmitter::DCPS2(u32 imm)
{
EncodeExceptionInst(6, imm);
}
void ARM64XEmitter::DCPS3(u32 imm)
{
EncodeExceptionInst(7, imm);
}
// System
void ARM64XEmitter::_MSR(PStateField field, u8 imm)
{
u32 op1 = 0, op2 = 0;
switch (field)
{
case PStateField::SPSel:
op1 = 0;
op2 = 5;
break;
case PStateField::DAIFSet:
op1 = 3;
op2 = 6;
break;
case PStateField::DAIFClr:
op1 = 3;
op2 = 7;
break;
default:
ASSERT_MSG(DYNA_REC, false, "Invalid PStateField to do a imm move to");
break;
}
EncodeSystemInst(0, op1, 4, imm, op2, ARM64Reg::WSP);
}
static void GetSystemReg(PStateField field, int& o0, int& op1, int& CRn, int& CRm, int& op2)
{
switch (field)
{
case PStateField::NZCV:
o0 = 3;
op1 = 3;
CRn = 4;
CRm = 2;
op2 = 0;
break;
case PStateField::FPCR:
o0 = 3;
op1 = 3;
CRn = 4;
CRm = 4;
op2 = 0;
break;
case PStateField::FPSR:
o0 = 3;
op1 = 3;
CRn = 4;
CRm = 4;
op2 = 1;
break;
case PStateField::PMCR_EL0:
o0 = 3;
op1 = 3;
CRn = 9;
CRm = 6;
op2 = 0;
break;
case PStateField::PMCCNTR_EL0:
o0 = 3;
op1 = 3;
CRn = 9;
CRm = 7;
op2 = 0;
break;
default:
ASSERT_MSG(DYNA_REC, false, "Invalid PStateField to do a register move from/to");
break;
}
}
void ARM64XEmitter::_MSR(PStateField field, ARM64Reg Rt)
{
int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0;
ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "MSR: Rt must be 64-bit");
GetSystemReg(field, o0, op1, CRn, CRm, op2);
EncodeSystemInst(o0, op1, CRn, CRm, op2, Rt);
}
void ARM64XEmitter::MRS(ARM64Reg Rt, PStateField field)
{
int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0;
ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "MRS: Rt must be 64-bit");
GetSystemReg(field, o0, op1, CRn, CRm, op2);
EncodeSystemInst(o0 | 4, op1, CRn, CRm, op2, Rt);
}
void ARM64XEmitter::CNTVCT(Arm64Gen::ARM64Reg Rt)
{
ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "CNTVCT: Rt must be 64-bit");
// MRS <Xt>, CNTVCT_EL0 ; Read CNTVCT_EL0 into Xt
EncodeSystemInst(3 | 4, 3, 0xe, 0, 2, Rt);
}
void ARM64XEmitter::HINT(SystemHint op)
{
EncodeSystemInst(0, 3, 2, 0, static_cast<u32>(op), ARM64Reg::WSP);
}
void ARM64XEmitter::CLREX()
{
EncodeSystemInst(0, 3, 3, 0, 2, ARM64Reg::WSP);
}
void ARM64XEmitter::DSB(BarrierType type)
{
EncodeSystemInst(0, 3, 3, static_cast<u32>(type), 4, ARM64Reg::WSP);
}
void ARM64XEmitter::DMB(BarrierType type)
{
EncodeSystemInst(0, 3, 3, static_cast<u32>(type), 5, ARM64Reg::WSP);
}
void ARM64XEmitter::ISB(BarrierType type)
{
EncodeSystemInst(0, 3, 3, static_cast<u32>(type), 6, ARM64Reg::WSP);
}
// Add/Subtract (extended register)
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
ADD(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
}
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(0, false, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticInst(0, true, Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
}
void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(0, true, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
SUB(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
}
void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(1, false, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticInst(1, true, Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
}
void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(1, true, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm)
{
CMN(Rn, Rm, ArithOption(Rn, ShiftType::LSL, 0));
}
void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(0, true, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, Rm, Option);
}
void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm)
{
CMP(Rn, Rm, ArithOption(Rn, ShiftType::LSL, 0));
}
void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(1, true, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, Rm, Option);
}
// Add/Subtract (with carry)
void ARM64XEmitter::ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(0, false, Rd, Rn, Rm);
}
void ARM64XEmitter::ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(0, true, Rd, Rn, Rm);
}
void ARM64XEmitter::SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(1, false, Rd, Rn, Rm);
}
void ARM64XEmitter::SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(1, true, Rd, Rn, Rm);
}
// Conditional Compare (immediate)
void ARM64XEmitter::CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareImmInst(0, Rn, imm, nzcv, cond);
}
void ARM64XEmitter::CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareImmInst(1, Rn, imm, nzcv, cond);
}
// Conditiona Compare (register)
void ARM64XEmitter::CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareRegInst(0, Rn, Rm, nzcv, cond);
}
void ARM64XEmitter::CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareRegInst(1, Rn, Rm, nzcv, cond);
}
// Conditional Select
void ARM64XEmitter::CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(0, Rd, Rn, Rm, cond);
}
void ARM64XEmitter::CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(1, Rd, Rn, Rm, cond);
}
void ARM64XEmitter::CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(2, Rd, Rn, Rm, cond);
}
void ARM64XEmitter::CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(3, Rd, Rn, Rm, cond);
}
// Data-Processing 1 source
void ARM64XEmitter::RBIT(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(0, Rd, Rn);
}
void ARM64XEmitter::REV16(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(1, Rd, Rn);
}
void ARM64XEmitter::REV32(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(2, Rd, Rn);
}
void ARM64XEmitter::REV64(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(3, Rd, Rn);
}
void ARM64XEmitter::CLZ(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(4, Rd, Rn);
}
void ARM64XEmitter::CLS(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(5, Rd, Rn);
}
// Data-Processing 2 source
void ARM64XEmitter::UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(0, Rd, Rn, Rm);
}
void ARM64XEmitter::SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(1, Rd, Rn, Rm);
}
void ARM64XEmitter::LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(2, Rd, Rn, Rm);
}
void ARM64XEmitter::LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(3, Rd, Rn, Rm);
}
void ARM64XEmitter::ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(4, Rd, Rn, Rm);
}
void ARM64XEmitter::RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(5, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(6, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(7, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(8, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(9, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(10, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(11, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(12, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(13, Rd, Rn, Rm);
}
// Data-Processing 3 source
void ARM64XEmitter::MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(0, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(1, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(2, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
SMADDL(Rd, Rn, Rm, ARM64Reg::SP);
}
void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(3, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(4, Rd, Rn, Rm, ARM64Reg::SP);
}
void ARM64XEmitter::UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(5, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::UMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
UMADDL(Rd, Rn, Rm, ARM64Reg::SP);
}
void ARM64XEmitter::UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(6, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(7, Rd, Rn, Rm, ARM64Reg::SP);
}
void ARM64XEmitter::MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(0, Rd, Rn, Rm, ARM64Reg::SP);
}
void ARM64XEmitter::MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(1, Rd, Rn, Rm, ARM64Reg::SP);
}
// Logical (shifted register)
void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(0, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(1, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(2, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(3, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(4, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(5, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(6, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(7, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift)
{
ORR(Rd, Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR, Rm, Shift);
}
void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm)
{
if (IsGPR(Rd) && IsGPR(Rm))
ORR(Rd, Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR, Rm, ArithOption(Rm, ShiftType::LSL, 0));
else
ASSERT_MSG(DYNA_REC, false, "Non-GPRs not supported in MOV");
}
void ARM64XEmitter::MVN(ARM64Reg Rd, ARM64Reg Rm)
{
ORN(Rd, Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR, Rm, ArithOption(Rm, ShiftType::LSL, 0));
}
void ARM64XEmitter::LSL(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
int bits = Is64Bit(Rd) ? 64 : 32;
UBFM(Rd, Rm, (bits - shift) & (bits - 1), bits - shift - 1);
}
void ARM64XEmitter::LSR(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
int bits = Is64Bit(Rd) ? 64 : 32;
UBFM(Rd, Rm, shift, bits - 1);
}
void ARM64XEmitter::ASR(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
int bits = Is64Bit(Rd) ? 64 : 32;
SBFM(Rd, Rm, shift, bits - 1);
}
void ARM64XEmitter::ROR(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
EXTR(Rd, Rm, Rm, shift);
}
// Logical (immediate)
void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(0, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(3, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(2, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(1, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(3, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, immr, imms, invert);
}
// Add/subtract (immediate)
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(0, false, shift, imm, Rn, Rd);
}
void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(0, true, shift, imm, Rn, Rd);
}
void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(1, false, shift, imm, Rn, Rd);
}
void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(1, true, shift, imm, Rn, Rd);
}
void ARM64XEmitter::CMP(ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(1, true, shift, imm, Rn, Is64Bit(Rn) ? ARM64Reg::SP : ARM64Reg::WSP);
}
// Data Processing (Immediate)
void ARM64XEmitter::MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
EncodeMOVWideInst(2, Rd, imm, pos);
}
void ARM64XEmitter::MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
EncodeMOVWideInst(0, Rd, imm, pos);
}
void ARM64XEmitter::MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
EncodeMOVWideInst(3, Rd, imm, pos);
}
// Bitfield move
void ARM64XEmitter::BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
EncodeBitfieldMOVInst(1, Rd, Rn, immr, imms);
}
void ARM64XEmitter::SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
EncodeBitfieldMOVInst(0, Rd, Rn, immr, imms);
}
void ARM64XEmitter::UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
EncodeBitfieldMOVInst(2, Rd, Rn, immr, imms);
}
void ARM64XEmitter::BFI(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width)
{
u32 size = Is64Bit(Rn) ? 64 : 32;
ASSERT_MSG(DYNA_REC, lsb < size && width >= 1 && width <= size - lsb,
"%s passed lsb %d and width %d which is greater than the register size!", __func__,
lsb, width);
BFM(Rd, Rn, (size - lsb) % size, width - 1);
}
void ARM64XEmitter::BFXIL(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width)
{
u32 size = Is64Bit(Rn) ? 64 : 32;
ASSERT_MSG(DYNA_REC, lsb < size && width >= 1 && width <= size - lsb,
"%s passed lsb %d and width %d which is greater than the register size!", __func__,
lsb, width);
BFM(Rd, Rn, lsb, lsb + width - 1);
}
void ARM64XEmitter::UBFIZ(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width)
{
u32 size = Is64Bit(Rn) ? 64 : 32;
ASSERT_MSG(DYNA_REC, lsb < size && width >= 1 && width <= size - lsb,
"%s passed lsb %d and width %d which is greater than the register size!", __func__,
lsb, width);
UBFM(Rd, Rn, (size - lsb) % size, width - 1);
}
void ARM64XEmitter::EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift)
{
bool sf = Is64Bit(Rd);
bool N = sf;
Write32((sf << 31) | (0x27 << 23) | (N << 22) | (DecodeReg(Rm) << 16) | (shift << 10) |
(DecodeReg(Rm) << 5) | DecodeReg(Rd));
}
void ARM64XEmitter::SXTB(ARM64Reg Rd, ARM64Reg Rn)
{
SBFM(Rd, Rn, 0, 7);
}
void ARM64XEmitter::SXTH(ARM64Reg Rd, ARM64Reg Rn)
{
SBFM(Rd, Rn, 0, 15);
}
void ARM64XEmitter::SXTW(ARM64Reg Rd, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, Is64Bit(Rd), "%s requires 64bit register as destination", __func__);
SBFM(Rd, Rn, 0, 31);
}
void ARM64XEmitter::UXTB(ARM64Reg Rd, ARM64Reg Rn)
{
UBFM(Rd, Rn, 0, 7);
}
void ARM64XEmitter::UXTH(ARM64Reg Rd, ARM64Reg Rn)
{
UBFM(Rd, Rn, 0, 15);
}
// Load Register (Literal)
void ARM64XEmitter::LDR(ARM64Reg Rt, u32 imm)
{
EncodeLoadRegisterInst(0, Rt, imm);
}
void ARM64XEmitter::LDRSW(ARM64Reg Rt, u32 imm)
{
EncodeLoadRegisterInst(2, Rt, imm);
}
void ARM64XEmitter::PRFM(ARM64Reg Rt, u32 imm)
{
EncodeLoadRegisterInst(3, Rt, imm);
}
// Load/Store pair
void ARM64XEmitter::LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
EncodeLoadStorePair(0, 1, type, Rt, Rt2, Rn, imm);
}
void ARM64XEmitter::LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
EncodeLoadStorePair(1, 1, type, Rt, Rt2, Rn, imm);
}
void ARM64XEmitter::STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
EncodeLoadStorePair(0, 0, type, Rt, Rt2, Rn, imm);
}
// Load/Store Exclusive
void ARM64XEmitter::STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(0, Rs, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(1, Rs, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDXRB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(2, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDAXRB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(3, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STLRB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(4, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDARB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(5, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(6, Rs, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(7, Rs, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDXRH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(8, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDAXRH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(9, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STLRH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(10, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDARH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(11, ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(12 + Is64Bit(Rt), Rs, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(14 + Is64Bit(Rt), Rs, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(16 + Is64Bit(Rt), Rs, Rt2, Rt, Rn);
}
void ARM64XEmitter::STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(18 + Is64Bit(Rt), Rs, Rt2, Rt, Rn);
}
void ARM64XEmitter::LDXR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(20 + Is64Bit(Rt), ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDAXR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(22 + Is64Bit(Rt), ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(24 + Is64Bit(Rt), ARM64Reg::SP, Rt2, Rt, Rn);
}
void ARM64XEmitter::LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(26 + Is64Bit(Rt), ARM64Reg::SP, Rt2, Rt, Rn);
}
void ARM64XEmitter::STLR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(28 + Is64Bit(Rt), ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
void ARM64XEmitter::LDAR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(30 + Is64Bit(Rt), ARM64Reg::SP, ARM64Reg::SP, Rt, Rn);
}
// Load/Store no-allocate pair (offset)
void ARM64XEmitter::STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm)
{
EncodeLoadStorePairedInst(0xA0, Rt, Rt2, Rn, imm);
}
void ARM64XEmitter::LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm)
{
EncodeLoadStorePairedInst(0xA1, Rt, Rt2, Rn, imm);
}
// Load/Store register (immediate post-indexed)
// XXX: Most of these support vectors
void ARM64XEmitter::STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(0x0E4, Rt, Rn, imm, 8);
else
EncodeLoadStoreIndexedInst(0x0E0, type == IndexType::Post ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(0x0E5, Rt, Rn, imm, 8);
else
EncodeLoadStoreIndexedInst(0x0E1, type == IndexType::Post ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E6 : 0x0E7, Rt, Rn, imm, 8);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E2 : 0x0E3, type == IndexType::Post ? 1 : 3, Rt, Rn,
imm);
}
void ARM64XEmitter::STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(0x1E4, Rt, Rn, imm, 16);
else
EncodeLoadStoreIndexedInst(0x1E0, type == IndexType::Post ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(0x1E5, Rt, Rn, imm, 16);
else
EncodeLoadStoreIndexedInst(0x1E1, type == IndexType::Post ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E6 : 0x1E7, Rt, Rn, imm, 16);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E2 : 0x1E3, type == IndexType::Post ? 1 : 3, Rt, Rn,
imm);
}
void ARM64XEmitter::STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E4 : 0x2E4, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E0 : 0x2E0, type == IndexType::Post ? 1 : 3, Rt, Rn,
imm);
}
void ARM64XEmitter::LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E5 : 0x2E5, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E1 : 0x2E1, type == IndexType::Post ? 1 : 3, Rt, Rn,
imm);
}
void ARM64XEmitter::LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == IndexType::Unsigned)
EncodeLoadStoreIndexedInst(0x2E6, Rt, Rn, imm, 32);
else
EncodeLoadStoreIndexedInst(0x2E2, type == IndexType::Post ? 1 : 3, Rt, Rn, imm);
}
// Load/Store register (register offset)
void ARM64XEmitter::STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(0, 0, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(0, 1, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(0, 3 - b64Bit, Rt, Rn, Rm);
}
void ARM64XEmitter::STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(1, 0, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(1, 1, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(1, 3 - b64Bit, Rt, Rn, Rm);
}
void ARM64XEmitter::STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(2 + b64Bit, 0, Rt, Rn, Rm);
}
void ARM64XEmitter::LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(2 + b64Bit, 1, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(2, 2, Rt, Rn, Rm);
}
void ARM64XEmitter::PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm);
}
// Load/Store register (unscaled offset)
void ARM64XEmitter::STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
ASSERT_MSG(DYNA_REC, !Is64Bit(Rt), "%s must have a 64bit destination register!", __func__);
EncodeLoadStoreUnscaled(2, 2, Rt, Rn, imm);
}
// Address of label/page PC-relative
void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm)
{
EncodeAddressInst(0, Rd, imm);
}
void ARM64XEmitter::ADRP(ARM64Reg Rd, s64 imm)
{
EncodeAddressInst(1, Rd, static_cast<s32>(imm >> 12));
}
template <typename T, size_t MaxSize>
class SmallVector final
{
public:
SmallVector() = default;
explicit SmallVector(size_t size) : m_size(size) {}
void push_back(const T& x) { m_array[m_size++] = x; }
void push_back(T&& x) { m_array[m_size++] = std::move(x); }
template <typename... Args>
T& emplace_back(Args&&... args)
{
return m_array[m_size++] = T{std::forward<Args>(args)...};
}
T& operator[](size_t i) { return m_array[i]; }
const T& operator[](size_t i) const { return m_array[i]; }
size_t size() const { return m_size; }
bool empty() const { return m_size == 0; }
private:
std::array<T, MaxSize> m_array{};
size_t m_size = 0;
};
template <typename T>
void ARM64XEmitter::MOVI2RImpl(ARM64Reg Rd, T imm)
{
enum class Approach
{
MOVZBase,
MOVNBase,
ADRBase,
ADRPBase,
ORRBase,
};
struct Part
{
Part() = default;
Part(u16 imm_, ShiftAmount shift_) : imm(imm_), shift(shift_) {}
u16 imm;
ShiftAmount shift;
};
constexpr size_t max_parts = sizeof(T) / 2;
SmallVector<Part, max_parts> best_parts;
Approach best_approach;
u64 best_base;
const auto instructions_required = [](const SmallVector<Part, max_parts>& parts,
Approach approach) {
return parts.size() + (approach > Approach::MOVNBase);
};
const auto try_base = [&](T base, Approach approach, bool first_time) {
SmallVector<Part, max_parts> parts;
for (size_t i = 0; i < max_parts; ++i)
{
const size_t shift = i * 16;
const u16 imm_shifted = static_cast<u16>(imm >> shift);
const u16 base_shifted = static_cast<u16>(base >> shift);
if (imm_shifted != base_shifted)
parts.emplace_back(imm_shifted, static_cast<ShiftAmount>(i));
}
if (first_time ||
instructions_required(parts, approach) < instructions_required(best_parts, best_approach))
{
best_parts = std::move(parts);
best_approach = approach;
best_base = base;
}
};
// Try MOVZ/MOVN
try_base(T(0), Approach::MOVZBase, true);
try_base(~T(0), Approach::MOVNBase, false);
// Try PC-relative approaches
const auto sext_21_bit = [](u64 x) {
return static_cast<s64>((x & 0x1FFFFF) | (x & 0x100000 ? ~0x1FFFFF : 0));
};
const u64 pc = reinterpret_cast<u64>(GetCodePtr());
const s64 adrp_offset = sext_21_bit((imm >> 12) - (pc >> 12)) << 12;
const s64 adr_offset = sext_21_bit(imm - pc);
const u64 adrp_base = (pc & ~0xFFF) + adrp_offset;
const u64 adr_base = pc + adr_offset;
if constexpr (sizeof(T) == 8)
{
try_base(adrp_base, Approach::ADRPBase, false);
try_base(adr_base, Approach::ADRBase, false);
}
// Try ORR (or skip it if we already have a 1-instruction encoding - these tests are non-trivial)
if (instructions_required(best_parts, best_approach) > 1)
{
if constexpr (sizeof(T) == 8)
{
for (u64 orr_imm : {(imm << 32) | (imm & 0x0000'0000'FFFF'FFFF),
(imm & 0xFFFF'FFFF'0000'0000) | (imm >> 32),
(imm << 48) | (imm & 0x0000'FFFF'FFFF'0000) | (imm >> 48)})
{
if (IsImmLogical(orr_imm, 64))
try_base(orr_imm, Approach::ORRBase, false);
}
}
else
{
if (IsImmLogical(imm, 32))
try_base(imm, Approach::ORRBase, false);
}
}
size_t parts_uploaded = 0;
// To kill any dependencies, we start with an instruction that overwrites the entire register
switch (best_approach)
{
case Approach::MOVZBase:
if (best_parts.empty())
best_parts.emplace_back(u16(0), ShiftAmount::Shift0);
MOVZ(Rd, best_parts[0].imm, best_parts[0].shift);
++parts_uploaded;
break;
case Approach::MOVNBase:
if (best_parts.empty())
best_parts.emplace_back(u16(0xFFFF), ShiftAmount::Shift0);
MOVN(Rd, static_cast<u16>(~best_parts[0].imm), best_parts[0].shift);
++parts_uploaded;
break;
case Approach::ADRBase:
ADR(Rd, adr_offset);
break;
case Approach::ADRPBase:
ADRP(Rd, adrp_offset);
break;
case Approach::ORRBase:
constexpr ARM64Reg zero_reg = sizeof(T) == 8 ? ARM64Reg::ZR : ARM64Reg::WZR;
const bool success = TryORRI2R(Rd, zero_reg, best_base);
ASSERT(success);
break;
}
// And then we use MOVK for the remaining parts
for (; parts_uploaded < best_parts.size(); ++parts_uploaded)
{
const Part& part = best_parts[parts_uploaded];
if (best_approach == Approach::ADRPBase && part.shift == ShiftAmount::Shift0)
{
// The combination of ADRP followed by ADD immediate is specifically optimized in hardware
ASSERT(part.imm == (adrp_base & 0xF000) + (part.imm & 0xFFF));
ADD(Rd, Rd, part.imm & 0xFFF);
}
else
{
MOVK(Rd, part.imm, part.shift);
}
}
}
template void ARM64XEmitter::MOVI2RImpl(ARM64Reg Rd, u64 imm);
template void ARM64XEmitter::MOVI2RImpl(ARM64Reg Rd, u32 imm);
void ARM64XEmitter::MOVI2R(ARM64Reg Rd, u64 imm)
{
if (Is64Bit(Rd))
MOVI2RImpl<u64>(Rd, imm);
else
MOVI2RImpl<u32>(Rd, static_cast<u32>(imm));
}
bool ARM64XEmitter::MOVI2R2(ARM64Reg Rd, u64 imm1, u64 imm2)
{
// TODO: Also optimize for performance, not just for code size.
u8* start_pointer = GetWritableCodePtr();
MOVI2R(Rd, imm1);
int size1 = GetCodePtr() - start_pointer;
SetCodePtrUnsafe(start_pointer);
MOVI2R(Rd, imm2);
int size2 = GetCodePtr() - start_pointer;
SetCodePtrUnsafe(start_pointer);
bool element = size1 > size2;
MOVI2R(Rd, element ? imm2 : imm1);
return element;
}
void ARM64XEmitter::ABI_PushRegisters(BitSet32 registers)
{
int num_regs = registers.Count();
int stack_size = (num_regs + (num_regs & 1)) * 8;
auto it = registers.begin();
if (!num_regs)
return;
// 8 byte per register, but 16 byte alignment, so we may have to padd one register.
// Only update the SP on the last write to avoid the dependency between those stores.
// The first push must adjust the SP, else a context switch may invalidate everything below SP.
if (num_regs & 1)
{
STR(IndexType::Pre, ARM64Reg::X0 + *it++, ARM64Reg::SP, -stack_size);
}
else
{
ARM64Reg first_reg = ARM64Reg::X0 + *it++;
ARM64Reg second_reg = ARM64Reg::X0 + *it++;
STP(IndexType::Pre, first_reg, second_reg, ARM64Reg::SP, -stack_size);
}
// Fast store for all other registers, this is always an even number.
for (int i = 0; i < (num_regs - 1) / 2; i++)
{
ARM64Reg odd_reg = ARM64Reg::X0 + *it++;
ARM64Reg even_reg = ARM64Reg::X0 + *it++;
STP(IndexType::Signed, odd_reg, even_reg, ARM64Reg::SP, 16 * (i + 1));
}
ASSERT_MSG(DYNA_REC, it == registers.end(), "%s registers don't match.", __func__);
}
void ARM64XEmitter::ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask)
{
int num_regs = registers.Count();
int stack_size = (num_regs + (num_regs & 1)) * 8;
auto it = registers.begin();
if (!num_regs)
return;
// We must adjust the SP in the end, so load the first (two) registers at least.
ARM64Reg first = ARM64Reg::X0 + *it++;
ARM64Reg second;
if (!(num_regs & 1))
second = ARM64Reg::X0 + *it++;
else
second = {};
// 8 byte per register, but 16 byte alignment, so we may have to padd one register.
// Only update the SP on the last load to avoid the dependency between those loads.
// Fast load for all but the first (two) registers, this is always an even number.
for (int i = 0; i < (num_regs - 1) / 2; i++)
{
ARM64Reg odd_reg = ARM64Reg::X0 + *it++;
ARM64Reg even_reg = ARM64Reg::X0 + *it++;
LDP(IndexType::Signed, odd_reg, even_reg, ARM64Reg::SP, 16 * (i + 1));
}
// Post loading the first (two) registers.
if (num_regs & 1)
LDR(IndexType::Post, first, ARM64Reg::SP, stack_size);
else
LDP(IndexType::Post, first, second, ARM64Reg::SP, stack_size);
ASSERT_MSG(DYNA_REC, it == registers.end(), "%s registers don't match.", __func__);
}
// Float Emitter
void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt,
ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_imm = 0;
if (size == 8)
encoded_size = 0;
else if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
else if (size == 128)
encoded_size = 0;
if (type == IndexType::Unsigned)
{
ASSERT_MSG(DYNA_REC, !(imm & ((size - 1) >> 3)),
"%s(IndexType::Unsigned) immediate offset must be aligned to size! (%d) (%p)",
__func__, imm, m_emit->GetCodePtr());
ASSERT_MSG(DYNA_REC, imm >= 0, "%s(IndexType::Unsigned) immediate offset must be positive!",
__func__);
if (size == 16)
imm >>= 1;
else if (size == 32)
imm >>= 2;
else if (size == 64)
imm >>= 3;
else if (size == 128)
imm >>= 4;
encoded_imm = (imm & 0xFFF);
}
else
{
ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255),
"%s immediate offset must be within range of -256 to 256!", __func__);
encoded_imm = (imm & 0x1FF) << 2;
if (type == IndexType::Post)
encoded_imm |= 1;
else
encoded_imm |= 3;
}
Write32((encoded_size << 30) | (0xF << 26) | (type == IndexType::Unsigned ? (1 << 24) : 0) |
(size == 128 ? (1 << 23) : 0) | (opc << 22) | (encoded_imm << 10) | (DecodeReg(Rn) << 5) |
DecodeReg(Rt));
}
void ARM64FloatEmitter::EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd,
ARM64Reg Rn, ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s only supports double and single registers!", __func__);
Write32((M << 31) | (S << 29) | (0b11110001 << 21) | (type << 22) | (DecodeReg(Rm) << 16) |
(opcode << 12) | (1 << 11) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn,
ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__);
bool quad = IsQuad(Rd);
Write32((quad << 30) | (U << 29) | (0b1110001 << 21) | (size << 22) | (DecodeReg(Rm) << 16) |
(opcode << 11) | (1 << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn)
{
Write32((Q << 30) | (op << 29) | (0b111 << 25) | (imm5 << 16) | (imm4 << 11) | (1 << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__);
Write32((Q << 30) | (U << 29) | (0b1110001 << 21) | (size << 22) | (opcode << 12) | (1 << 11) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size,
ARM64Reg Rt, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __func__);
bool quad = IsQuad(Rt);
Write32((quad << 30) | (0b1101 << 24) | (L << 22) | (R << 21) | (opcode << 13) | (S << 12) |
(size << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size,
ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __func__);
bool quad = IsQuad(Rt);
Write32((quad << 30) | (0x1B << 23) | (L << 22) | (R << 21) | (DecodeReg(Rm) << 16) |
(opcode << 13) | (S << 12) | (size << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | (1 << 14) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode,
ARM64Reg Rd, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, Rn <= ARM64Reg::SP, "%s only supports GPR as source!", __func__);
Write32((sf << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (rmode << 19) | (opcode << 16) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round,
bool sign)
{
DEBUG_ASSERT_MSG(DYNA_REC, IsScalar(Rn), "fcvts: Rn must be floating point");
if (IsGPR(Rd))
{
// Use the encoding that transfers the result to a GPR.
const bool sf = Is64Bit(Rd);
const int type = IsDouble(Rn) ? 1 : 0;
int opcode = (sign ? 1 : 0);
int rmode = 0;
switch (round)
{
case RoundingMode::A:
rmode = 0;
opcode |= 4;
break;
case RoundingMode::P:
rmode = 1;
break;
case RoundingMode::M:
rmode = 2;
break;
case RoundingMode::Z:
rmode = 3;
break;
case RoundingMode::N:
rmode = 0;
break;
}
EmitConversion2(sf, 0, true, type, rmode, opcode, 0, Rd, Rn);
}
else
{
// Use the encoding (vector, single) that keeps the result in the fp register.
int sz = IsDouble(Rn);
int opcode = 0;
switch (round)
{
case RoundingMode::A:
opcode = 0x1C;
break;
case RoundingMode::N:
opcode = 0x1A;
break;
case RoundingMode::M:
opcode = 0x1B;
break;
case RoundingMode::P:
opcode = 0x1A;
sz |= 2;
break;
case RoundingMode::Z:
opcode = 0x1B;
sz |= 2;
break;
}
Write32((0x5E << 24) | (sign << 29) | (sz << 22) | (1 << 21) | (opcode << 12) | (2 << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
}
void ARM64FloatEmitter::FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round)
{
EmitConvertScalarToInt(Rd, Rn, round, false);
}
void ARM64FloatEmitter::FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round)
{
EmitConvertScalarToInt(Rd, Rn, round, true);
}
void ARM64FloatEmitter::EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode,
u32 opcode, int scale, ARM64Reg Rd, ARM64Reg Rn)
{
Write32((sf << 31) | (S << 29) | (0xF0 << 21) | (direction << 21) | (type << 22) | (rmode << 19) |
(opcode << 16) | (scale << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rn), "%s doesn't support vector!", __func__);
bool is_double = IsDouble(Rn);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (DecodeReg(Rm) << 16) |
(op << 14) | (1 << 13) | (DecodeReg(Rn) << 5) | opcode2);
}
void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn,
ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__);
bool is_double = IsDouble(Rd);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (DecodeReg(Rm) << 16) |
(cond << 12) | (3 << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__);
bool quad = IsQuad(Rd);
u32 encoded_size = 0;
if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
Write32((quad << 30) | (7 << 25) | (encoded_size << 22) | (DecodeReg(Rm) << 16) | (op << 12) |
(1 << 11) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8)
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__);
bool is_double = !IsSingle(Rd);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (type << 22) | (imm8 << 13) |
(1 << 12) | (imm5 << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd,
ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, immh, "%s bad encoding! Can't have zero immh", __func__);
Write32((Q << 30) | (U << 29) | (0xF << 24) | (immh << 19) | (immb << 16) | (opcode << 11) |
(1 << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd,
ARM64Reg Rn)
{
Write32((2 << 30) | (U << 29) | (0x3E << 23) | (immh << 19) | (immb << 16) | (opcode << 11) |
(1 << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt,
ARM64Reg Rn)
{
bool quad = IsQuad(Rt);
u32 encoded_size = 0;
if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
Write32((quad << 30) | (3 << 26) | (L << 22) | (opcode << 12) | (encoded_size << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64FloatEmitter::EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode,
ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm)
{
bool quad = IsQuad(Rt);
u32 encoded_size = 0;
if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
Write32((quad << 30) | (0b11001 << 23) | (L << 22) | (DecodeReg(Rm) << 16) | (opcode << 12) |
(encoded_size << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd,
ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | (1 << 14) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H,
ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
bool quad = IsQuad(Rd);
Write32((quad << 30) | (U << 29) | (0xF << 24) | (size << 22) | (L << 21) |
(DecodeReg(Rm) << 16) | (opcode << 12) | (H << 11) | (DecodeReg(Rn) << 5) |
DecodeReg(Rd));
}
void ARM64FloatEmitter::EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __func__,
imm);
Write32((size << 30) | (0xF << 26) | (op << 22) | ((imm & 0x1FF) << 12) | (DecodeReg(Rn) << 5) |
DecodeReg(Rt));
}
void ARM64FloatEmitter::EncodeLoadStorePair(u32 size, bool load, IndexType type, ARM64Reg Rt,
ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
u32 type_encode = 0;
u32 opc = 0;
switch (type)
{
case IndexType::Signed:
type_encode = 0b010;
break;
case IndexType::Post:
type_encode = 0b001;
break;
case IndexType::Pre:
type_encode = 0b011;
break;
case IndexType::Unsigned:
ASSERT_MSG(DYNA_REC, false, "%s doesn't support IndexType::Unsigned!", __func__);
break;
}
if (size == 128)
{
ASSERT_MSG(DYNA_REC, !(imm & 0xF), "%s received invalid offset 0x%x!", __func__, imm);
opc = 2;
imm >>= 4;
}
else if (size == 64)
{
ASSERT_MSG(DYNA_REC, !(imm & 0x7), "%s received invalid offset 0x%x!", __func__, imm);
opc = 1;
imm >>= 3;
}
else if (size == 32)
{
ASSERT_MSG(DYNA_REC, !(imm & 0x3), "%s received invalid offset 0x%x!", __func__, imm);
opc = 0;
imm >>= 2;
}
ASSERT_MSG(DYNA_REC, imm >= -64 && imm < 64, "imm too large for load/store pair!");
Write32((opc << 30) | (0b1011 << 26) | (type_encode << 23) | (load << 22) | ((imm & 0x7F) << 15) |
(DecodeReg(Rt2) << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64FloatEmitter::EncodeLoadStoreRegisterOffset(u32 size, bool load, ARM64Reg Rt, ARM64Reg Rn,
ArithOption Rm)
{
ASSERT_MSG(DYNA_REC, Rm.IsExtended(), "%s must contain an extended reg as Rm!", __func__);
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 0;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 0;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 0;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 0;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 2;
}
if (load)
encoded_op |= 1;
const int decoded_Rm = DecodeReg(Rm.GetReg());
Write32((encoded_size << 30) | (encoded_op << 22) | (0b111100001 << 21) | (decoded_Rm << 16) |
Rm.GetData() | (1 << 11) | (DecodeReg(Rn) << 5) | DecodeReg(Rt));
}
void ARM64FloatEmitter::EncodeModImm(bool Q, u8 op, u8 cmode, u8 o2, ARM64Reg Rd, u8 abcdefgh)
{
union
{
u8 hex;
struct
{
unsigned defgh : 5;
unsigned abc : 3;
};
} v;
v.hex = abcdefgh;
Write32((Q << 30) | (op << 29) | (0xF << 24) | (v.abc << 16) | (cmode << 12) | (o2 << 11) |
(1 << 10) | (v.defgh << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EmitLoadStoreImmediate(size, 1, type, Rt, Rn, imm);
}
void ARM64FloatEmitter::STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EmitLoadStoreImmediate(size, 0, type, Rt, Rn, imm);
}
// Loadstore unscaled
void ARM64FloatEmitter::LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 1;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 1;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 1;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 1;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 3;
}
EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm);
}
void ARM64FloatEmitter::STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 0;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 0;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 0;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 0;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 2;
}
EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm);
}
// Loadstore single structure
void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = ARM64Reg::INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn);
}
void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = ARM64Reg::INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm);
}
void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn)
{
EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn);
}
void ARM64FloatEmitter::LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn)
{
EmitLoadStoreSingleStructure(1, 1, 6, 0, size >> 4, Rt, Rn);
}
void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm)
{
EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn, Rm);
}
void ARM64FloatEmitter::LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm)
{
EmitLoadStoreSingleStructure(1, 1, 6, 0, size >> 4, Rt, Rn, Rm);
}
void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = ARM64Reg::INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn);
}
void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = ARM64Reg::INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm);
}
// Loadstore multiple structure
void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!",
__func__);
u32 opcode = 0;
if (count == 1)
opcode = 0b111;
else if (count == 2)
opcode = 0b1010;
else if (count == 3)
opcode = 0b0110;
else if (count == 4)
opcode = 0b0010;
EmitLoadStoreMultipleStructure(size, 1, opcode, Rt, Rn);
}
void ARM64FloatEmitter::LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn,
ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!",
__func__);
ASSERT_MSG(DYNA_REC, type == IndexType::Post, "%s only supports post indexing!", __func__);
u32 opcode = 0;
if (count == 1)
opcode = 0b111;
else if (count == 2)
opcode = 0b1010;
else if (count == 3)
opcode = 0b0110;
else if (count == 4)
opcode = 0b0010;
EmitLoadStoreMultipleStructurePost(size, 1, opcode, Rt, Rn, Rm);
}
void ARM64FloatEmitter::ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
{
ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!",
__func__);
u32 opcode = 0;
if (count == 1)
opcode = 0b111;
else if (count == 2)
opcode = 0b1010;
else if (count == 3)
opcode = 0b0110;
else if (count == 4)
opcode = 0b0010;
EmitLoadStoreMultipleStructure(size, 0, opcode, Rt, Rn);
}
void ARM64FloatEmitter::ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn,
ARM64Reg Rm)
{
ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!",
__func__);
ASSERT_MSG(DYNA_REC, type == IndexType::Post, "%s only supports post indexing!", __func__);
u32 opcode = 0;
if (count == 1)
opcode = 0b111;
else if (count == 2)
opcode = 0b1010;
else if (count == 3)
opcode = 0b0110;
else if (count == 4)
opcode = 0b0010;
EmitLoadStoreMultipleStructurePost(size, 0, opcode, Rt, Rn, Rm);
}
// Scalar - 1 Source
void ARM64FloatEmitter::FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top)
{
if (IsScalar(Rd) && IsScalar(Rn))
{
EmitScalar1Source(0, 0, IsDouble(Rd), 0, Rd, Rn);
}
else
{
ASSERT_MSG(DYNA_REC, !IsQuad(Rd) && !IsQuad(Rn), "FMOV can't move to/from quads");
int rmode = 0;
int opcode = 6;
int sf = 0;
if (IsSingle(Rd) && !Is64Bit(Rn) && !top)
{
// GPR to scalar single
opcode |= 1;
}
else if (!Is64Bit(Rd) && IsSingle(Rn) && !top)
{
// Scalar single to GPR - defaults are correct
}
else
{
// TODO
ASSERT_MSG(DYNA_REC, 0, "FMOV: Unhandled case");
}
Write32((sf << 31) | (0x1e2 << 20) | (rmode << 19) | (opcode << 16) | (DecodeReg(Rn) << 5) |
DecodeReg(Rd));
}
}
// Loadstore paired
void ARM64FloatEmitter::LDP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn,
s32 imm)
{
EncodeLoadStorePair(size, true, type, Rt, Rt2, Rn, imm);
}
void ARM64FloatEmitter::STP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn,
s32 imm)
{
EncodeLoadStorePair(size, false, type, Rt, Rt2, Rn, imm);
}
// Loadstore register offset
void ARM64FloatEmitter::STR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(size, false, Rt, Rn, Rm);
}
void ARM64FloatEmitter::LDR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(size, true, Rt, Rn, Rm);
}
void ARM64FloatEmitter::FABS(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar1Source(0, 0, IsDouble(Rd), 1, Rd, Rn);
}
void ARM64FloatEmitter::FNEG(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar1Source(0, 0, IsDouble(Rd), 2, Rd, Rn);
}
void ARM64FloatEmitter::FSQRT(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar1Source(0, 0, IsDouble(Rd), 3, Rd, Rn);
}
// Scalar - 2 Source
void ARM64FloatEmitter::FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 2, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 0, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 1, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 4, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 5, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 6, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 7, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 8, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 0);
}
void ARM64FloatEmitter::FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 1);
}
void ARM64FloatEmitter::FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 2);
}
void ARM64FloatEmitter::FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 3);
}
void ARM64FloatEmitter::EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm,
ARM64Reg Ra, int opcode)
{
int type = isDouble ? 1 : 0;
int o1 = opcode >> 1;
int o0 = opcode & 1;
m_emit->Write32((0x1F << 24) | (type << 22) | (o1 << 21) | (DecodeReg(Rm) << 16) | (o0 << 15) |
(DecodeReg(Ra) << 10) | (DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
// Scalar floating point immediate
void ARM64FloatEmitter::FMOV(ARM64Reg Rd, uint8_t imm8)
{
EmitScalarImm(0, 0, 0, 0, Rd, imm8);
}
// Vector
void ARM64FloatEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 0, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, 1, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index << 4;
}
EmitCopy(IsQuad(Rd), 0, imm5, 0, Rd, Rn);
}
void ARM64FloatEmitter::FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xF, Rd, Rn);
}
void ARM64FloatEmitter::FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0x1A, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMAX(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0b11110, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0x19, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMIN(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2 | size >> 6, 0b11110, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(false, 0, size >> 6, 0x17, Rd, Rn);
}
void ARM64FloatEmitter::FCVTL2(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(true, 0, size >> 6, 0x17, Rd, Rn);
}
void ARM64FloatEmitter::FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, dest_size >> 5, 0x16, Rd, Rn);
}
void ARM64FloatEmitter::FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1B, Rd, Rn);
}
void ARM64FloatEmitter::FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1B, Rd, Rn);
}
void ARM64FloatEmitter::FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1F, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1B, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xF, Rd, Rn);
}
void ARM64FloatEmitter::FRECPE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2 | (size >> 6), 0x1A, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2 | (size >> 6), 0x19, Rd, Rn, Rm);
}
void ARM64FloatEmitter::NOT(ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 0, 5, Rd, Rn);
}
void ARM64FloatEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 1, Rd, Rn);
}
void ARM64FloatEmitter::REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, size >> 4, 0, Rd, Rn);
}
void ARM64FloatEmitter::REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 0, Rd, Rn);
}
void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, size >> 6, 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, size >> 6, 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale)
{
int imm = size * 2 - scale;
EmitShiftImm(IsQuad(Rd), 0, imm >> 3, imm & 7, 0x1C, Rd, Rn);
}
void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale)
{
int imm = size * 2 - scale;
EmitShiftImm(IsQuad(Rd), 1, imm >> 3, imm & 7, 0x1C, Rd, Rn);
}
void ARM64FloatEmitter::SQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(false, 0, dest_size >> 4, 0b10100, Rd, Rn);
}
void ARM64FloatEmitter::SQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(true, 0, dest_size >> 4, 0b10100, Rd, Rn);
}
void ARM64FloatEmitter::UQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(false, 1, dest_size >> 4, 0b10100, Rd, Rn);
}
void ARM64FloatEmitter::UQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(true, 1, dest_size >> 4, 0b10100, Rd, Rn);
}
void ARM64FloatEmitter::XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(false, 0, dest_size >> 4, 0b10010, Rd, Rn);
}
void ARM64FloatEmitter::XTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(true, 0, dest_size >> 4, 0b10010, Rd, Rn);
}
// Move
void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
u32 imm5 = 0;
if (size == 8)
imm5 = 1;
else if (size == 16)
imm5 = 2;
else if (size == 32)
imm5 = 4;
else if (size == 64)
imm5 = 8;
EmitCopy(IsQuad(Rd), 0, imm5, 1, Rd, Rn);
}
void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn)
{
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index << 4;
}
EmitCopy(1, 0, imm5, 3, Rd, Rn);
}
void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2)
{
u32 imm5 = 0, imm4 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index1 << 1;
imm4 = index2;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index1 << 2;
imm4 = index2 << 1;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index1 << 3;
imm4 = index2 << 2;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index1 << 4;
imm4 = index2 << 3;
}
EmitCopy(1, 1, imm5, imm4, Rd, Rn);
}
void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{
bool b64Bit = Is64Bit(Rd);
ASSERT_MSG(DYNA_REC, Rd < ARM64Reg::SP, "%s destination must be a GPR!", __func__);
ASSERT_MSG(DYNA_REC, !(b64Bit && size != 64),
"%s must have a size of 64 when destination is 64bit!", __func__);
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index << 4;
}
EmitCopy(b64Bit, 0, imm5, 7, Rd, Rn);
}
void ARM64FloatEmitter::SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{
bool b64Bit = Is64Bit(Rd);
ASSERT_MSG(DYNA_REC, Rd < ARM64Reg::SP, "%s destination must be a GPR!", __func__);
ASSERT_MSG(DYNA_REC, size != 64, "%s doesn't support 64bit destination. Use UMOV!", __func__);
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
EmitCopy(b64Bit, 0, imm5, 5, Rd, Rn);
}
// One source
void ARM64FloatEmitter::FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn)
{
u32 dst_encoding = 0;
u32 src_encoding = 0;
if (size_to == 16)
dst_encoding = 3;
else if (size_to == 32)
dst_encoding = 0;
else if (size_to == 64)
dst_encoding = 1;
if (size_from == 16)
src_encoding = 3;
else if (size_from == 32)
src_encoding = 0;
else if (size_from == 64)
src_encoding = 1;
Emit1Source(0, 0, src_encoding, 4 | dst_encoding, Rd, Rn);
}
void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn)
{
if (IsScalar(Rn))
{
// Source is in FP register (like destination!). We must use a vector encoding.
bool sign = false;
int sz = IsDouble(Rn);
Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (DecodeReg(Rn) << 5) |
DecodeReg(Rd));
}
else
{
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion(sf, 0, type, 0, 2, Rd, Rn);
}
}
void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn)
{
if (IsScalar(Rn))
{
// Source is in FP register (like destination!). We must use a vector encoding.
bool sign = true;
int sz = IsDouble(Rn);
Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (DecodeReg(Rn) << 5) |
DecodeReg(Rd));
}
else
{
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion(sf, 0, type, 0, 3, Rd, Rn);
}
}
void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale)
{
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion2(sf, 0, false, type, 0, 2, 64 - scale, Rd, Rn);
}
void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale)
{
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion2(sf, 0, false, type, 0, 3, 64 - scale, Rd, Rn);
}
void ARM64FloatEmitter::FCMP(ARM64Reg Rn, ARM64Reg Rm)
{
EmitCompare(0, 0, 0, 0, Rn, Rm);
}
void ARM64FloatEmitter::FCMP(ARM64Reg Rn)
{
EmitCompare(0, 0, 0, 8, Rn, (ARM64Reg)0);
}
void ARM64FloatEmitter::FCMPE(ARM64Reg Rn, ARM64Reg Rm)
{
EmitCompare(0, 0, 0, 0x10, Rn, Rm);
}
void ARM64FloatEmitter::FCMPE(ARM64Reg Rn)
{
EmitCompare(0, 0, 0, 0x18, Rn, (ARM64Reg)0);
}
void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0x1C, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xD, Rd, Rn);
}
void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1C, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x0C, Rd, Rn);
}
void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, 2 | (size >> 6), 0x1C, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x0C, Rd, Rn);
}
void ARM64FloatEmitter::FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xD, Rd, Rn);
}
void ARM64FloatEmitter::FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xE, Rd, Rn);
}
void ARM64FloatEmitter::FACGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1D, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FACGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, 2 | (size >> 6), 0x1D, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EmitCondSelect(0, 0, cond, Rd, Rn, Rm);
}
// Permute
void ARM64FloatEmitter::UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 0b001, Rd, Rn, Rm);
}
void ARM64FloatEmitter::TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 0b010, Rd, Rn, Rm);
}
void ARM64FloatEmitter::ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 0b011, Rd, Rn, Rm);
}
void ARM64FloatEmitter::UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 0b101, Rd, Rn, Rm);
}
void ARM64FloatEmitter::TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 0b110, Rd, Rn, Rm);
}
void ARM64FloatEmitter::ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 0b111, Rd, Rn, Rm);
}
// Shift by immediate
void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
SSHLL(src_size, Rd, Rn, shift, false);
}
void ARM64FloatEmitter::SSHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
SSHLL(src_size, Rd, Rn, shift, true);
}
void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
SHRN(dest_size, Rd, Rn, shift, false);
}
void ARM64FloatEmitter::SHRN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
SHRN(dest_size, Rd, Rn, shift, true);
}
void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
USHLL(src_size, Rd, Rn, shift, false);
}
void ARM64FloatEmitter::USHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
USHLL(src_size, Rd, Rn, shift, true);
}
void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn)
{
SXTL(src_size, Rd, Rn, false);
}
void ARM64FloatEmitter::SXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn)
{
SXTL(src_size, Rd, Rn, true);
}
void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn)
{
UXTL(src_size, Rd, Rn, false);
}
void ARM64FloatEmitter::UXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn)
{
UXTL(src_size, Rd, Rn, true);
}
void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper)
{
ASSERT_MSG(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!",
__func__);
u32 immh = 0;
u32 immb = shift & 0xFFF;
if (src_size == 8)
{
immh = 1;
}
else if (src_size == 16)
{
immh = 2 | ((shift >> 3) & 1);
}
else if (src_size == 32)
{
immh = 4 | ((shift >> 3) & 3);
;
}
EmitShiftImm(upper, 0, immh, immb, 0b10100, Rd, Rn);
}
void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper)
{
ASSERT_MSG(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!",
__func__);
u32 immh = 0;
u32 immb = shift & 0xFFF;
if (src_size == 8)
{
immh = 1;
}
else if (src_size == 16)
{
immh = 2 | ((shift >> 3) & 1);
}
else if (src_size == 32)
{
immh = 4 | ((shift >> 3) & 3);
;
}
EmitShiftImm(upper, 1, immh, immb, 0b10100, Rd, Rn);
}
void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper)
{
ASSERT_MSG(DYNA_REC, shift < dest_size, "%s shift amount must less than the element size!",
__func__);
u32 immh = 0;
u32 immb = shift & 0xFFF;
if (dest_size == 8)
{
immh = 1;
}
else if (dest_size == 16)
{
immh = 2 | ((shift >> 3) & 1);
}
else if (dest_size == 32)
{
immh = 4 | ((shift >> 3) & 3);
;
}
EmitShiftImm(upper, 1, immh, immb, 0b10000, Rd, Rn);
}
void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper)
{
SSHLL(src_size, Rd, Rn, 0, upper);
}
void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper)
{
USHLL(src_size, Rd, Rn, 0, upper);
}
// vector x indexed element
void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{
ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__);
bool L = false;
bool H = false;
if (size == 32)
{
L = index & 1;
H = (index >> 1) & 1;
}
else if (size == 64)
{
H = index == 1;
}
EmitVectorxElement(0, 2 | (size >> 6), L, 0x9, H, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{
ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__);
bool L = false;
bool H = false;
if (size == 32)
{
L = index & 1;
H = (index >> 1) & 1;
}
else if (size == 64)
{
H = index == 1;
}
EmitVectorxElement(0, 2 | (size >> 6), L, 1, H, Rd, Rn, Rm);
}
// Modified Immediate
void ARM64FloatEmitter::MOVI(u8 size, ARM64Reg Rd, u64 imm, u8 shift)
{
bool Q = IsQuad(Rd);
u8 cmode = 0;
u8 op = 0;
u8 abcdefgh = imm & 0xFF;
if (size == 8)
{
ASSERT_MSG(DYNA_REC, shift == 0, "%s(size8) doesn't support shift!", __func__);
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size8) only supports 8bit values!", __func__);
}
else if (size == 16)
{
ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8, "%s(size16) only supports shift of {0, 8}!",
__func__);
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size16) only supports 8bit values!", __func__);
if (shift == 8)
cmode |= 2;
}
else if (size == 32)
{
ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8 || shift == 16 || shift == 24,
"%s(size32) only supports shift of {0, 8, 16, 24}!", __func__);
// XXX: Implement support for MOVI - shifting ones variant
ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size32) only supports 8bit values!", __func__);
switch (shift)
{
case 8:
cmode |= 2;
break;
case 16:
cmode |= 4;
break;
case 24:
cmode |= 6;
break;
default:
break;
}
}
else // 64
{
ASSERT_MSG(DYNA_REC, shift == 0, "%s(size64) doesn't support shift!", __func__);
op = 1;
cmode = 0xE;
abcdefgh = 0;
for (int i = 0; i < 8; ++i)
{
u8 tmp = (imm >> (i << 3)) & 0xFF;
ASSERT_MSG(DYNA_REC, tmp == 0xFF || tmp == 0, "%s(size64) Invalid immediate!", __func__);
if (tmp == 0xFF)
abcdefgh |= (1 << i);
}
}
EncodeModImm(Q, op, cmode, 0, Rd, abcdefgh);
}
void ARM64FloatEmitter::BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift)
{
bool Q = IsQuad(Rd);
u8 cmode = 1;
u8 op = 1;
if (size == 16)
{
ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8, "%s(size16) only supports shift of {0, 8}!",
__func__);
if (shift == 8)
cmode |= 2;
}
else if (size == 32)
{
ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8 || shift == 16 || shift == 24,
"%s(size32) only supports shift of {0, 8, 16, 24}!", __func__);
// XXX: Implement support for MOVI - shifting ones variant
switch (shift)
{
case 8:
cmode |= 2;
break;
case 16:
cmode |= 4;
break;
case 24:
cmode |= 6;
break;
default:
break;
}
}
else
{
ASSERT_MSG(DYNA_REC, false, "%s only supports size of {16, 32}!", __func__);
}
EncodeModImm(Q, op, cmode, 0, Rd, imm);
}
void ARM64FloatEmitter::ABI_PushRegisters(BitSet32 registers, ARM64Reg tmp)
{
bool bundled_loadstore = false;
for (int i = 0; i < 32; ++i)
{
if (!registers[i])
continue;
int count = 0;
while (++count < 4 && (i + count) < 32 && registers[i + count])
{
}
if (count > 1)
{
bundled_loadstore = true;
break;
}
}
if (bundled_loadstore && tmp != ARM64Reg::INVALID_REG)
{
int num_regs = registers.Count();
m_emit->SUB(ARM64Reg::SP, ARM64Reg::SP, num_regs * 16);
m_emit->ADD(tmp, ARM64Reg::SP, 0);
std::vector<ARM64Reg> island_regs;
for (int i = 0; i < 32; ++i)
{
if (!registers[i])
continue;
int count = 0;
// 0 = true
// 1 < 4 && registers[i + 1] true!
// 2 < 4 && registers[i + 2] true!
// 3 < 4 && registers[i + 3] true!
// 4 < 4 && registers[i + 4] false!
while (++count < 4 && (i + count) < 32 && registers[i + count])
{
}
if (count == 1)
island_regs.push_back(ARM64Reg::Q0 + i);
else
ST1(64, count, IndexType::Post, ARM64Reg::Q0 + i, tmp);
i += count - 1;
}
// Handle island registers
std::vector<ARM64Reg> pair_regs;
for (auto& it : island_regs)
{
pair_regs.push_back(it);
if (pair_regs.size() == 2)
{
STP(128, IndexType::Post, pair_regs[0], pair_regs[1], tmp, 32);
pair_regs.clear();
}
}
if (pair_regs.size())
STR(128, IndexType::Post, pair_regs[0], tmp, 16);
}
else
{
std::vector<ARM64Reg> pair_regs;
for (auto it : registers)
{
pair_regs.push_back(ARM64Reg::Q0 + it);
if (pair_regs.size() == 2)
{
STP(128, IndexType::Pre, pair_regs[0], pair_regs[1], ARM64Reg::SP, -32);
pair_regs.clear();
}
}
if (pair_regs.size())
STR(128, IndexType::Pre, pair_regs[0], ARM64Reg::SP, -16);
}
}
void ARM64FloatEmitter::ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp)
{
bool bundled_loadstore = false;
int num_regs = registers.Count();
for (int i = 0; i < 32; ++i)
{
if (!registers[i])
continue;
int count = 0;
while (++count < 4 && (i + count) < 32 && registers[i + count])
{
}
if (count > 1)
{
bundled_loadstore = true;
break;
}
}
if (bundled_loadstore && tmp != ARM64Reg::INVALID_REG)
{
// The temporary register is only used to indicate that we can use this code path
std::vector<ARM64Reg> island_regs;
for (int i = 0; i < 32; ++i)
{
if (!registers[i])
continue;
int count = 0;
while (++count < 4 && (i + count) < 32 && registers[i + count])
{
}
if (count == 1)
island_regs.push_back(ARM64Reg::Q0 + i);
else
LD1(64, count, IndexType::Post, ARM64Reg::Q0 + i, ARM64Reg::SP);
i += count - 1;
}
// Handle island registers
std::vector<ARM64Reg> pair_regs;
for (auto& it : island_regs)
{
pair_regs.push_back(it);
if (pair_regs.size() == 2)
{
LDP(128, IndexType::Post, pair_regs[0], pair_regs[1], ARM64Reg::SP, 32);
pair_regs.clear();
}
}
if (pair_regs.size())
LDR(128, IndexType::Post, pair_regs[0], ARM64Reg::SP, 16);
}
else
{
bool odd = num_regs % 2;
std::vector<ARM64Reg> pair_regs;
for (int i = 31; i >= 0; --i)
{
if (!registers[i])
continue;
if (odd)
{
// First load must be a regular LDR if odd
odd = false;
LDR(128, IndexType::Post, ARM64Reg::Q0 + i, ARM64Reg::SP, 16);
}
else
{
pair_regs.push_back(ARM64Reg::Q0 + i);
if (pair_regs.size() == 2)
{
LDP(128, IndexType::Post, pair_regs[1], pair_regs[0], ARM64Reg::SP, 32);
pair_regs.clear();
}
}
}
}
}
void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (!Is64Bit(Rn))
imm &= 0xFFFFFFFF;
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
AND(Rd, Rn, imm_r, imm_s, n != 0);
}
else
{
ASSERT_MSG(DYNA_REC, scratch != ARM64Reg::INVALID_REG,
"ANDI2R - failed to construct logical immediate value from %08x, need scratch",
(u32)imm);
MOVI2R(scratch, imm);
AND(Rd, Rn, scratch);
}
}
void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
ORR(Rd, Rn, imm_r, imm_s, n != 0);
}
else
{
ASSERT_MSG(DYNA_REC, scratch != ARM64Reg::INVALID_REG,
"ORRI2R - failed to construct logical immediate value from %08x, need scratch",
(u32)imm);
MOVI2R(scratch, imm);
ORR(Rd, Rn, scratch);
}
}
void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
EOR(Rd, Rn, imm_r, imm_s, n != 0);
}
else
{
ASSERT_MSG(DYNA_REC, scratch != ARM64Reg::INVALID_REG,
"EORI2R - failed to construct logical immediate value from %08x, need scratch",
(u32)imm);
MOVI2R(scratch, imm);
EOR(Rd, Rn, scratch);
}
}
void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
ANDS(Rd, Rn, imm_r, imm_s, n != 0);
}
else
{
ASSERT_MSG(DYNA_REC, scratch != ARM64Reg::INVALID_REG,
"ANDSI2R - failed to construct logical immediate value from %08x, need scratch",
(u32)imm);
MOVI2R(scratch, imm);
ANDS(Rd, Rn, scratch);
}
}
void ARM64XEmitter::AddImmediate(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool shift, bool negative,
bool flags)
{
if (!negative)
{
if (!flags)
ADD(Rd, Rn, imm, shift);
else
ADDS(Rd, Rn, imm, shift);
}
else
{
if (!flags)
SUB(Rd, Rn, imm, shift);
else
SUBS(Rd, Rn, imm, shift);
}
}
void ARM64XEmitter::ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags,
ARM64Reg scratch)
{
bool has_scratch = scratch != ARM64Reg::INVALID_REG;
u64 imm_neg = Is64Bit(Rd) ? u64(-s64(imm)) : u64(-s64(imm)) & 0xFFFFFFFFuLL;
bool neg_neg = negative ? false : true;
// Fast paths, aarch64 immediate instructions
// Try them all first
if (imm <= 0xFFF)
{
AddImmediate(Rd, Rn, imm, false, negative, flags);
return;
}
if (imm <= 0xFFFFFF && (imm & 0xFFF) == 0)
{
AddImmediate(Rd, Rn, imm >> 12, true, negative, flags);
return;
}
if (imm_neg <= 0xFFF)
{
AddImmediate(Rd, Rn, imm_neg, false, neg_neg, flags);
return;
}
if (imm_neg <= 0xFFFFFF && (imm_neg & 0xFFF) == 0)
{
AddImmediate(Rd, Rn, imm_neg >> 12, true, neg_neg, flags);
return;
}
// ADD+ADD is slower than MOVK+ADD, but inplace.
// But it supports a few more bits, so use it to avoid MOVK+MOVK+ADD.
// As this splits the addition in two parts, this must not be done on setting flags.
if (!flags && (imm >= 0x10000u || !has_scratch) && imm < 0x1000000u)
{
AddImmediate(Rd, Rn, imm & 0xFFF, false, negative, false);
AddImmediate(Rd, Rd, imm >> 12, true, negative, false);
return;
}
if (!flags && (imm_neg >= 0x10000u || !has_scratch) && imm_neg < 0x1000000u)
{
AddImmediate(Rd, Rn, imm_neg & 0xFFF, false, neg_neg, false);
AddImmediate(Rd, Rd, imm_neg >> 12, true, neg_neg, false);
return;
}
ASSERT_MSG(DYNA_REC, has_scratch,
"ADDI2R - failed to construct arithmetic immediate value from %08x, need scratch",
(u32)imm);
negative ^= MOVI2R2(scratch, imm, imm_neg);
if (!negative)
{
if (!flags)
ADD(Rd, Rn, scratch);
else
ADDS(Rd, Rn, scratch);
}
else
{
if (!flags)
SUB(Rd, Rn, scratch);
else
SUBS(Rd, Rn, scratch);
}
}
void ARM64XEmitter::ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
ADDI2R_internal(Rd, Rn, imm, false, false, scratch);
}
void ARM64XEmitter::ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
ADDI2R_internal(Rd, Rn, imm, false, true, scratch);
}
void ARM64XEmitter::SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
ADDI2R_internal(Rd, Rn, imm, true, false, scratch);
}
void ARM64XEmitter::SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
ADDI2R_internal(Rd, Rn, imm, true, true, scratch);
}
void ARM64XEmitter::CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
ADDI2R_internal(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, imm, true, true, scratch);
}
bool ARM64XEmitter::TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = IsImmArithmetic(imm))
{
const auto [val, shift] = *result;
ADD(Rd, Rn, val, shift);
return true;
}
return false;
}
bool ARM64XEmitter::TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = IsImmArithmetic(imm))
{
const auto [val, shift] = *result;
SUB(Rd, Rn, val, shift);
return true;
}
return false;
}
bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u64 imm)
{
if (const auto result = IsImmArithmetic(imm))
{
const auto [val, shift] = *result;
CMP(Rn, val, shift);
return true;
}
return false;
}
bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = IsImmLogical(imm, Is64Bit(Rd) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
AND(Rd, Rn, imm_r, imm_s, n != 0);
return true;
}
return false;
}
bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = IsImmLogical(imm, Is64Bit(Rd) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
ORR(Rd, Rn, imm_r, imm_s, n != 0);
return true;
}
return false;
}
bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = IsImmLogical(imm, Is64Bit(Rd) ? 64 : 32))
{
const auto& [n, imm_s, imm_r] = *result;
EOR(Rd, Rn, imm_r, imm_s, n != 0);
return true;
}
return false;
}
void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate)
{
ASSERT_MSG(DYNA_REC, !IsDouble(Rd), "MOVI2F does not yet support double precision");
if (value == 0.0f)
{
FMOV(Rd, IsDouble(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR);
if (negate)
FNEG(Rd, Rd);
// TODO: There are some other values we could generate with the float-imm instruction, like
// 1.0...
}
else if (const auto imm = FPImm8FromFloat(value))
{
FMOV(Rd, *imm);
}
else
{
ASSERT_MSG(DYNA_REC, scratch != ARM64Reg::INVALID_REG,
"Failed to find a way to generate FP immediate %f without scratch", value);
if (negate)
value = -value;
const u32 ival = Common::BitCast<u32>(value);
m_emit->MOVI2R(scratch, ival);
FMOV(Rd, scratch);
}
}
// TODO: Quite a few values could be generated easily using the MOVI instruction and friends.
void ARM64FloatEmitter::MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch)
{
// TODO: Make it work with more element sizes
// TODO: Optimize - there are shorter solution for many values
ARM64Reg s = ARM64Reg::S0 + DecodeReg(Rd);
MOVI2F(s, value, scratch);
DUP(32, Rd, Rd, 0);
}
} // namespace Arm64Gen