dolphin/Externals/WIL/tests/wiTest.cpp
2020-02-09 19:01:44 +01:00

3473 lines
142 KiB
C++

#include <wil/result.h>
#include <wil/resource.h>
#include <wil/win32_helpers.h>
#include <wil/filesystem.h>
#include <wil/wrl.h>
#include <wil/com.h>
#ifdef WIL_ENABLE_EXCEPTIONS
#include <memory>
#include <set>
#include <unordered_set>
#endif
// Do not include most headers until after the WIL headers to ensure that we're not inadvertently adding any unnecessary
// dependencies to STL, WRL, or indirectly retrieved headers
#ifndef __cplusplus_winrt
#include <windows.foundation.collections.h>
#include <windows.foundation.h>
#endif
// Include Resource.h a second time after including other headers
#include <wil/resource.h>
#include "common.h"
#include "MallocSpy.h"
#include "test_objects.h"
#pragma warning(push)
#pragma warning(disable: 4702) // Unreachable code
TEST_CASE("WindowsInternalTests::CommonHelpers", "[resource]")
{
{
wil::unique_handle spHandle;
REQUIRE(spHandle == nullptr);
REQUIRE(nullptr == spHandle);
REQUIRE_FALSE(spHandle != nullptr);
REQUIRE_FALSE(nullptr != spHandle);
//equivalence check will static_assert because spMutex does not allow pointer access
wil::mutex_release_scope_exit spMutex;
//REQUIRE(spMutex == nullptr);
//REQUIRE(nullptr == spMutex);
//equivalence check will static_assert because spFile does not use nullptr_t as a invalid value
wil::unique_hfile spFile;
//REQUIRE(spFile == nullptr);
}
#ifdef __WIL_WINBASE_STL
{
wil::shared_handle spHandle;
REQUIRE(spHandle == nullptr);
REQUIRE(nullptr == spHandle);
REQUIRE_FALSE(spHandle != nullptr);
REQUIRE_FALSE(nullptr != spHandle);
}
#endif
}
TEST_CASE("WindowsInternalTests::AssertMacros", "[result_macros]")
{
//WI_ASSERT macros are all no-ops if in retail
#ifndef RESULT_DEBUG
WI_ASSERT(false);
WI_ASSERT_MSG(false, "WI_ASSERT_MSG");
WI_ASSERT_NOASSUME(false);
WI_ASSERT_MSG_NOASSUME(false, "WI_ASSERT_MSG_NOASSUME");
WI_VERIFY(false);
WI_VERIFY_MSG(false, "WI_VERIFY_MSG");
#endif
WI_ASSERT(true);
WI_ASSERT_MSG(true, "WI_ASSERT_MSG");
WI_ASSERT_NOASSUME(true);
WI_ASSERT_MSG_NOASSUME(true, "WI_ASSERT_MSG_NOASSUME");
WI_VERIFY(true);
WI_VERIFY_MSG(true, "WI_VERIFY_MSG");
}
void __stdcall EmptyResultMacrosLoggingCallback(wil::FailureInfo*, PWSTR, size_t) WI_NOEXCEPT
{
}
#ifdef WIL_ENABLE_EXCEPTIONS
// Test Result Macros
void TestErrorCallbacks()
{
{
size_t callbackCount = 0;
auto monitor = wil::ThreadFailureCallback([&](wil::FailureInfo const &failure) -> bool
{
REQUIRE(failure.hr == E_ACCESSDENIED);
callbackCount++;
return false;
});
size_t const depthCount = 10;
for (size_t index = 0; index < depthCount; index++)
{
LOG_HR(E_ACCESSDENIED);
}
REQUIRE(callbackCount == depthCount);
}
{
wil::ThreadFailureCache cache;
LOG_HR(E_ACCESSDENIED);
REQUIRE(cache.GetFailure() != nullptr);
REQUIRE(cache.GetFailure()->hr == E_ACCESSDENIED);
wil::ThreadFailureCache cacheNested;
LOG_HR(E_FAIL); unsigned long errorLine = __LINE__;
LOG_HR(E_FAIL);
LOG_HR(E_FAIL);
REQUIRE(cache.GetFailure()->hr == E_FAIL);
REQUIRE(cache.GetFailure()->uLineNumber == errorLine);
REQUIRE(cacheNested.GetFailure()->hr == E_FAIL);
REQUIRE(cacheNested.GetFailure()->uLineNumber == errorLine);
}
}
DWORD WINAPI ErrorCallbackThreadTest(_In_ LPVOID lpParameter)
{
try
{
HANDLE hEvent = reinterpret_cast<HANDLE>(lpParameter);
for (size_t stress = 0; stress < 200; stress++)
{
Sleep(1); // allow the threadpool to saturate the thread count...
TestErrorCallbacks();
}
THROW_IF_WIN32_BOOL_FALSE(::SetEvent(hEvent));
}
catch (...)
{
FAIL();
}
return 1;
}
void StressErrorCallbacks()
{
auto restore = witest::AssignTemporaryValue(&wil::g_fResultOutputDebugString, false);
size_t const threadCount = 20;
wil::unique_event eventArray[threadCount];
for (size_t index = 0; index < threadCount; index++)
{
eventArray[index].create();
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
THROW_IF_WIN32_BOOL_FALSE(::QueueUserWorkItem(ErrorCallbackThreadTest, eventArray[index].get(), 0));
#else
ErrorCallbackThreadTest(eventArray[index].get());
#endif /* WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) */
}
for (size_t index = 0; index < threadCount; index++)
{
eventArray[index].wait();
}
}
TEST_CASE("WindowsInternalTests::ResultMacrosStress", "[!hide][result_macros][stress]")
{
auto restore = witest::AssignTemporaryValue(&wil::g_pfnResultLoggingCallback, EmptyResultMacrosLoggingCallback);
StressErrorCallbacks();
}
#endif
#define E_AD HRESULT_FROM_WIN32(ERROR_ACCESS_DENIED)
void SetAD()
{
::SetLastError(ERROR_ACCESS_DENIED);
}
class AlternateAccessDeniedException
{
};
#ifdef WIL_ENABLE_EXCEPTIONS
class DerivedAccessDeniedException : public wil::ResultException
{
public:
DerivedAccessDeniedException() : ResultException(E_AD) {}
};
HRESULT __stdcall TestResultCaughtFromException() WI_NOEXCEPT
{
try
{
throw;
}
catch (AlternateAccessDeniedException)
{
return E_AD;
}
catch (...)
{
}
return S_OK;
}
#endif
HANDLE hValid = reinterpret_cast<HANDLE>(1);
HANDLE& hValidRef() { return hValid; }
HANDLE hNull = NULL;
HANDLE hInvalid = INVALID_HANDLE_VALUE;
void* pValid = reinterpret_cast<void *>(1);
void*& pValidRef() { return pValid; }
void* pNull = nullptr;
void*& pNullRef() { return pNull; }
bool fTrue = true;
bool& fTrueRef() { return fTrue; }
bool fFalse = false;
bool& fFalseRef() { return fFalse; }
BOOL fTRUE = TRUE;
BOOL& fTRUERef() { return fTRUE; }
BOOL fFALSE = FALSE;
DWORD errSuccess = ERROR_SUCCESS;
DWORD& errSuccessRef() { return errSuccess; }
HRESULT hrOK = S_OK;
HRESULT& hrOKRef() { return hrOK; }
HRESULT hrFAIL = E_FAIL;
HRESULT& hrFAILRef() { return hrFAIL; }
const HRESULT E_hrOutOfPaper = HRESULT_FROM_WIN32(ERROR_OUT_OF_PAPER);
NTSTATUS ntOK = STATUS_SUCCESS;
NTSTATUS& ntOKRef() { return ntOK; }
NTSTATUS ntFAIL = STATUS_NO_MEMORY;
NTSTATUS& ntFAILRef() { return ntFAIL; }
const HRESULT S_hrNtOkay = wil::details::NtStatusToHr(STATUS_SUCCESS);
const HRESULT E_hrNtAssertionFailure = wil::details::NtStatusToHr(STATUS_ASSERTION_FAILURE);
wil::StoredFailureInfo g_log;
void __stdcall ResultMacrosLoggingCallback(wil::FailureInfo *pFailure, PWSTR, size_t) WI_NOEXCEPT
{
g_log = *pFailure;
}
enum class EType
{
None = 0x00,
Expected = 0x02,
Msg = 0x04,
FailFast = 0x08, // overall fail fast (throw exception on successful result code, for example)
FailFastMacro = 0x10, // explicit use of fast fail fast (FAIL_FAST_IF...)
NoContext = 0x20 // file and line info can be wrong (throw does not happen in context to code)
};
DEFINE_ENUM_FLAG_OPERATORS(EType);
template <typename TLambda>
bool VerifyResult(unsigned int lineNumber, EType type, HRESULT hr, TLambda&& lambda)
{
bool succeeded = true;
#ifdef WIL_ENABLE_EXCEPTIONS
try
{
#endif
HRESULT lambdaResult = E_FAIL;
bool didFailFast = true;
{
didFailFast = witest::DoesCodeCrash([&]()
{
lambdaResult = lambda();
});
}
if (WI_IsFlagSet(type, EType::FailFast))
{
REQUIRE(didFailFast);
}
else
{
if (WI_IsFlagClear(type, EType::Expected))
{
if (SUCCEEDED(hr))
{
REQUIRE(hr == lambdaResult);
REQUIRE(lineNumber != g_log.GetFailureInfo().uLineNumber);
REQUIRE(!didFailFast);
}
else
{
REQUIRE((WI_IsFlagSet(type, EType::NoContext) || (g_log.GetFailureInfo().uLineNumber == lineNumber)));
REQUIRE(g_log.GetFailureInfo().hr == hr);
REQUIRE((WI_IsFlagClear(type, EType::Msg) || (nullptr != wcsstr(g_log.GetFailureInfo().pszMessage, L"msg"))));
REQUIRE((WI_IsFlagClear(type, EType::FailFastMacro) || (didFailFast)));
REQUIRE((WI_IsFlagSet(type, EType::FailFastMacro) || (!didFailFast)));
}
}
}
#ifdef WIL_ENABLE_EXCEPTIONS
}
catch (...)
{
succeeded = false;
}
#endif
// Ensure we come out clean...
::SetLastError(ERROR_SUCCESS);
return succeeded;
}
#ifdef WIL_ENABLE_EXCEPTIONS
template <typename TLambda>
HRESULT TranslateException(TLambda&& lambda)
{
try
{
lambda();
}
catch (wil::ResultException &re)
{
return re.GetErrorCode();
}
#ifdef __cplusplus_winrt
catch (Platform::Exception ^pe)
{
return wil::details::GetErrorCode(pe);
}
#endif
catch (...)
{
FAIL();
}
return S_OK;
}
#endif
#define REQUIRE_RETURNS(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::None, hr, lambda))
#define REQUIRE_RETURNS_MSG(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::Msg, hr, lambda))
#define REQUIRE_RETURNS_EXPECTED(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::Expected, hr, lambda))
#ifdef WIL_ENABLE_EXCEPTIONS
#define REQUIRE_THROWS_RESULT(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::None, hr, [&] { return TranslateException(lambda); }))
#define REQUIRE_THROWS_MSG(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::Msg, hr, [&] { return TranslateException(lambda); }))
#else
#define REQUIRE_THROWS_RESULT(hr, lambda)
#define REQUIRE_THROWS_MSG(hr, lambda)
#endif
#define REQUIRE_LOG(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::None, hr, [&] { auto fn = (lambda); fn(); return hr; }))
#define REQUIRE_LOG_MSG(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::Msg, hr, [&] { auto fn = (lambda); fn(); return hr; }))
#define REQUIRE_FAILFAST(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::FailFastMacro, hr, [&] { auto fn = (lambda); fn(); return hr; }))
#define REQUIRE_FAILFAST_MSG(hr, lambda) REQUIRE(VerifyResult(__LINE__, EType::FailFastMacro | EType::Msg, hr, [&] { auto fn = (lambda); fn(); return hr; }))
#define REQUIRE_FAILFAST_UNSPECIFIED(lambda) REQUIRE(VerifyResult(__LINE__, EType::FailFast, S_OK, [&] { auto fn = (lambda); fn(); return S_OK; }))
TEST_CASE("WindowsInternalTests::ResultMacros", "[result_macros]")
{
auto restoreLoggingCallback = witest::AssignTemporaryValue(&wil::g_pfnResultLoggingCallback, ResultMacrosLoggingCallback);
#ifdef WIL_ENABLE_EXCEPTIONS
auto restoreExceptionCallback = witest::AssignTemporaryValue(&wil::g_pfnResultFromCaughtException, TestResultCaughtFromException);
#endif
REQUIRE_RETURNS(S_OK, [] { RETURN_HR(MDEC(hrOKRef())); });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR(MDEC(hrOKRef())); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_FAIL, [] { RETURN_HR(E_FAIL); });
REQUIRE_RETURNS_MSG(E_FAIL, [] { RETURN_HR_MSG(E_FAIL, "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_FAIL, [] { THROW_HR(E_FAIL); });
REQUIRE_THROWS_MSG(E_FAIL, [] { THROW_HR_MSG(E_FAIL, "msg: %d", __LINE__); });
REQUIRE_LOG(E_FAIL, [] { LOG_HR(E_FAIL); });
REQUIRE_LOG_MSG(E_FAIL, [] { LOG_HR_MSG(E_FAIL, "msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_FAIL, [] { FAIL_FAST_HR(E_FAIL); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { FAIL_FAST_HR_MSG(E_FAIL, "msg: %d", __LINE__); });
REQUIRE_FAILFAST_UNSPECIFIED([] { ::SetLastError(0); FAIL_FAST_LAST_ERROR(); });
REQUIRE_FAILFAST_UNSPECIFIED([] { ::SetLastError(0); FAIL_FAST_LAST_ERROR_MSG("msg: %d", __LINE__); });
REQUIRE_RETURNS(E_AD, [] { SetAD(); RETURN_LAST_ERROR(); });
REQUIRE_RETURNS_MSG(E_AD, [] { SetAD(); RETURN_LAST_ERROR_MSG("msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_AD, [] { SetAD(); THROW_LAST_ERROR(); });
REQUIRE_THROWS_MSG(E_AD, [] { SetAD(); THROW_LAST_ERROR_MSG("msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { SetAD(); LOG_LAST_ERROR(); });
REQUIRE_LOG_MSG(E_AD, [] { SetAD(); LOG_LAST_ERROR_MSG("msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_AD, [] { SetAD(); FAIL_FAST_LAST_ERROR(); });
REQUIRE_FAILFAST_MSG(E_AD, [] { SetAD(); FAIL_FAST_LAST_ERROR_MSG("msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_WIN32(MDEC(errSuccessRef())); });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_WIN32_MSG(MDEC(errSuccessRef()), "msg: %d", __LINE__); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_WIN32(MDEC(errSuccessRef())); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_WIN32_MSG(MDEC(errSuccessRef()), "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_AD, [] { RETURN_WIN32(ERROR_ACCESS_DENIED); });
REQUIRE_RETURNS_MSG(E_AD, [] { RETURN_WIN32_MSG(ERROR_ACCESS_DENIED, "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_AD, [] { THROW_WIN32(ERROR_ACCESS_DENIED); });
REQUIRE_THROWS_MSG(E_AD, [] { THROW_WIN32_MSG(ERROR_ACCESS_DENIED, "msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { LOG_WIN32(ERROR_ACCESS_DENIED); });
REQUIRE_LOG_MSG(E_AD, [] { LOG_WIN32_MSG(ERROR_ACCESS_DENIED, "msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_AD, [] { FAIL_FAST_WIN32(ERROR_ACCESS_DENIED); });
REQUIRE_FAILFAST_MSG(E_AD, [] { FAIL_FAST_WIN32_MSG(ERROR_ACCESS_DENIED, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_IF_FAILED(MDEC(hrOKRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_IF_FAILED_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_IF_FAILED_EXPECTED(MDEC(hrOKRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(S_OK == THROW_IF_FAILED(MDEC(hrOKRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(S_OK == THROW_IF_FAILED_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(S_OK == LOG_IF_FAILED(MDEC(hrOKRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(S_OK == LOG_IF_FAILED_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(S_OK == FAIL_FAST_IF_FAILED(MDEC(hrOKRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(S_OK == FAIL_FAST_IF_FAILED_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(E_FAIL, [] { RETURN_IF_FAILED(E_FAIL); return S_OK; });
REQUIRE_RETURNS_MSG(E_FAIL, [] { RETURN_IF_FAILED_MSG(E_FAIL, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_IF_FAILED_EXPECTED(E_FAIL); return S_OK; });
REQUIRE_THROWS_RESULT(E_FAIL, [] { THROW_IF_FAILED(E_FAIL); });
REQUIRE_THROWS_MSG(E_FAIL, [] { THROW_IF_FAILED_MSG(E_FAIL, "msg: %d", __LINE__); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(E_FAIL == LOG_IF_FAILED(E_FAIL)); });
REQUIRE_LOG_MSG(E_FAIL, [] { REQUIRE(E_FAIL == LOG_IF_FAILED_MSG(E_FAIL, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_FAIL, [] { FAIL_FAST_IF_FAILED(E_FAIL); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { FAIL_FAST_IF_FAILED_MSG(E_FAIL, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_IF_WIN32_BOOL_FALSE(MDEC(fTRUERef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_IF_WIN32_BOOL_FALSE_MSG(MDEC(fTRUERef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_IF_WIN32_BOOL_FALSE_EXPECTED(MDEC(fTRUERef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(fTRUE == THROW_IF_WIN32_BOOL_FALSE(MDEC(fTRUERef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(fTRUE == THROW_IF_WIN32_BOOL_FALSE_MSG(MDEC(fTRUERef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(fTRUE == LOG_IF_WIN32_BOOL_FALSE(MDEC(fTRUERef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(fTRUE == LOG_IF_WIN32_BOOL_FALSE_MSG(MDEC(fTRUERef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fTRUE == FAIL_FAST_IF_WIN32_BOOL_FALSE(MDEC(fTRUERef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(fTRUE == FAIL_FAST_IF_WIN32_BOOL_FALSE_MSG(MDEC(fTRUERef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(E_AD, [] { SetAD(); RETURN_IF_WIN32_BOOL_FALSE(fFALSE); return S_OK; });
REQUIRE_RETURNS_MSG(E_AD, [] { SetAD(); RETURN_IF_WIN32_BOOL_FALSE_MSG(fFALSE, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_AD, [] { SetAD(); RETURN_IF_WIN32_BOOL_FALSE_EXPECTED(fFALSE); return S_OK; });
REQUIRE_THROWS_RESULT(E_AD, [] { SetAD(); THROW_IF_WIN32_BOOL_FALSE(fFALSE); });
REQUIRE_THROWS_MSG(E_AD, [] { SetAD(); THROW_IF_WIN32_BOOL_FALSE_MSG(fFALSE, "msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { SetAD(); REQUIRE(fFALSE == LOG_IF_WIN32_BOOL_FALSE(fFALSE)); });
REQUIRE_LOG_MSG(E_AD, [] { SetAD(); REQUIRE(fFALSE == LOG_IF_WIN32_BOOL_FALSE_MSG(fFALSE, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_AD, [] { SetAD(); FAIL_FAST_IF_WIN32_BOOL_FALSE(fFALSE); });
REQUIRE_FAILFAST_MSG(E_AD, [] { SetAD(); FAIL_FAST_IF_WIN32_BOOL_FALSE_MSG(fFALSE, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_IF_WIN32_ERROR(MDEC(hrOKRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_IF_WIN32_ERROR_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_IF_WIN32_ERROR_EXPECTED(MDEC(hrOKRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(S_OK == THROW_IF_WIN32_ERROR(MDEC(hrOKRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(S_OK == THROW_IF_WIN32_ERROR_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(S_OK == LOG_IF_WIN32_ERROR(MDEC(hrOKRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(S_OK == LOG_IF_WIN32_ERROR_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(S_OK == FAIL_FAST_IF_WIN32_ERROR(MDEC(hrOKRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(S_OK == FAIL_FAST_IF_WIN32_ERROR_MSG(MDEC(hrOKRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(E_hrOutOfPaper, [] { RETURN_IF_WIN32_ERROR(ERROR_OUT_OF_PAPER); return S_OK; });
REQUIRE_RETURNS_MSG(E_hrOutOfPaper, [] { RETURN_IF_WIN32_ERROR_MSG(ERROR_OUT_OF_PAPER, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_hrOutOfPaper, [] { RETURN_IF_WIN32_ERROR_EXPECTED(ERROR_OUT_OF_PAPER); return S_OK; });
REQUIRE_THROWS_RESULT(E_hrOutOfPaper, [] { THROW_IF_WIN32_ERROR(ERROR_OUT_OF_PAPER); });
REQUIRE_THROWS_MSG(E_hrOutOfPaper, [] { THROW_IF_WIN32_ERROR_MSG(ERROR_OUT_OF_PAPER, "msg: %d", __LINE__); });
REQUIRE_LOG(E_hrOutOfPaper, [] { REQUIRE(ERROR_OUT_OF_PAPER == LOG_IF_WIN32_ERROR(ERROR_OUT_OF_PAPER)); });
REQUIRE_LOG_MSG(E_hrOutOfPaper, [] { REQUIRE(ERROR_OUT_OF_PAPER == LOG_IF_WIN32_ERROR_MSG(ERROR_OUT_OF_PAPER, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_hrOutOfPaper, [] { FAIL_FAST_IF_WIN32_ERROR(ERROR_OUT_OF_PAPER); });
REQUIRE_FAILFAST_MSG(E_hrOutOfPaper, [] { FAIL_FAST_IF_WIN32_ERROR_MSG(ERROR_OUT_OF_PAPER, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_hrNtOkay, [] { RETURN_NTSTATUS(MDEC(ntOKRef())); });
REQUIRE_RETURNS_MSG(S_hrNtOkay, [] { RETURN_NTSTATUS_MSG(MDEC(ntOKRef()), "msg: %d", __LINE__); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_NTSTATUS(MDEC(ntOKRef())); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_NTSTATUS_MSG(MDEC(ntOKRef()), "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_hrNtAssertionFailure, [] { RETURN_NTSTATUS(STATUS_ASSERTION_FAILURE); });
REQUIRE_RETURNS_MSG(E_hrNtAssertionFailure, [] { RETURN_NTSTATUS_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_hrNtAssertionFailure, [] { THROW_NTSTATUS(STATUS_ASSERTION_FAILURE); });
REQUIRE_THROWS_MSG(E_hrNtAssertionFailure, [] { THROW_NTSTATUS_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); });
REQUIRE_LOG(E_hrNtAssertionFailure, [] { LOG_NTSTATUS(STATUS_ASSERTION_FAILURE); });
REQUIRE_LOG_MSG(E_hrNtAssertionFailure, [] { LOG_NTSTATUS_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_hrNtAssertionFailure, [] { FAIL_FAST_NTSTATUS(STATUS_ASSERTION_FAILURE); });
REQUIRE_FAILFAST_MSG(E_hrNtAssertionFailure, [] { FAIL_FAST_NTSTATUS_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_IF_NTSTATUS_FAILED_MSG(MDEC(ntOKRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_IF_NTSTATUS_FAILED_EXPECTED(MDEC(ntOKRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(STATUS_WAIT_0 == THROW_IF_NTSTATUS_FAILED(MDEC(ntOKRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(STATUS_WAIT_0 == THROW_IF_NTSTATUS_FAILED_MSG(MDEC(ntOKRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(STATUS_WAIT_0 == LOG_IF_NTSTATUS_FAILED(MDEC(ntOKRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(STATUS_WAIT_0 == LOG_IF_NTSTATUS_FAILED_MSG(MDEC(ntOKRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(STATUS_WAIT_0 == FAIL_FAST_IF_NTSTATUS_FAILED(MDEC(ntOKRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(STATUS_WAIT_0 == FAIL_FAST_IF_NTSTATUS_FAILED_MSG(MDEC(ntOKRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(E_hrNtAssertionFailure, [] { RETURN_IF_NTSTATUS_FAILED(STATUS_ASSERTION_FAILURE); return S_OK; });
REQUIRE_RETURNS_MSG(E_hrNtAssertionFailure, [] { RETURN_IF_NTSTATUS_FAILED_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_hrNtAssertionFailure, [] { RETURN_IF_NTSTATUS_FAILED_EXPECTED(STATUS_ASSERTION_FAILURE); return S_OK; });
REQUIRE_THROWS_RESULT(E_hrNtAssertionFailure, [] { THROW_IF_NTSTATUS_FAILED(STATUS_ASSERTION_FAILURE); });
REQUIRE_THROWS_MSG(E_hrNtAssertionFailure, [] { THROW_IF_NTSTATUS_FAILED_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); });
REQUIRE_LOG(E_hrNtAssertionFailure, [] { REQUIRE(STATUS_ASSERTION_FAILURE == LOG_IF_NTSTATUS_FAILED(STATUS_ASSERTION_FAILURE)); });
REQUIRE_LOG_MSG(E_hrNtAssertionFailure, [] { REQUIRE(STATUS_ASSERTION_FAILURE == LOG_IF_NTSTATUS_FAILED_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_hrNtAssertionFailure, [] { FAIL_FAST_IF_NTSTATUS_FAILED(STATUS_ASSERTION_FAILURE); });
REQUIRE_FAILFAST_MSG(E_hrNtAssertionFailure, [] { FAIL_FAST_IF_NTSTATUS_FAILED_MSG(STATUS_ASSERTION_FAILURE, "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { RETURN_IF_NTSTATUS_FAILED(STATUS_NO_MEMORY); return S_OK; });
REQUIRE_RETURNS_MSG(E_OUTOFMEMORY, [] { RETURN_IF_NTSTATUS_FAILED_MSG(STATUS_NO_MEMORY, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_OUTOFMEMORY, [] { RETURN_IF_NTSTATUS_FAILED_EXPECTED(STATUS_NO_MEMORY); return S_OK; });
REQUIRE_THROWS_RESULT(E_OUTOFMEMORY, [] { THROW_IF_NTSTATUS_FAILED(STATUS_NO_MEMORY); });
REQUIRE_THROWS_MSG(E_OUTOFMEMORY, [] { THROW_IF_NTSTATUS_FAILED_MSG(STATUS_NO_MEMORY, "msg: %d", __LINE__); });
REQUIRE_LOG(E_OUTOFMEMORY, [] { REQUIRE(STATUS_NO_MEMORY == LOG_IF_NTSTATUS_FAILED(STATUS_NO_MEMORY)); });
REQUIRE_LOG_MSG(E_OUTOFMEMORY, [] { REQUIRE(STATUS_NO_MEMORY == LOG_IF_NTSTATUS_FAILED_MSG(STATUS_NO_MEMORY, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_OUTOFMEMORY, [] { FAIL_FAST_IF_NTSTATUS_FAILED(STATUS_NO_MEMORY); });
REQUIRE_FAILFAST_MSG(E_OUTOFMEMORY, [] { FAIL_FAST_IF_NTSTATUS_FAILED_MSG(STATUS_NO_MEMORY, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_IF_NULL_ALLOC(MDEC(pValidRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_IF_NULL_ALLOC_MSG(MDEC(pValidRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_IF_NULL_ALLOC_EXPECTED(MDEC(pValidRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(pValid == THROW_IF_NULL_ALLOC(MDEC(pValidRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(pValid == THROW_IF_NULL_ALLOC_MSG(MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(pValid == LOG_IF_NULL_ALLOC(MDEC(pValidRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(pValid == LOG_IF_NULL_ALLOC_MSG(MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(pValid == FAIL_FAST_IF_NULL_ALLOC(MDEC(pValidRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(pValid == FAIL_FAST_IF_NULL_ALLOC_MSG(MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { RETURN_IF_NULL_ALLOC(pNull); return S_OK; });
REQUIRE_RETURNS_MSG(E_OUTOFMEMORY, [] { RETURN_IF_NULL_ALLOC_MSG(pNull, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_OUTOFMEMORY, [] { RETURN_IF_NULL_ALLOC_EXPECTED(pNull); return S_OK; });
REQUIRE_THROWS_RESULT(E_OUTOFMEMORY, [] { THROW_IF_NULL_ALLOC(pNull); });
REQUIRE_THROWS_MSG(E_OUTOFMEMORY, [] { THROW_IF_NULL_ALLOC_MSG(pNull, "msg: %d", __LINE__); });
REQUIRE_LOG(E_OUTOFMEMORY, [] { REQUIRE(pNull == LOG_IF_NULL_ALLOC(pNull)); });
REQUIRE_LOG_MSG(E_OUTOFMEMORY, [] { REQUIRE(pNull == LOG_IF_NULL_ALLOC_MSG(pNull, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_OUTOFMEMORY, [] { FAIL_FAST_IF_NULL_ALLOC(pNull); });
REQUIRE_FAILFAST_MSG(E_OUTOFMEMORY, [] { FAIL_FAST_IF_NULL_ALLOC_MSG(pNull, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF(MDEC(S_OK), MDEC(fTrueRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_MSG(MDEC(S_OK), MDEC(fTrueRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_EXPECTED(MDEC(S_OK), MDEC(fTrueRef())); return S_OK; });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_IF(MDEC(S_OK), MDEC(fTrueRef())); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_IF_MSG(MDEC(S_OK), MDEC(fTrueRef()), "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_FAIL, [] { RETURN_HR_IF(E_FAIL, fTrue); return S_OK; });
REQUIRE_RETURNS_MSG(E_FAIL, [] { RETURN_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_HR_IF_EXPECTED(E_FAIL, fTrue); return S_OK; });
REQUIRE_THROWS_RESULT(E_FAIL, [] { THROW_HR_IF(E_FAIL, fTrue); });
REQUIRE_THROWS_MSG(E_FAIL, [] { THROW_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(fTrue == LOG_HR_IF(E_FAIL, fTrue)); });
REQUIRE_LOG_MSG(E_FAIL, [] { REQUIRE(fTrue == LOG_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_FAIL, [] { FAIL_FAST_HR_IF(E_FAIL, fTrue); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { FAIL_FAST_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF(MDEC(S_OK), MDEC(fTrueRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_MSG(MDEC(S_OK), MDEC(fTrueRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_EXPECTED(MDEC(S_OK), MDEC(fTrueRef())); return S_OK; });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_IF(MDEC(S_OK), MDEC(fTrueRef())); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_IF_MSG(MDEC(S_OK), MDEC(fTrueRef()), "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_FAIL, [] { RETURN_HR_IF(E_FAIL, fTrue); return S_OK; });
REQUIRE_RETURNS_MSG(E_FAIL, [] { RETURN_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_HR_IF_EXPECTED(E_FAIL, fTrue); return S_OK; });
REQUIRE_THROWS_RESULT(E_FAIL, [] { THROW_HR_IF(E_FAIL, fTrue); });
REQUIRE_THROWS_MSG(E_FAIL, [] { THROW_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(fTrue == LOG_HR_IF(E_FAIL, fTrue)); });
REQUIRE_LOG_MSG(E_FAIL, [] { REQUIRE(fTrue == LOG_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_FAIL, [] { FAIL_FAST_HR_IF(E_FAIL, fTrue); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { FAIL_FAST_HR_IF_MSG(E_FAIL, fTrue, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF(MDEC(S_OK), MDEC(fFalseRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_EXPECTED(MDEC(S_OK), MDEC(fFalseRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF(MDEC(S_OK), MDEC(fFalseRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF(MDEC(S_OK), MDEC(fFalseRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF(MDEC(S_OK), MDEC(fFalseRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF(E_FAIL, MDEC(fFalseRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_EXPECTED(E_FAIL, MDEC(fFalseRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF(E_FAIL, MDEC(fFalseRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF(E_FAIL, MDEC(fFalseRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF(E_FAIL, MDEC(fFalseRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF(MDEC(S_OK), MDEC(fFalseRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_EXPECTED(MDEC(S_OK), MDEC(fFalseRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF(MDEC(S_OK), MDEC(fFalseRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF(MDEC(S_OK), MDEC(fFalseRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF(MDEC(S_OK), MDEC(fFalseRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF_MSG(MDEC(S_OK), MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF(E_FAIL, MDEC(fFalseRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_EXPECTED(E_FAIL, MDEC(fFalseRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF(E_FAIL, MDEC(fFalseRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(fFalse == THROW_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF(E_FAIL, MDEC(fFalseRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(fFalse == LOG_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF(E_FAIL, MDEC(fFalseRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_HR_IF_MSG(E_FAIL, MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF_NULL(S_OK, pNull); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_NULL_MSG(S_OK, pNull, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_NULL_EXPECTED(S_OK, pNull); return S_OK; });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_IF_NULL(S_OK, pNull); });
REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_HR_IF_NULL_MSG(S_OK, pNull, "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_FAIL, [] { RETURN_HR_IF_NULL(E_FAIL, pNull); return S_OK; });
REQUIRE_RETURNS_MSG(E_FAIL, [] { RETURN_HR_IF_NULL_MSG(E_FAIL, pNull, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_HR_IF_NULL_EXPECTED(E_FAIL, pNull); return S_OK; });
REQUIRE_THROWS_RESULT(E_FAIL, [] { THROW_HR_IF_NULL(E_FAIL, pNull); });
REQUIRE_THROWS_MSG(E_FAIL, [] { THROW_HR_IF_NULL_MSG(E_FAIL, pNull, "msg: %d", __LINE__); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(pNull == LOG_HR_IF_NULL(E_FAIL, pNull)); });
REQUIRE_LOG_MSG(E_FAIL, [] { REQUIRE(pNull == LOG_HR_IF_NULL_MSG(E_FAIL, pNull, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_FAIL, [] { FAIL_FAST_HR_IF_NULL(E_FAIL, pNull); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { FAIL_FAST_HR_IF_NULL_MSG(E_FAIL, pNull, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF_NULL(MDEC(S_OK), MDEC(pValidRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_NULL_MSG(MDEC(S_OK), MDEC(pValidRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_NULL_EXPECTED(MDEC(S_OK), MDEC(pValidRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(pValid == THROW_HR_IF_NULL(MDEC(S_OK), MDEC(pValidRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(pValid == THROW_HR_IF_NULL_MSG(MDEC(S_OK), MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(pValid == LOG_HR_IF_NULL(MDEC(S_OK), MDEC(pValidRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(pValid == LOG_HR_IF_NULL_MSG(MDEC(S_OK), MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(pValid == FAIL_FAST_HR_IF_NULL(MDEC(S_OK), MDEC(pValidRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(pValid == FAIL_FAST_HR_IF_NULL_MSG(MDEC(S_OK), MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_RETURNS(S_OK, [] { RETURN_HR_IF_NULL(E_FAIL, MDEC(pValidRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_HR_IF_NULL_MSG(E_FAIL, MDEC(pValidRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_HR_IF_NULL_EXPECTED(E_FAIL, MDEC(pValidRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(pValid == THROW_HR_IF_NULL(E_FAIL, MDEC(pValidRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(pValid == THROW_HR_IF_NULL_MSG(E_FAIL, MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(pValid == LOG_HR_IF_NULL(E_FAIL, MDEC(pValidRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(pValid == LOG_HR_IF_NULL_MSG(E_FAIL, MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(pValid == FAIL_FAST_HR_IF_NULL(E_FAIL, MDEC(pValidRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(pValid == FAIL_FAST_HR_IF_NULL_MSG(E_FAIL, MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST_UNSPECIFIED([] { ::SetLastError(0); FAIL_FAST_LAST_ERROR_IF(fTrue); });
REQUIRE_FAILFAST_UNSPECIFIED([] { ::SetLastError(0); FAIL_FAST_LAST_ERROR_IF_MSG(fTrue, "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_AD, [] { SetAD(); RETURN_LAST_ERROR_IF(fTrue); return S_OK; });
REQUIRE_RETURNS_MSG(E_AD, [] { SetAD(); RETURN_LAST_ERROR_IF_MSG(fTrue, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_AD, [] { SetAD(); RETURN_LAST_ERROR_IF_EXPECTED(fTrue); return S_OK; });
REQUIRE_THROWS_RESULT(E_AD, [] { SetAD(); THROW_LAST_ERROR_IF(fTrue); });
REQUIRE_THROWS_MSG(E_AD, [] { SetAD(); THROW_LAST_ERROR_IF_MSG(fTrue, "msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { SetAD(); REQUIRE(fTrue == LOG_LAST_ERROR_IF(fTrue)); });
REQUIRE_LOG_MSG(E_AD, [] { SetAD(); REQUIRE(fTrue == LOG_LAST_ERROR_IF_MSG(fTrue, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_AD, [] { SetAD(); FAIL_FAST_LAST_ERROR_IF(fTrue); });
REQUIRE_FAILFAST_MSG(E_AD, [] { SetAD(); FAIL_FAST_LAST_ERROR_IF_MSG(fTrue, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_LAST_ERROR_IF(MDEC(fFalseRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_LAST_ERROR_IF_MSG(MDEC(fFalseRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_LAST_ERROR_IF_EXPECTED(MDEC(fFalseRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(fFalse == THROW_LAST_ERROR_IF(MDEC(fFalseRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(fFalse == THROW_LAST_ERROR_IF_MSG(MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(fFalse == LOG_LAST_ERROR_IF(MDEC(fFalseRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(fFalse == LOG_LAST_ERROR_IF_MSG(MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_LAST_ERROR_IF(MDEC(fFalseRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_LAST_ERROR_IF_MSG(MDEC(fFalseRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST_UNSPECIFIED([] { ::SetLastError(0); FAIL_FAST_LAST_ERROR_IF_NULL(pNull); });
REQUIRE_FAILFAST_UNSPECIFIED([] { ::SetLastError(0); FAIL_FAST_LAST_ERROR_IF_NULL_MSG(pNull, "msg: %d", __LINE__); });
REQUIRE_RETURNS(E_AD, [] { SetAD(); RETURN_LAST_ERROR_IF_NULL(pNull); return S_OK; });
REQUIRE_RETURNS_MSG(E_AD, [] { SetAD(); RETURN_LAST_ERROR_IF_NULL_MSG(pNull, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_AD, [] { SetAD(); RETURN_LAST_ERROR_IF_NULL_EXPECTED(pNull); return S_OK; });
REQUIRE_THROWS_RESULT(E_AD, [] { SetAD(); THROW_LAST_ERROR_IF_NULL(pNull); });
REQUIRE_THROWS_MSG(E_AD, [] { SetAD(); THROW_LAST_ERROR_IF_NULL_MSG(pNull, "msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { SetAD(); REQUIRE(pNull == LOG_LAST_ERROR_IF_NULL(pNull)); });
REQUIRE_LOG_MSG(E_AD, [] { SetAD(); REQUIRE(pNull == LOG_LAST_ERROR_IF_NULL_MSG(pNull, "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(E_AD, [] { SetAD(); FAIL_FAST_LAST_ERROR_IF_NULL(pNull); });
REQUIRE_FAILFAST_MSG(E_AD, [] { SetAD(); FAIL_FAST_LAST_ERROR_IF_NULL_MSG(pNull, "msg: %d", __LINE__); });
REQUIRE_RETURNS(S_OK, [] { RETURN_LAST_ERROR_IF_NULL(MDEC(pValidRef())); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { RETURN_LAST_ERROR_IF_NULL_MSG(MDEC(pValidRef()), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_LAST_ERROR_IF_NULL_EXPECTED(MDEC(pValidRef())); return S_OK; });
REQUIRE_THROWS_RESULT(S_OK, [] { REQUIRE(pNull != THROW_LAST_ERROR_IF_NULL(MDEC(pValidRef()))); });
REQUIRE_THROWS_MSG(S_OK, [] { REQUIRE(pNull != THROW_LAST_ERROR_IF_NULL_MSG(MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(pNull != LOG_LAST_ERROR_IF_NULL(MDEC(pValidRef()))); });
REQUIRE_LOG_MSG(S_OK, [] { REQUIRE(pNull != LOG_LAST_ERROR_IF_NULL_MSG(MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(pNull != FAIL_FAST_LAST_ERROR_IF_NULL(MDEC(pValidRef()))); });
REQUIRE_FAILFAST_MSG(S_OK, [] { REQUIRE(pNull != FAIL_FAST_LAST_ERROR_IF_NULL_MSG(MDEC(pValidRef()), "msg: %d", __LINE__)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(true == SUCCEEDED_LOG(MDEC(S_OK))); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(false == SUCCEEDED_LOG(E_FAIL)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(false == FAILED_LOG(MDEC(S_OK))); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(true == FAILED_LOG(E_FAIL)); });
REQUIRE_LOG(ERROR_SUCCESS, [] { REQUIRE(true == SUCCEEDED_WIN32_LOG(MDEC(ERROR_SUCCESS))); });
REQUIRE_LOG(HRESULT_FROM_WIN32(ERROR_ACCESS_DENIED), [] { REQUIRE(false == SUCCEEDED_WIN32_LOG(ERROR_ACCESS_DENIED)); });
REQUIRE_LOG(ERROR_SUCCESS, [] { REQUIRE(false == FAILED_WIN32_LOG(MDEC(ERROR_SUCCESS))); });
REQUIRE_LOG(HRESULT_FROM_WIN32(ERROR_ACCESS_DENIED), [] { REQUIRE(true == FAILED_WIN32_LOG(ERROR_ACCESS_DENIED)); });
REQUIRE_LOG(ntOK, [] { REQUIRE(true == SUCCEEDED_NTSTATUS_LOG(MDEC(ntOK))); });
REQUIRE_LOG(wil::details::NtStatusToHr(ntFAIL), [] { REQUIRE(false == SUCCEEDED_NTSTATUS_LOG(ntFAIL)); });
REQUIRE_LOG(ntOK, [] { REQUIRE(false == FAILED_NTSTATUS_LOG(MDEC(ntOK))); });
REQUIRE_LOG(wil::details::NtStatusToHr(ntFAIL), [] { REQUIRE(true == FAILED_NTSTATUS_LOG(ntFAIL)); });
// FAIL_FAST_IMMEDIATE* directly invokes __fastfail, which we can't catch, so disabled for now
// REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_IMMEDIATE(); });
// REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_IMMEDIATE_IF_FAILED(E_FAIL); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(S_OK == FAIL_FAST_IMMEDIATE_IF_FAILED(MDEC(S_OK))); });
// REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_IMMEDIATE_IF(fTrue); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(fFalse == FAIL_FAST_IMMEDIATE_IF(MDEC(fFalseRef()))); });
// REQUIRE_FAILFAST_UNSPECIFIED([] { FAIL_FAST_IMMEDIATE_IF_NULL(pNull); });
REQUIRE_FAILFAST(S_OK, [] { REQUIRE(pValid == FAIL_FAST_IMMEDIATE_IF_NULL(MDEC(pValidRef()))); });
#ifdef WIL_ENABLE_EXCEPTIONS
REQUIRE_RETURNS(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_RETURN(); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_RETURN_MSG("msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_RETURN_EXPECTED(); return S_OK; });
REQUIRE_LOG(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_LOG(); });
REQUIRE_LOG_MSG(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_LOG_MSG("msg: %d", __LINE__); });
REQUIRE_FAILFAST(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_FAIL_FAST(); });
REQUIRE_FAILFAST_MSG(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_FAIL_FAST_MSG("msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_THROW_NORMALIZED(); });
REQUIRE_THROWS_MSG(S_OK, [] { try { THROW_IF_FAILED(hrOK); } CATCH_THROW_NORMALIZED_MSG("msg: %d", __LINE__); });
REQUIRE_RETURNS(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_RETURN(); return S_OK; });
REQUIRE_RETURNS_MSG(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_RETURN_MSG("msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_RETURN_EXPECTED(); return S_OK; });
REQUIRE_LOG(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_LOG(); });
REQUIRE_LOG_MSG(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_LOG_MSG("msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_FAIL_FAST(); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_FAIL_FAST_MSG("msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_THROW_NORMALIZED(); });
REQUIRE_THROWS_MSG(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_THROW_NORMALIZED_MSG("msg: %d", __LINE__); });
REQUIRE_FAILFAST_UNSPECIFIED([] { try { if (FAILED(hrFAIL)) { throw E_FAIL; } } CATCH_FAIL_FAST(); });
REQUIRE_FAILFAST_UNSPECIFIED([] { try { if (FAILED(hrFAIL)) { throw E_FAIL; } } CATCH_FAIL_FAST_MSG("msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_AD, [] { THROW_EXCEPTION(MDEC(DerivedAccessDeniedException())); });
REQUIRE_THROWS_MSG(E_AD, [] { THROW_EXCEPTION_MSG(MDEC(DerivedAccessDeniedException()), "msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { try { throw AlternateAccessDeniedException(); } CATCH_LOG(); });
REQUIRE_THROWS_RESULT(E_AD, [] { try { throw AlternateAccessDeniedException(); } CATCH_THROW_NORMALIZED(); });
REQUIRE_RETURNS(S_OK, [] { return wil::ResultFromException([] { THROW_IF_FAILED(hrOK); }); });
REQUIRE_RETURNS(E_FAIL, [] { return wil::ResultFromException([] { THROW_IF_FAILED(hrFAIL); }); });
REQUIRE(E_AD == wil::ResultFromException([] { throw AlternateAccessDeniedException(); }));
try { THROW_HR(E_FAIL); }
catch (...) { REQUIRE(E_FAIL == wil::ResultFromCaughtException()); };
#endif
#ifdef WIL_ENABLE_EXCEPTIONS
REQUIRE_LOG(E_FAIL, [] { try { THROW_IF_FAILED(hrFAIL); } CATCH_LOG(); });
#endif
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; RETURN_IF_NULL_ALLOC(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; RETURN_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; RETURN_IF_NULL_ALLOC_EXPECTED(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); RETURN_IF_NULL_ALLOC(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); RETURN_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); RETURN_IF_NULL_ALLOC_EXPECTED(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; RETURN_HR_IF_NULL(E_OUTOFMEMORY, MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; RETURN_HR_IF_NULL_MSG(E_OUTOFMEMORY, pInt, "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; RETURN_HR_IF_NULL_EXPECTED(E_OUTOFMEMORY, MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); RETURN_HR_IF_NULL(E_OUTOFMEMORY, MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); RETURN_HR_IF_NULL_MSG(E_OUTOFMEMORY, MDEC(pInt), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); RETURN_HR_IF_NULL_EXPECTED(E_OUTOFMEMORY, MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); RETURN_LAST_ERROR_IF_NULL(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS_MSG(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); RETURN_LAST_ERROR_IF_NULL_MSG(MDEC(pInt), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); RETURN_LAST_ERROR_IF_NULL_EXPECTED(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); SetAD(); RETURN_LAST_ERROR_IF_NULL(MDEC(pInt)); return S_OK; });
REQUIRE_RETURNS_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); SetAD(); RETURN_LAST_ERROR_IF_NULL_MSG(MDEC(pInt), "msg: %d", __LINE__); return S_OK; });
REQUIRE_RETURNS_EXPECTED(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); SetAD(); RETURN_LAST_ERROR_IF_NULL_EXPECTED(MDEC(pInt)); return S_OK; });
REQUIRE_THROWS_RESULT(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; THROW_IF_NULL_ALLOC(MDEC(pInt)); });
REQUIRE_THROWS_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; THROW_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_LOG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; LOG_IF_NULL_ALLOC(MDEC(pInt)); });
REQUIRE_LOG_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; LOG_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; FAIL_FAST_IF_NULL_ALLOC(MDEC(pInt)); });
REQUIRE_FAILFAST_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; FAIL_FAST_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); THROW_IF_NULL_ALLOC(MDEC(pInt)); });
REQUIRE_THROWS_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); THROW_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_LOG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); LOG_IF_NULL_ALLOC(MDEC(pInt)); });
REQUIRE_LOG_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); LOG_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_FAILFAST(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_IF_NULL_ALLOC(MDEC(pInt)); });
REQUIRE_FAILFAST_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_IF_NULL_ALLOC_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_LOG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(pInt)); });
REQUIRE_LOG_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; LOG_HR_IF_NULL_MSG(MDEC(E_OUTOFMEMORY), MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_FAIL, [] { std::unique_ptr<int> pInt; FAIL_FAST_HR_IF_NULL(MDEC(E_FAIL), MDEC(pInt)); });
REQUIRE_FAILFAST_MSG(E_FAIL, [] { std::unique_ptr<int> pInt; FAIL_FAST_HR_IF_NULL_MSG(MDEC(E_FAIL), MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; THROW_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(pInt)); });
REQUIRE_THROWS_MSG(E_OUTOFMEMORY, [] { std::unique_ptr<int> pInt; THROW_HR_IF_NULL_MSG(MDEC(E_OUTOFMEMORY), MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_LOG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(pInt)); });
REQUIRE_LOG_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); LOG_HR_IF_NULL_MSG(MDEC(E_OUTOFMEMORY), MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_FAILFAST(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_HR_IF_NULL(MDEC(E_FAIL), MDEC(pInt)); });
REQUIRE_FAILFAST_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_HR_IF_NULL_MSG(MDEC(E_FAIL), MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); THROW_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(pInt)); });
REQUIRE_THROWS_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); THROW_HR_IF_NULL_MSG(MDEC(E_OUTOFMEMORY), MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_LOG(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); LOG_LAST_ERROR_IF_NULL(MDEC(pInt)); });
REQUIRE_LOG_MSG(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); LOG_LAST_ERROR_IF_NULL_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_FAILFAST(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); FAIL_FAST_LAST_ERROR_IF_NULL(pInt); });
REQUIRE_FAILFAST_MSG(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); FAIL_FAST_LAST_ERROR_IF_NULL_MSG(pInt, "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); THROW_LAST_ERROR_IF_NULL(MDEC(pInt)); });
REQUIRE_THROWS_MSG(E_AD, [] { std::unique_ptr<int> pInt; SetAD(); THROW_LAST_ERROR_IF_NULL_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_LOG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); LOG_LAST_ERROR_IF_NULL(MDEC(pInt)); });
REQUIRE_LOG_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); LOG_LAST_ERROR_IF_NULL_MSG(MDEC(pInt), "msg: %d", __LINE__); });
REQUIRE_FAILFAST(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_LAST_ERROR_IF_NULL(pInt); });
REQUIRE_FAILFAST_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_LAST_ERROR_IF_NULL_MSG(pInt, "msg: %d", __LINE__); });
REQUIRE_THROWS_RESULT(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); THROW_LAST_ERROR_IF_NULL(MDEC(pInt)); });
REQUIRE_THROWS_MSG(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); THROW_LAST_ERROR_IF_NULL_MSG(MDEC(pInt), "msg: %d", __LINE__); });
// REQUIRE_FAILFAST_UNSPECIFIED([] { std::unique_ptr<int> pInt; FAIL_FAST_IMMEDIATE_IF_NULL(pNull); });
REQUIRE_FAILFAST(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_IMMEDIATE_IF_NULL(MDEC(pValidRef())); });
REQUIRE_FAILFAST_UNSPECIFIED([] { std::unique_ptr<int> pInt; FAIL_FAST_IF_NULL(pNull); });
REQUIRE_FAILFAST(S_OK, [] { std::unique_ptr<int> pInt(new int(5)); FAIL_FAST_IF_NULL(MDEC(pInt)); });
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { Microsoft::WRL::ComPtr<IUnknown> ptr; RETURN_IF_NULL_ALLOC(MDEC(ptr)); return S_OK; });
REQUIRE_LOG(E_OUTOFMEMORY, [] { Microsoft::WRL::ComPtr<IUnknown> ptr; LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(ptr)); });
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { std::shared_ptr<int> ptr; RETURN_IF_NULL_ALLOC(MDEC(ptr)); return S_OK; });
REQUIRE_LOG(E_OUTOFMEMORY, [] { std::shared_ptr<int> ptr; LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(ptr)); });
REQUIRE_RETURNS(S_OK, [] { std::shared_ptr<int> ptr(new int(5)); RETURN_IF_NULL_ALLOC(MDEC(ptr)); return S_OK; });
REQUIRE_LOG(S_OK, [] { std::shared_ptr<int> ptr(new int(5)); LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(ptr)); });
#ifdef __cplusplus_winrt
REQUIRE_RETURNS(E_OUTOFMEMORY, [] { Platform::String^ str(nullptr); RETURN_IF_NULL_ALLOC(MDEC(str)); return S_OK; });
REQUIRE_LOG(E_OUTOFMEMORY, [] { Platform::String^ str(nullptr); LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(str)); });
REQUIRE_RETURNS(S_OK, [] { Platform::String^ str(L"a"); RETURN_IF_NULL_ALLOC(MDEC(str)); return S_OK; });
REQUIRE_LOG(S_OK, [] { Platform::String^ str(L"a"); LOG_HR_IF_NULL(MDEC(E_OUTOFMEMORY), MDEC(str)); });
#endif
}
#define WRAP_LAMBDA(code) [&] {code;};
//these macros should all have compile errors due to use of an invalid type
void InvalidTypeChecks()
{
std::unique_ptr<int> boolCastClass;
std::vector<int> noBoolCastClass;
//WRAP_LAMBDA(RETURN_IF_FAILED(fTrue));
//WRAP_LAMBDA(RETURN_IF_FAILED(fTRUE));
//WRAP_LAMBDA(RETURN_IF_FAILED(boolCastClass));
//WRAP_LAMBDA(RETURN_IF_FAILED(noBoolCastClass));
//WRAP_LAMBDA(RETURN_IF_FAILED(errSuccess));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE(fTrue));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE(noBoolCastClass));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE(hrOK));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE(errSuccess));
//WRAP_LAMBDA(RETURN_HR_IF(errSuccess, false));
//WRAP_LAMBDA(RETURN_HR_IF(errSuccess, true));
//WRAP_LAMBDA(RETURN_HR_IF(hrOK, noBoolCastClass));
//WRAP_LAMBDA(RETURN_HR_IF(hrOK, hrOK));
//WRAP_LAMBDA(RETURN_HR_IF(hrOK, errSuccess));
//WRAP_LAMBDA(RETURN_HR_IF_NULL(errSuccess, nullptr));
//WRAP_LAMBDA(RETURN_HR_IF_NULL(errSuccess, pValid));
//WRAP_LAMBDA(RETURN_LAST_ERROR_IF(noBoolCastClass));
//WRAP_LAMBDA(RETURN_LAST_ERROR_IF(errSuccess));
//WRAP_LAMBDA(RETURN_LAST_ERROR_IF(hrOK));
//WRAP_LAMBDA(RETURN_IF_FAILED_EXPECTED(fTrue));
//WRAP_LAMBDA(RETURN_IF_FAILED_EXPECTED(fTRUE));
//WRAP_LAMBDA(RETURN_IF_FAILED_EXPECTED(boolCastClass));
//WRAP_LAMBDA(RETURN_IF_FAILED_EXPECTED(noBoolCastClass));
//WRAP_LAMBDA(RETURN_IF_FAILED_EXPECTED(errSuccess));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE_EXPECTED(fTrue));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE_EXPECTED(noBoolCastClass));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE_EXPECTED(hrOK));
//WRAP_LAMBDA(RETURN_IF_WIN32_BOOL_FALSE_EXPECTED(errSuccess));
//LOG_IF_FAILED(fTrue);
//LOG_IF_FAILED(fTRUE);
//LOG_IF_FAILED(boolCastClass);
//LOG_IF_FAILED(noBoolCastClass);
//LOG_IF_FAILED(errSuccess);
//LOG_IF_WIN32_BOOL_FALSE(fTrue);
//LOG_IF_WIN32_BOOL_FALSE(noBoolCastClass);
//LOG_IF_WIN32_BOOL_FALSE(hrOK);
//LOG_IF_WIN32_BOOL_FALSE(errSuccess);
//LOG_HR_IF(errSuccess, false);
//LOG_HR_IF(errSuccess, true);
//LOG_HR_IF(hrOK, noBoolCastClass);
//LOG_HR_IF(hrOK, hrOK);
//LOG_HR_IF(hrOK, errSuccess);
//FAIL_FAST_IF_FAILED(fTrue);
//FAIL_FAST_IF_FAILED(fTRUE);
//FAIL_FAST_IF_FAILED(boolCastClass);
//FAIL_FAST_IF_FAILED(noBoolCastClass);
//FAIL_FAST_IF_FAILED(errSuccess);
//FAIL_FAST_IF_WIN32_BOOL_FALSE(fTrue);
//FAIL_FAST_IF_WIN32_BOOL_FALSE(noBoolCastClass);
//FAIL_FAST_IF_WIN32_BOOL_FALSE(hrOK);
//FAIL_FAST_IF_WIN32_BOOL_FALSE(errSuccess);
//FAIL_FAST_HR_IF(errSuccess, false);
//FAIL_FAST_HR_IF(errSuccess, true);
//FAIL_FAST_HR_IF(hrOK, noBoolCastClass);
//FAIL_FAST_HR_IF(hrOK, hrOK);
//FAIL_FAST_HR_IF(hrOK, errSuccess);
//THROW_IF_FAILED(fTrue);
//THROW_IF_FAILED(fTRUE);
//THROW_IF_FAILED(boolCastClass);
//THROW_IF_FAILED(noBoolCastClass);
//THROW_IF_FAILED(errSuccess);
//THROW_IF_WIN32_BOOL_FALSE(fTrue);
//THROW_IF_WIN32_BOOL_FALSE(noBoolCastClass);
//THROW_IF_WIN32_BOOL_FALSE(hrOK);
//THROW_IF_WIN32_BOOL_FALSE(errSuccess);
//THROW_HR_IF(errSuccess, false);
//THROW_HR_IF(errSuccess, true);
//THROW_HR_IF(hrOK, noBoolCastClass);
//THROW_HR_IF(hrOK, hrOK);
//THROW_HR_IF(hrOK, errSuccess);
//FAIL_FAST_IF(noBoolCastClass);
//FAIL_FAST_IF(hrOK);
//FAIL_FAST_IF(errSuccess);
//FAIL_FAST_IMMEDIATE_IF_FAILED(fTrue);
//FAIL_FAST_IMMEDIATE_IF_FAILED(fTRUE);
//FAIL_FAST_IMMEDIATE_IF_FAILED(boolCastClass);
//FAIL_FAST_IMMEDIATE_IF_FAILED(noBoolCastClass);
//FAIL_FAST_IMMEDIATE_IF_FAILED(errSuccess);
//FAIL_FAST_IMMEDIATE_IF(noBoolCastClass);
//FAIL_FAST_IMMEDIATE_IF(hrOK);
//FAIL_FAST_IMMEDIATE_IF(errSuccess);
}
TEST_CASE("WindowsInternalTests::UniqueHandle", "[resource][unique_any]")
{
{
// default construction test
wil::unique_handle spHandle;
REQUIRE(spHandle.get() == nullptr);
// null ptr assignment creation
wil::unique_handle spNullHandle = nullptr;
REQUIRE(spNullHandle.get() == nullptr);
// explicit construction from the invalid value
wil::unique_handle spInvalidHandle(nullptr);
REQUIRE(spInvalidHandle.get() == nullptr);
// valid handle creation
wil::unique_handle spValidHandle(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
REQUIRE(spValidHandle.get() != nullptr);
auto const handleValue = spValidHandle.get();
// r-value construction
wil::unique_handle spMoveHandle = wistd::move(spValidHandle);
REQUIRE(spValidHandle.get() == nullptr);
REQUIRE(spMoveHandle.get() == handleValue);
// nullptr-assignment
spNullHandle = nullptr;
REQUIRE(spNullHandle.get() == nullptr);
// r-value assignment
spValidHandle = wistd::move(spMoveHandle);
REQUIRE(spValidHandle.get() == handleValue);
REQUIRE(spMoveHandle.get() == nullptr);
// swap
spValidHandle.swap(spMoveHandle);
REQUIRE(spValidHandle.get() == nullptr);
REQUIRE(spMoveHandle.get() == handleValue);
// operator bool
REQUIRE_FALSE(spValidHandle);
REQUIRE(spMoveHandle);
// release
auto ptrValidHandle = spValidHandle.release();
auto ptrMoveHandle = spMoveHandle.release();
REQUIRE(ptrValidHandle == nullptr);
REQUIRE(ptrMoveHandle == handleValue);
REQUIRE(spValidHandle.get() == nullptr);
REQUIRE(spMoveHandle.get() == nullptr);
// reset
spValidHandle.reset();
spMoveHandle.reset();
REQUIRE(spValidHandle.get() == nullptr);
REQUIRE(spMoveHandle.get() == nullptr);
spValidHandle.reset(ptrValidHandle);
spMoveHandle.reset(ptrMoveHandle);
REQUIRE(spValidHandle.get() == nullptr);
REQUIRE(spMoveHandle.get() == handleValue);
spNullHandle.reset(nullptr);
REQUIRE(spNullHandle.get() == nullptr);
// address
REQUIRE(*spMoveHandle.addressof() == handleValue);
REQUIRE(*spMoveHandle.put() == nullptr);
*spMoveHandle.put() = ::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0);
REQUIRE(spMoveHandle);
REQUIRE(*(&spMoveHandle) == nullptr);
*(&spMoveHandle) = ::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0);
REQUIRE(spMoveHandle);
}
{
// default construction test
wil::unique_hfile spHandle;
REQUIRE(spHandle.get() == INVALID_HANDLE_VALUE);
// implicit construction from the invalid value
wil::unique_hfile spNullHandle; // = nullptr; // method explicitly disabled as nullptr isn't the invalid value
REQUIRE(spNullHandle.get() == INVALID_HANDLE_VALUE);
// assignment from the invalid value
// spNullHandle = nullptr; // method explicitly disabled as nullptr isn't the invalid value
REQUIRE(spNullHandle.get() == INVALID_HANDLE_VALUE);
// explicit construction from the invalid value
wil::unique_hfile spInvalidHandle(INVALID_HANDLE_VALUE);
REQUIRE(spInvalidHandle.get() == INVALID_HANDLE_VALUE);
// valid handle creation
wchar_t tempFileName[MAX_PATH];
REQUIRE_SUCCEEDED(witest::GetTempFileName(tempFileName));
CREATEFILE2_EXTENDED_PARAMETERS params = { sizeof(params) };
params.dwFileAttributes = FILE_ATTRIBUTE_TEMPORARY;
wil::unique_hfile spValidHandle(::CreateFile2(tempFileName, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_DELETE, CREATE_ALWAYS, &params));
::DeleteFileW(tempFileName);
REQUIRE(spValidHandle.get() != INVALID_HANDLE_VALUE);
auto const handleValue = spValidHandle.get();
// r-value construction
wil::unique_hfile spMoveHandle = wistd::move(spValidHandle);
REQUIRE(spValidHandle.get() == INVALID_HANDLE_VALUE);
REQUIRE(spMoveHandle.get() == handleValue);
// nullptr-assignment -- uncomment to check intentional compilation error
// spNullHandle = nullptr;
// r-value assignment
spValidHandle = wistd::move(spMoveHandle);
REQUIRE(spValidHandle.get() == handleValue);
REQUIRE(spMoveHandle.get() == INVALID_HANDLE_VALUE);
// swap
spValidHandle.swap(spMoveHandle);
REQUIRE(spValidHandle.get() == INVALID_HANDLE_VALUE);
REQUIRE(spMoveHandle.get() == handleValue);
// operator bool
REQUIRE_FALSE(spValidHandle);
REQUIRE(spMoveHandle);
// release
auto ptrValidHandle = spValidHandle.release();
auto ptrMoveHandle = spMoveHandle.release();
REQUIRE(ptrValidHandle == INVALID_HANDLE_VALUE);
REQUIRE(ptrMoveHandle == handleValue);
REQUIRE(spValidHandle.get() == INVALID_HANDLE_VALUE);
REQUIRE(spMoveHandle.get() == INVALID_HANDLE_VALUE);
// reset
spValidHandle.reset();
spMoveHandle.reset();
REQUIRE(spValidHandle.get() == INVALID_HANDLE_VALUE);
REQUIRE(spMoveHandle.get() == INVALID_HANDLE_VALUE);
spValidHandle.reset(ptrValidHandle);
spMoveHandle.reset(ptrMoveHandle);
REQUIRE(spValidHandle.get() == INVALID_HANDLE_VALUE);
REQUIRE(spMoveHandle.get() == handleValue);
// uncomment to test intentional compilation error due to conflict with INVALID_HANDLE_VALUE
// spNullHandle.reset(nullptr);
// address
REQUIRE(*spMoveHandle.addressof() == handleValue);
REQUIRE(*(&spMoveHandle) == INVALID_HANDLE_VALUE);
wchar_t tempFileName2[MAX_PATH];
REQUIRE_SUCCEEDED(witest::GetTempFileName(tempFileName2));
CREATEFILE2_EXTENDED_PARAMETERS params2 = { sizeof(params2) };
params2.dwFileAttributes = FILE_ATTRIBUTE_TEMPORARY;
*(&spMoveHandle) = ::CreateFile2(tempFileName2, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_DELETE, CREATE_ALWAYS, &params2);
::DeleteFileW(tempFileName2);
REQUIRE(spMoveHandle);
// ensure that mistaken nullptr usage is not valid...
spMoveHandle.reset();
*(&spMoveHandle) = nullptr;
REQUIRE_FALSE(spMoveHandle);
}
auto hFirst = ::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0);
auto hSecond= ::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0);
wil::unique_handle spLeft(hFirst);
wil::unique_handle spRight(hSecond);
REQUIRE(spRight.get() == hSecond);
REQUIRE(spLeft.get() == hFirst);
swap(spLeft, spRight);
REQUIRE(spLeft.get() == hSecond);
REQUIRE(spRight.get() == hFirst);
swap(spLeft, spRight);
REQUIRE((spLeft.get() == spRight.get()) == (spLeft == spRight));
REQUIRE((spLeft.get() != spRight.get()) == (spLeft != spRight));
REQUIRE((spLeft.get() < spRight.get()) == (spLeft < spRight));
REQUIRE((spLeft.get() <= spRight.get()) == (spLeft <= spRight));
REQUIRE((spLeft.get() >= spRight.get()) == (spLeft >= spRight));
REQUIRE((spLeft.get() > spRight.get()) == (spLeft > spRight));
// test stl container use (hash & std::less)
#ifdef WIL_ENABLE_EXCEPTIONS
std::unordered_set<wil::unique_handle> hashSet;
hashSet.insert(std::move(spLeft));
hashSet.insert(std::move(spRight));
std::multiset<wil::unique_handle> set;
set.insert(std::move(spLeft));
set.insert(std::move(spRight));
#endif
}
#ifdef WIL_ENABLE_EXCEPTIONS
TEST_CASE("WindowsInternalTests::SharedHandle", "[resource][shared_any]")
{
// default construction
wil::shared_handle spHandle;
REQUIRE(spHandle.get() == nullptr);
// pointer construction
wil::shared_handle spValid(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
auto ptr = spValid.get();
REQUIRE(spValid.get() != nullptr);
// null construction
wil::shared_handle spNull = nullptr;
REQUIRE(spNull.get() == nullptr);
// Present to verify that it doesn't compile (disabled)
// wil::shared_hfile spFile = nullptr;
// copy construction
wil::shared_handle spCopy = spValid;
REQUIRE(spCopy.get() == ptr);
// r-value construction
wil::shared_handle spMove = wistd::move(spCopy);
REQUIRE(spMove.get() == ptr);
REQUIRE(spCopy.get() == nullptr);
// unique handle construction
wil::shared_handle spFromUnique = wil::unique_handle(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
REQUIRE(spFromUnique.get() != nullptr);
// direct assignment
wil::shared_handle spAssign;
spAssign = spValid;
REQUIRE(spAssign.get() == ptr);
// empty reset
spFromUnique.reset();
REQUIRE(spFromUnique.get() == nullptr);
// reset against unique ptr
spFromUnique.reset(wil::unique_handle(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0)));
REQUIRE(spFromUnique.get() != nullptr);
// reset against raw pointer
spAssign.reset(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
REQUIRE(spAssign.get() != nullptr);
REQUIRE(spAssign.get() != ptr);
// ref-count checks
REQUIRE(spAssign.use_count() == 1);
// bool operator
REQUIRE(spAssign);
spAssign.reset();
REQUIRE_FALSE(spAssign);
// swap and compare
wil::shared_handle sp1(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
wil::shared_handle sp2(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
auto ptr1 = sp1.get();
auto ptr2 = sp2.get();
sp1.swap(sp2);
REQUIRE(sp1.get() == ptr2);
REQUIRE(sp2.get() == ptr1);
swap(sp1, sp2);
REQUIRE(sp1.get() == ptr1);
REQUIRE(sp2.get() == ptr2);
REQUIRE((ptr1 == ptr2) == (sp1 == sp2));
REQUIRE((ptr1 != ptr2) == (sp1 != sp2));
REQUIRE((ptr1 < ptr2) == (sp1 < sp2));
REQUIRE((ptr1 <= ptr2) == (sp1 <= sp2));
REQUIRE((ptr1 > ptr2) == (sp1 > sp2));
REQUIRE((ptr1 >= ptr2) == (sp1 >= sp2));
// construction
wil::weak_handle wh;
REQUIRE_FALSE(wh.lock());
wil::weak_handle wh1 = sp1;
REQUIRE(wh1.lock());
REQUIRE(wh1.lock().get() == ptr1);
wil::weak_handle wh1copy = wh1;
REQUIRE(wh1copy.lock());
// assignment
wh = wh1;
REQUIRE(wh.lock().get() == ptr1);
wh = sp2;
REQUIRE(wh.lock().get() == ptr2);
// reset
wh.reset();
REQUIRE_FALSE(wh.lock());
// expiration
wh = sp1;
sp1.reset();
REQUIRE(wh.expired());
REQUIRE_FALSE(wh.lock());
// swap
wh1 = sp1;
wil::weak_handle wh2 = sp2;
ptr1 = sp1.get();
ptr2 = sp2.get();
REQUIRE(wh1.lock().get() == ptr1);
REQUIRE(wh2.lock().get() == ptr2);
wh1.swap(wh2);
REQUIRE(wh1.lock().get() == ptr2);
REQUIRE(wh2.lock().get() == ptr1);
swap(wh1, wh2);
REQUIRE(wh1.lock().get() == ptr1);
REQUIRE(wh2.lock().get() == ptr2);
// put
sp1.reset(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
REQUIRE(sp1);
sp1.put(); // frees the pointer...
REQUIRE_FALSE(sp1);
sp2 = sp1;
REQUIRE_FALSE(sp2);
*sp1.put() = ::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0);
REQUIRE(sp1);
REQUIRE_FALSE(sp2);
// address
sp1.reset(::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0));
REQUIRE(sp1);
&sp1; // frees the pointer...
REQUIRE_FALSE(sp1);
sp2 = sp1;
REQUIRE_FALSE(sp2);
*(&sp1) = ::CreateEventEx(nullptr, nullptr, CREATE_EVENT_INITIAL_SET, 0);
REQUIRE(sp1);
REQUIRE_FALSE(sp2);
// test stl container use (hash & std::less)
std::unordered_set<wil::shared_handle> hashSet;
hashSet.insert(sp1);
hashSet.insert(sp2);
std::set<wil::shared_handle> set;
set.insert(sp1);
set.insert(sp2);
}
#endif
template <typename event_t>
void EventTestCommon()
{
// Constructor tests...
event_t e1;
REQUIRE_FALSE(e1);
event_t e2(::CreateEventEx(nullptr, nullptr, 0, 0));
REQUIRE(e2);
wil::unique_handle h1(::CreateEventEx(nullptr, nullptr, 0, 0));
REQUIRE(h1);
event_t e3(h1.release());
REQUIRE(e3);
REQUIRE_FALSE(h1);
event_t e4(std::move(e2));
REQUIRE(e4);
REQUIRE_FALSE(e2);
// inherited address tests...
REQUIRE(e4);
&e4;
REQUIRE_FALSE(e4);
auto hFill = ::CreateEventEx(nullptr, nullptr, 0, 0);
*(&e4) = hFill;
REQUIRE(e4);
REQUIRE(*e4.addressof() == hFill);
REQUIRE(e4);
// assignment...
event_t e5;
e5 = std::move(e4);
REQUIRE(e5);
REQUIRE_FALSE(e4);
// various event-based tests
event_t eManual;
eManual.create(wil::EventOptions::ManualReset);
REQUIRE_FALSE(eManual.is_signaled());
eManual.SetEvent();
REQUIRE(eManual.is_signaled());
eManual.ResetEvent();
REQUIRE_FALSE(eManual.is_signaled());
{
auto exit = eManual.SetEvent_scope_exit();
REQUIRE_FALSE(eManual.is_signaled());
}
REQUIRE(eManual.is_signaled());
{
auto exit = eManual.ResetEvent_scope_exit();
REQUIRE(eManual.is_signaled());
}
REQUIRE_FALSE(eManual.is_signaled());
REQUIRE_FALSE(eManual.wait(50));
REQUIRE_FALSE(wil::handle_wait(eManual.get(), 50));
eManual.SetEvent();
REQUIRE(eManual.wait(50));
REQUIRE(wil::handle_wait(eManual.get(), 50));
REQUIRE(eManual.wait(50));
REQUIRE(eManual.try_create(wil::EventOptions::ManualReset, L"IExist"));
REQUIRE_FALSE(eManual.try_open(L"IDontExist"));
}
template <typename mutex_t>
void MutexTestCommon()
{
// Constructor tests...
mutex_t m1;
REQUIRE_FALSE(m1);
mutex_t m2(::CreateMutexEx(nullptr, nullptr, 0, 0));
REQUIRE(m2);
wil::unique_handle h1(::CreateMutexEx(nullptr, nullptr, 0, 0));
REQUIRE(h1);
mutex_t m3(h1.release());
REQUIRE(m3);
REQUIRE_FALSE(h1);
mutex_t m4(std::move(m2));
REQUIRE(m4);
REQUIRE_FALSE(m2);
// inherited address tests...
REQUIRE(m4);
&m4;
REQUIRE_FALSE(m4);
auto hFill = ::CreateMutexEx(nullptr, nullptr, 0, 0);
*(&m4) = hFill;
REQUIRE(m4);
REQUIRE(*m4.addressof() == hFill);
REQUIRE(m4);
// assignment...
mutex_t m5;
m5 = std::move(m4);
REQUIRE(m5);
REQUIRE_FALSE(m4);
// various mutex-based tests
mutex_t eManual;
eManual.create(nullptr, CREATE_MUTEX_INITIAL_OWNER);
eManual.ReleaseMutex();
eManual.create(nullptr, CREATE_MUTEX_INITIAL_OWNER);
{
auto release = eManual.ReleaseMutex_scope_exit();
}
{
DWORD dwStatus;
auto release = eManual.acquire(&dwStatus);
REQUIRE(release);
REQUIRE(dwStatus == WAIT_OBJECT_0);
}
// pass-through methods -- test compilation;
REQUIRE(eManual.try_create(L"FOO-TEST"));
REQUIRE(eManual.try_open(L"FOO-TEST"));
}
template <typename semaphore_t>
void SemaphoreTestCommon()
{
// Constructor tests...
semaphore_t m1;
REQUIRE_FALSE(m1);
semaphore_t m2(::CreateSemaphoreEx(nullptr, 1, 1, nullptr, 0, 0));
REQUIRE(m2);
wil::unique_handle h1(::CreateSemaphoreEx(nullptr, 1, 1, nullptr, 0, 0));
REQUIRE(h1);
semaphore_t m3(h1.release());
REQUIRE(m3);
REQUIRE_FALSE(h1);
semaphore_t m4(std::move(m2));
REQUIRE(m4);
REQUIRE_FALSE(m2);
// inherited address tests...
REQUIRE(m4);
&m4;
REQUIRE_FALSE(m4);
auto hFill = ::CreateSemaphoreEx(nullptr, 1, 1, nullptr, 0, 0);
*(&m4) = hFill;
REQUIRE(m4);
REQUIRE(*m4.addressof() == hFill);
REQUIRE(m4);
// assignment...
semaphore_t m5;
m5 = std::move(m4);
REQUIRE(m5);
REQUIRE_FALSE(m4);
// various semaphore-based tests
semaphore_t eManual;
eManual.create(1, 1);
WaitForSingleObjectEx(eManual.get(), INFINITE, true);
eManual.ReleaseSemaphore();
eManual.create(1, 1);
WaitForSingleObjectEx(eManual.get(), INFINITE, true);
{
auto release = eManual.ReleaseSemaphore_scope_exit();
}
{
DWORD dwStatus;
auto release = eManual.acquire(&dwStatus);
REQUIRE(release);
REQUIRE(dwStatus == WAIT_OBJECT_0);
}
// pass-through methods -- test compilation;
REQUIRE(eManual.try_create(1, 1, L"BAR-TEST"));
REQUIRE(eManual.try_open(L"BAR-TEST"));
}
TEST_CASE("WindowsInternalTests::HandleWrappers", "[resource][unique_any]")
{
EventTestCommon<wil::unique_event_nothrow>();
EventTestCommon<wil::unique_event_failfast>();
// intentionally disabled in the non-exception version...
// wil::unique_event_nothrow testEvent2(wil::EventOptions::ManualReset);
wil::unique_event_failfast testEvent3(wil::EventOptions::ManualReset);
#ifdef WIL_ENABLE_EXCEPTIONS
EventTestCommon<wil::unique_event>();
wil::unique_event testEvent(wil::EventOptions::ManualReset);
{
REQUIRE_FALSE(wil::event_is_signaled(testEvent.get()));
auto eventSet = wil::SetEvent_scope_exit(testEvent.get());
REQUIRE_FALSE(wil::event_is_signaled(testEvent.get()));
}
{
REQUIRE(wil::event_is_signaled(testEvent.get()));
auto eventSet = wil::ResetEvent_scope_exit(testEvent.get());
REQUIRE(wil::event_is_signaled(testEvent.get()));
}
REQUIRE_FALSE(wil::event_is_signaled(testEvent.get()));
REQUIRE_FALSE(wil::handle_wait(testEvent.get(), 0));
// Exception-based - no return
testEvent.create(wil::EventOptions::ManualReset);
#endif
// Error-code based -- returns HR
wil::unique_event_nothrow testEventNoExcept;
REQUIRE(SUCCEEDED(testEventNoExcept.create(wil::EventOptions::ManualReset)));
MutexTestCommon<wil::unique_mutex_nothrow>();
MutexTestCommon<wil::unique_mutex_failfast>();
// intentionally disabled in the non-exception version...
// wil::unique_mutex_nothrow testMutex2(L"FOO-TEST-2");
wil::unique_mutex_failfast testMutex3(L"FOO-TEST-3");
#ifdef WIL_ENABLE_EXCEPTIONS
MutexTestCommon<wil::unique_mutex>();
wil::unique_mutex testMutex(L"FOO-TEST");
WaitForSingleObjectEx(testMutex.get(), INFINITE, TRUE);
{
auto release = wil::ReleaseMutex_scope_exit(testMutex.get());
}
// Exception-based - no return
testMutex.create(nullptr);
#endif
// Error-code based -- returns HR
wil::unique_mutex_nothrow testMutexNoExcept;
REQUIRE(SUCCEEDED(testMutexNoExcept.create(nullptr)));
SemaphoreTestCommon<wil::unique_semaphore_nothrow>();
SemaphoreTestCommon<wil::unique_semaphore_failfast>();
// intentionally disabled in the non-exception version...
// wil::unique_semaphore_nothrow testSemaphore2(1, 1);
wil::unique_semaphore_failfast testSemaphore3(1, 1);
#ifdef WIL_ENABLE_EXCEPTIONS
SemaphoreTestCommon<wil::unique_semaphore>();
wil::unique_semaphore testSemaphore(1, 1);
WaitForSingleObjectEx(testSemaphore.get(), INFINITE, true);
{
auto release = wil::ReleaseSemaphore_scope_exit(testSemaphore.get());
}
// Exception-based - no return
testSemaphore.create(1, 1);
#endif
// Error-code based -- returns HR
wil::unique_semaphore_nothrow testSemaphoreNoExcept;
REQUIRE(SUCCEEDED(testSemaphoreNoExcept.create(1, 1)));
auto unique_cotaskmem_string_failfast1 = wil::make_cotaskmem_string_failfast(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_cotaskmem_string_failfast1.get()) == 0);
auto unique_cotaskmem_string_nothrow1 = wil::make_cotaskmem_string_nothrow(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_cotaskmem_string_nothrow1.get()) == 0);
auto unique_cotaskmem_string_nothrow2 = wil::make_cotaskmem_string_nothrow(L"");
REQUIRE(wcscmp(L"", unique_cotaskmem_string_nothrow2.get()) == 0);
#ifdef WIL_ENABLE_EXCEPTIONS
auto unique_cotaskmem_string_te1 = wil::make_cotaskmem_string(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_cotaskmem_string_te1.get()) == 0);
auto unique_cotaskmem_string_te2 = wil::make_cotaskmem_string(L"");
REQUIRE(wcscmp(L"", unique_cotaskmem_string_te2.get()) == 0);
auto unique_cotaskmem_string_range1 = wil::make_cotaskmem_string(L"Foo", 2);
REQUIRE(wcscmp(L"Fo", unique_cotaskmem_string_range1.get()) == 0);
auto unique_cotaskmem_string_range2 = wil::make_cotaskmem_string(nullptr, 2);
unique_cotaskmem_string_range2.get()[0] = L'F';
unique_cotaskmem_string_range2.get()[1] = L'o';
REQUIRE(wcscmp(L"Fo", unique_cotaskmem_string_range2.get()) == 0);
auto unique_cotaskmem_string_range3 = wil::make_cotaskmem_string(nullptr, 0);
REQUIRE(wcscmp(L"", unique_cotaskmem_string_range3.get()) == 0);
#endif
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
{
auto verify = MakeSecureDeleterMallocSpy();
REQUIRE_SUCCEEDED(::CoRegisterMallocSpy(verify.Get()));
auto removeSpy = wil::scope_exit([&] { ::CoRevokeMallocSpy(); });
auto unique_cotaskmem_string_secure_failfast1 = wil::make_cotaskmem_string_secure_failfast(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_cotaskmem_string_secure_failfast1.get()) == 0);
auto unique_cotaskmem_string_secure_nothrow1 = wil::make_cotaskmem_string_secure_nothrow(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_cotaskmem_string_secure_nothrow1.get()) == 0);
auto unique_cotaskmem_string_secure_nothrow2 = wil::make_cotaskmem_string_secure_nothrow(L"");
REQUIRE(wcscmp(L"", unique_cotaskmem_string_secure_nothrow2.get()) == 0);
#ifdef WIL_ENABLE_EXCEPTIONS
auto unique_cotaskmem_string_secure_te1 = wil::make_cotaskmem_string_secure(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_cotaskmem_string_secure_te1.get()) == 0);
auto unique_cotaskmem_string_secure_te2 = wil::make_cotaskmem_string_secure(L"");
REQUIRE(wcscmp(L"", unique_cotaskmem_string_secure_te2.get()) == 0);
#endif
}
auto unique_hlocal_string_failfast1 = wil::make_hlocal_string_failfast(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_hlocal_string_failfast1.get()) == 0);
auto unique_hlocal_string_nothrow1 = wil::make_hlocal_string_nothrow(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_hlocal_string_nothrow1.get()) == 0);
auto unique_hlocal_string_nothrow2 = wil::make_hlocal_string_nothrow(L"");
REQUIRE(wcscmp(L"", unique_hlocal_string_nothrow2.get()) == 0);
auto unique_hlocal_ansistring_failfast1 = wil::make_hlocal_ansistring_failfast("Foo");
REQUIRE(strcmp("Foo", unique_hlocal_ansistring_failfast1.get()) == 0);
auto unique_hlocal_ansistring_nothrow1 = wil::make_hlocal_ansistring_nothrow("Foo");
REQUIRE(strcmp("Foo", unique_hlocal_ansistring_nothrow1.get()) == 0);
auto unique_hlocal_ansistring_nothrow2 = wil::make_hlocal_ansistring_nothrow("");
REQUIRE(strcmp("", unique_hlocal_ansistring_nothrow2.get()) == 0);
#ifdef WIL_ENABLE_EXCEPTIONS
auto unique_hlocal_string_te1 = wil::make_hlocal_string(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_hlocal_string_te1.get()) == 0);
auto unique_hlocal_string_te2 = wil::make_hlocal_string(L"");
REQUIRE(wcscmp(L"", unique_hlocal_string_te2.get()) == 0);
auto unique_hlocal_string_range1 = wil::make_hlocal_string(L"Foo", 2);
REQUIRE(wcscmp(L"Fo", unique_hlocal_string_range1.get()) == 0);
auto unique_hlocal_string_range2 = wil::make_hlocal_string(nullptr, 2);
unique_hlocal_string_range2.get()[0] = L'F';
unique_hlocal_string_range2.get()[1] = L'o';
REQUIRE(wcscmp(L"Fo", unique_hlocal_string_range2.get()) == 0);
auto unique_hlocal_string_range3 = wil::make_hlocal_string(nullptr, 0);
REQUIRE(wcscmp(L"", unique_hlocal_string_range3.get()) == 0);
auto unique_hlocal_ansistring_te1 = wil::make_hlocal_ansistring("Foo");
REQUIRE(strcmp("Foo", unique_hlocal_ansistring_te1.get()) == 0);
auto unique_hlocal_ansistring_te2 = wil::make_hlocal_ansistring("");
REQUIRE(strcmp("", unique_hlocal_ansistring_te2.get()) == 0);
auto unique_hlocal_ansistring_range1 = wil::make_hlocal_ansistring("Foo", 2);
REQUIRE(strcmp("Fo", unique_hlocal_ansistring_range1.get()) == 0);
auto unique_hlocal_ansistring_range2 = wil::make_hlocal_ansistring(nullptr, 2);
unique_hlocal_ansistring_range2.get()[0] = L'F';
unique_hlocal_ansistring_range2.get()[1] = L'o';
REQUIRE(strcmp("Fo", unique_hlocal_ansistring_range2.get()) == 0);
auto unique_hlocal_ansistring_range3 = wil::make_hlocal_ansistring(nullptr, 0);
REQUIRE(strcmp("", unique_hlocal_ansistring_range3.get()) == 0);
#endif
{
auto verify = MakeSecureDeleterMallocSpy();
REQUIRE_SUCCEEDED(::CoRegisterMallocSpy(verify.Get()));
auto removeSpy = wil::scope_exit([&] { ::CoRevokeMallocSpy(); });
auto unique_hlocal_string_secure_failfast1 = wil::make_hlocal_string_secure_failfast(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_hlocal_string_secure_failfast1.get()) == 0);
auto unique_hlocal_string_secure_nothrow1 = wil::make_hlocal_string_secure_nothrow(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_hlocal_string_secure_nothrow1.get()) == 0);
auto unique_hlocal_string_secure_nothrow2 = wil::make_hlocal_string_secure_nothrow(L"");
REQUIRE(wcscmp(L"", unique_hlocal_string_secure_nothrow2.get()) == 0);
#ifdef WIL_ENABLE_EXCEPTIONS
auto unique_hlocal_string_secure_te1 = wil::make_hlocal_string_secure(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_hlocal_string_secure_te1.get()) == 0);
auto unique_hlocal_string_secure_te2 = wil::make_hlocal_string_secure(L"");
REQUIRE(wcscmp(L"", unique_hlocal_string_secure_te2.get()) == 0);
#endif
}
auto unique_process_heap_string_failfast1 = wil::make_process_heap_string_failfast(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_process_heap_string_failfast1.get()) == 0);
auto unique_process_heap_string_nothrow1 = wil::make_process_heap_string_nothrow(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_process_heap_string_nothrow1.get()) == 0);
auto unique_process_heap_string_nothrow2 = wil::make_process_heap_string_nothrow(L"");
REQUIRE(wcscmp(L"", unique_process_heap_string_nothrow2.get()) == 0);
#ifdef WIL_ENABLE_EXCEPTIONS
auto unique_process_heap_string_te1 = wil::make_process_heap_string(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_process_heap_string_te1.get()) == 0);
auto unique_process_heap_string_te2 = wil::make_process_heap_string(L"");
REQUIRE(wcscmp(L"", unique_process_heap_string_te2.get()) == 0);
auto unique_process_heap_string_range1 = wil::make_process_heap_string(L"Foo", 2);
REQUIRE(wcscmp(L"Fo", unique_process_heap_string_range1.get()) == 0);
auto unique_process_heap_string_range2 = wil::make_process_heap_string(nullptr, 2);
unique_process_heap_string_range2.get()[0] = L'F';
unique_process_heap_string_range2.get()[1] = L'o';
REQUIRE(wcscmp(L"Fo", unique_process_heap_string_range2.get()) == 0);
auto unique_process_heap_string_range3 = wil::make_process_heap_string(nullptr, 0);
REQUIRE(wcscmp(L"", unique_process_heap_string_range3.get()) == 0);
#endif
#endif /* WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) */
auto unique_bstr_failfast1 = wil::make_bstr_failfast(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_bstr_failfast1.get()) == 0);
auto unique_bstr_nothrow1 = wil::make_bstr_nothrow(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_bstr_nothrow1.get()) == 0);
auto unique_bstr_nothrow2 = wil::make_bstr_nothrow(L"");
REQUIRE(wcscmp(L"", unique_bstr_nothrow2.get()) == 0);
#ifdef WIL_ENABLE_EXCEPTIONS
auto unique_bstr_te1 = wil::make_bstr(L"Foo");
REQUIRE(wcscmp(L"Foo", unique_bstr_te1.get()) == 0);
auto unique_bstr_te2 = wil::make_bstr(L"");
REQUIRE(wcscmp(L"", unique_bstr_te2.get()) == 0);
auto testString = wil::make_cotaskmem_string(L"Foo");
{
auto cleanupMemory = wil::SecureZeroMemory_scope_exit(testString.get());
}
REQUIRE(0 == testString.get()[0]);
auto testString2 = wil::make_cotaskmem_string(L"Bar");
{
auto cleanupMemory = wil::SecureZeroMemory_scope_exit(testString2.get(), wcslen(testString2.get()) * sizeof(testString2.get()[0]));
}
REQUIRE(0 == testString2.get()[0]);
#endif
}
TEST_CASE("WindowsInternalTests::Locking", "[resource]")
{
{
SRWLOCK rwlock = SRWLOCK_INIT;
{
auto lock = wil::AcquireSRWLockExclusive(&rwlock);
REQUIRE(lock);
auto lockRecursive = wil::TryAcquireSRWLockExclusive(&rwlock);
REQUIRE_FALSE(lockRecursive);
auto lockRecursiveShared = wil::TryAcquireSRWLockShared(&rwlock);
REQUIRE_FALSE(lockRecursiveShared);
}
{
auto lock = wil::AcquireSRWLockShared(&rwlock);
REQUIRE(lock);
auto lockRecursive = wil::TryAcquireSRWLockShared(&rwlock);
REQUIRE(lockRecursive);
auto lockRecursiveExclusive = wil::TryAcquireSRWLockExclusive(&rwlock);
REQUIRE_FALSE(lockRecursiveExclusive);
}
{
auto lock = wil::TryAcquireSRWLockExclusive(&rwlock);
REQUIRE(lock);
}
{
auto lock = wil::TryAcquireSRWLockShared(&rwlock);
REQUIRE(lock);
}
}
{
wil::srwlock rwlock;
{
auto lock = rwlock.lock_exclusive();
REQUIRE(lock);
auto lockRecursive = rwlock.try_lock_exclusive();
REQUIRE_FALSE(lockRecursive);
auto lockRecursiveShared = rwlock.try_lock_shared();
REQUIRE_FALSE(lockRecursiveShared);
}
{
auto lock = rwlock.lock_shared();
REQUIRE(lock);
auto lockRecursive = rwlock.try_lock_shared();
REQUIRE(lockRecursive);
auto lockRecursiveExclusive = rwlock.try_lock_exclusive();
REQUIRE_FALSE(lockRecursiveExclusive);
}
{
auto lock = rwlock.try_lock_exclusive();
REQUIRE(lock);
}
{
auto lock = rwlock.try_lock_shared();
REQUIRE(lock);
}
}
{
CRITICAL_SECTION cs;
::InitializeCriticalSectionEx(&cs, 0, 0);
auto lock = wil::EnterCriticalSection(&cs);
REQUIRE(lock);
auto tryLock = wil::TryEnterCriticalSection(&cs);
REQUIRE(tryLock);
}
{
wil::critical_section cs;
auto lock = cs.lock();
REQUIRE(lock);
auto tryLock = cs.try_lock();
REQUIRE(tryLock);
}
}
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
TEST_CASE("WindowsInternalTests::GDIWrappers", "[resource]")
{
{
auto dc = wil::GetDC(::GetDesktopWindow());
}
{
auto dc = wil::GetWindowDC(::GetDesktopWindow());
}
{
auto dc = wil::BeginPaint(::GetDesktopWindow());
wil::unique_hbrush brush(::CreateSolidBrush(0xffffff));
auto select = wil::SelectObject(dc.get(), brush.get());
}
}
#endif /* WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) */
void TestOutHandle(_Out_ HANDLE *pHandle)
{
*pHandle = nullptr;
}
void TestOutAlloc(_Out_ int **ppInt)
{
*ppInt = new int(5);
}
void TestCoTask(_Outptr_result_buffer_(*charCount) PWSTR *ppsz, size_t *charCount)
{
*charCount = 0;
PWSTR psz = static_cast<PWSTR>(::CoTaskMemAlloc(10));
if (psz != nullptr)
{
*charCount = 5;
*psz = L'\0';
}
*ppsz = psz;
}
void TestVoid(_Out_ void **ppv)
{
*ppv = nullptr;
}
void TestByte(_Out_ BYTE **ppByte)
{
*ppByte = nullptr;
}
struct my_deleter
{
template <typename T>
void operator()(T* p) const
{
delete p;
}
};
TEST_CASE("WindowsInternalTests::WistdTests", "[resource][wistd]")
{
wil::unique_handle spHandle;
TestOutHandle(wil::out_param(spHandle));
wistd::unique_ptr<int> spInt;
TestOutAlloc(wil::out_param(spInt));
std::unique_ptr<int> spIntStd;
TestOutAlloc(wil::out_param(spIntStd));
wil::unique_cotaskmem_string spsz0;
size_t count;
TestCoTask(wil::out_param(spsz0), &count);
std::unique_ptr<wchar_t[], wil::cotaskmem_deleter> spsz1;
TestCoTask(wil::out_param(spsz1), &count);
wistd::unique_ptr<wchar_t[], wil::cotaskmem_deleter> spsz2;
TestCoTask(wil::out_param(spsz2), &count);
wil::unique_cotaskmem_ptr<wchar_t[]> spsz3;
TestCoTask(wil::out_param(spsz3), &count);
wil::unique_cotaskmem_ptr<void> spv;
TestVoid(wil::out_param(spv));
std::unique_ptr<int> spIntStd2;
TestByte(wil::out_param_ptr<BYTE**>(spIntStd2));
struct Nothing
{
int n;
Nothing(int param) : n(param) {}
void Method() {}
};
auto spff = wil::make_unique_failfast<Nothing>(3);
auto sp = wil::make_unique_nothrow<Nothing>(3);
REQUIRE(sp);
#ifdef WIL_ENABLE_EXCEPTIONS
THROW_IF_NULL_ALLOC(sp.get());
THROW_IF_NULL_ALLOC(sp);
#endif
sp->Method();
decltype(sp) sp2;
sp2 = wistd::move(sp);
sp2.get();
wistd::unique_ptr<int> spConstruct;
wistd::unique_ptr<int> spConstruct2 = nullptr;
spConstruct = nullptr;
wistd::unique_ptr<int> spConstruct3(new int(3));
my_deleter d;
wistd::unique_ptr<int, my_deleter> spConstruct4(new int(4), d);
wistd::unique_ptr<int, my_deleter> spConstruct5(new int(5), my_deleter());
wistd::unique_ptr<int> spConstruct6(wistd::unique_ptr<int>(new int(6)));
spConstruct = std::move(spConstruct2);
spConstruct.swap(spConstruct2);
REQUIRE(*spConstruct4 == 4);
spConstruct4.get();
if (spConstruct4)
{
}
spConstruct.reset();
spConstruct.release();
auto spTooBig = wil::make_unique_nothrow<int[]>(static_cast<size_t>(-1));
REQUIRE_FALSE(spTooBig);
// REQUIRE_FAILFAST_UNSPECIFIED([]{ auto spTooBigFF = wil::make_unique_failfast<int[]>(static_cast<size_t>(-1)); });
object_counter_state state;
count = 0;
{
object_counter c{ state };
REQUIRE(state.instance_count() == 1);
wistd::function<void(int)> fn = [&count, c](int param)
{
count += param;
};
REQUIRE(state.instance_count() == 2);
fn(3);
REQUIRE(count == 3);
}
REQUIRE(state.instance_count() == 0);
count = 0;
{
wistd::function<void(int)> fn;
{
object_counter c{ state };
REQUIRE(state.instance_count() == 1);
fn = [&count, c](int param)
{
count += param;
};
REQUIRE(state.instance_count() == 2);
}
REQUIRE(state.instance_count() == 1);
fn(3);
REQUIRE(count == 3);
}
{
// Size Check -- the current implementation allows for 10 pointers to be passed through the lambda
int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12;
(void)a11; (void)a12;
wistd::function<void()> fn = [&a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9, &a10]()
{
(void)a1; (void)a2; (void)a3; (void)a4; (void)a5; (void)a6; (void)a7; (void)a8; (void)a9; (void)a10;
};
auto fnCopy = fn;
// Uncomment to double-check static assert. Reports:
// "The sizeof(wistd::function) has grown too large for the reserved buffer (10 pointers). Refactor to reduce size of the capture."
// wistd::function<void()> fn2 = [&a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9, &a10, &a11]()
// {
// a1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11;
// };
}
}
template <typename test_t, typename lambda_t>
void NullptrRaiiTests(lambda_t const &fnCreate)
{
// nullptr_t construct
test_t var1 = nullptr; // implicit
REQUIRE_FALSE(var1);
test_t var2(nullptr); // explicit
REQUIRE_FALSE(var2);
// nullptr_t assingment
var1.reset(fnCreate());
REQUIRE(var1);
var1 = nullptr;
REQUIRE_FALSE(var1);
// nullptr_t reset
var1.reset(fnCreate());
REQUIRE(var1);
var1.reset(nullptr);
REQUIRE_FALSE(var1);
}
template <typename test_t, typename lambda_t>
void ReleaseRaiiTests(lambda_t const &fnCreate)
{
test_t var1(fnCreate());
REQUIRE(var1);
auto ptr = var1.release();
REQUIRE_FALSE(var1);
REQUIRE(ptr != test_t::policy::invalid_value());
REQUIRE(var1.get() == test_t::policy::invalid_value());
var1.reset(ptr);
}
template <typename test_t, typename lambda_t>
void GetRaiiTests(lambda_t const &fnCreate)
{
test_t var1;
REQUIRE_FALSE(var1);
REQUIRE(var1.get() == test_t::policy::invalid_value());
var1.reset(fnCreate());
REQUIRE(var1);
REQUIRE(var1.get() != test_t::policy::invalid_value());
}
template <typename test_t, typename lambda_t>
void SharedRaiiTests(lambda_t const &fnCreate)
{
// copy construction
test_t var1(fnCreate());
REQUIRE(var1);
test_t var2 = var1; // implicit
REQUIRE(var1);
REQUIRE(var2);
test_t var3(var1); // explicit
// copy assignment
test_t var4(fnCreate());
test_t var5;
var5 = var4;
REQUIRE(var5);
REQUIRE(var4);
// r-value construction from unique_ptr
typename test_t::unique_t unique1(fnCreate());
test_t var7(std::move(unique1)); // explicit
REQUIRE(var7);
REQUIRE_FALSE(unique1);
typename test_t::unique_t unique2(fnCreate());
test_t var8 = std::move(unique2); // implicit
REQUIRE(var8);
REQUIRE_FALSE(unique2);
// r-value assignment from unique_ptr
var8.reset();
REQUIRE_FALSE(var8);
unique2.reset(fnCreate());
var8 = std::move(unique2);
REQUIRE(var8);
REQUIRE_FALSE(unique2);
// use_count()
REQUIRE(var8.use_count() == 1);
auto var9 = var8;
REQUIRE(var8.use_count() == 2);
}
template <typename test_t, typename lambda_t>
void WeakRaiiTests(lambda_t const &fnCreate)
{
typedef typename test_t::shared_t shared_type;
// base constructor
test_t weak1;
// construct from shared
shared_type shared1(fnCreate());
test_t weak2 = shared1; // implicit
test_t weak3(shared1); // explicit
// construct from weak
test_t weak4 = weak2; // implicit
test_t weak5(weak2); // explicit
// assign from weak
weak2 = weak5;
// assign from shared
weak2 = shared1;
// reset
weak2.reset();
REQUIRE_FALSE(weak2.lock());
// swap
test_t swap1 = shared1;
test_t swap2;
REQUIRE(swap1.lock());
REQUIRE_FALSE(swap2.lock());
swap1.swap(swap2);
REQUIRE_FALSE(swap1.lock());
REQUIRE(swap2.lock());
// expired
REQUIRE_FALSE(swap2.expired());
shared1.reset();
REQUIRE(swap2.expired());
// lock
shared1.reset(fnCreate());
weak1 = shared1;
auto shared2 = weak1.lock();
REQUIRE(shared2);
shared2.reset();
REQUIRE(weak1.lock());
shared1.reset();
shared2 = weak1.lock();
REQUIRE_FALSE(shared2);
}
template <typename test_t, typename lambda_t>
void AddressRaiiTests(lambda_t const &fnCreate)
{
test_t var1(fnCreate());
REQUIRE(var1);
&var1;
REQUIRE_FALSE(var1); // the address operator does an auto-release
*(&var1) = fnCreate();
REQUIRE(var1);
var1.put();
REQUIRE_FALSE(var1); // verify that 'put()' does an auto-release
*var1.put() = fnCreate();
REQUIRE(var1);
REQUIRE(var1.addressof() != nullptr);
REQUIRE(var1); // verify that 'addressof()' does not auto-release
}
template <typename test_t, typename lambda_t>
void BasicRaiiTests(lambda_t const &fnCreate)
{
auto invalidHandle = test_t::policy::invalid_value();
// no-constructor construction
test_t var1;
REQUIRE_FALSE(var1);
// construct from a given resource
test_t var2(fnCreate()); // r-value
REQUIRE(var2);
test_t var3(invalidHandle); // l-value
REQUIRE_FALSE(var3);
// r-value construct from the same type
test_t var4(std::move(var2)); // explicit
REQUIRE(var4);
REQUIRE_FALSE(var2);
test_t varMove(fnCreate());
test_t var4implicit = std::move(varMove); // implicit
REQUIRE(var4implicit);
// move assignment
var2 = std::move(var4);
REQUIRE(var2);
REQUIRE_FALSE(var4);
// swap
var2.swap(var4);
REQUIRE(var4);
REQUIRE_FALSE(var2);
// explicit bool cast
REQUIRE(static_cast<bool>(var4));
REQUIRE_FALSE(static_cast<bool>(var2));
// reset
var4.reset();
REQUIRE_FALSE(var4);
var4.reset(fnCreate()); // r-value
REQUIRE(var4);
var4.reset(invalidHandle); // l-value
REQUIRE_FALSE(var4);
}
template <typename test_t>
void EventRaiiTests()
{
test_t var1;
var1.create(wil::EventOptions::ManualReset);
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
// SetEvent/ResetEvent
var1.SetEvent();
REQUIRE(wil::event_is_signaled(var1.get()));
var1.ResetEvent();
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
// SetEvent/ResetEvent scope_exit
{
auto exit = var1.SetEvent_scope_exit();
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
}
REQUIRE(wil::event_is_signaled(var1.get()));
{
auto exit = var1.ResetEvent_scope_exit();
REQUIRE(wil::event_is_signaled(var1.get()));
}
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
// is_signaled
REQUIRE_FALSE(var1.is_signaled());
// wait
REQUIRE_FALSE(var1.wait(50));
// try_create
bool exists = false;
REQUIRE(var1.try_create(wil::EventOptions::ManualReset, L"wiltestevent", nullptr, &exists));
REQUIRE_FALSE(exists);
test_t var2;
REQUIRE(var2.try_create(wil::EventOptions::ManualReset, L"wiltestevent", nullptr, &exists));
REQUIRE(exists);
test_t var3;
REQUIRE_FALSE(var3.try_create(wil::EventOptions::ManualReset, L"\\illegal\\chars\\too\\\\many\\\\namespaces", nullptr, &exists));
REQUIRE(::GetLastError() != ERROR_SUCCESS);
// try_open
test_t var4;
REQUIRE_FALSE(var4.try_open(L"\\illegal\\chars\\too\\\\many\\\\namespaces"));
REQUIRE(::GetLastError() != ERROR_SUCCESS);
REQUIRE(var4.try_open(L"wiltestevent"));
}
void EventTests()
{
static_assert(sizeof(wil::unique_event_nothrow) == sizeof(HANDLE), "event_t should be sizeof(HANDLE) to allow for raw array utilization");
auto fnCreate = []() { return CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, 0); };
BasicRaiiTests<wil::unique_event_nothrow>(fnCreate);
NullptrRaiiTests<wil::unique_event_nothrow>(fnCreate);
GetRaiiTests<wil::unique_event_nothrow>(fnCreate);
ReleaseRaiiTests<wil::unique_event_nothrow>(fnCreate);
AddressRaiiTests<wil::unique_event_nothrow>(fnCreate);
EventRaiiTests<wil::unique_event_nothrow>();
BasicRaiiTests<wil::unique_event_failfast>(fnCreate);
NullptrRaiiTests<wil::unique_event_failfast>(fnCreate);
GetRaiiTests<wil::unique_event_failfast>(fnCreate);
ReleaseRaiiTests<wil::unique_event_failfast>(fnCreate);
AddressRaiiTests<wil::unique_event_failfast>(fnCreate);
EventRaiiTests<wil::unique_event_failfast>();
wil::unique_event_nothrow event4;
REQUIRE(S_OK == event4.create(wil::EventOptions::ManualReset));
REQUIRE(FAILED(event4.create(wil::EventOptions::ManualReset, L"\\illegal\\chars\\too\\\\many\\\\namespaces")));
#ifdef WIL_ENABLE_EXCEPTIONS
static_assert(sizeof(wil::unique_event) == sizeof(HANDLE), "event_t should be sizeof(HANDLE) to allow for raw array utilization");
BasicRaiiTests<wil::unique_event>(fnCreate);
NullptrRaiiTests<wil::unique_event>(fnCreate);
GetRaiiTests<wil::unique_event>(fnCreate);
ReleaseRaiiTests<wil::unique_event>(fnCreate);
AddressRaiiTests<wil::unique_event>(fnCreate);
EventRaiiTests<wil::unique_event>();
BasicRaiiTests<wil::shared_event>(fnCreate);
NullptrRaiiTests<wil::shared_event>(fnCreate);
GetRaiiTests<wil::shared_event>(fnCreate);
AddressRaiiTests<wil::shared_event>(fnCreate);
SharedRaiiTests<wil::shared_event>(fnCreate);
EventRaiiTests<wil::shared_event>();
WeakRaiiTests<wil::weak_event>(fnCreate);
// explicitly disabled
// wil::unique_event_nothrow event1(wil::EventOptions::ManualReset);
wil::unique_event event2(wil::EventOptions::ManualReset);
wil::shared_event event3(wil::EventOptions::ManualReset);
event2.create(wil::EventOptions::ManualReset);
REQUIRE(event2);
event3.create(wil::EventOptions::ManualReset);
REQUIRE(event3);
REQUIRE_THROWS(event2.create(wil::EventOptions::ManualReset, L"\\illegal\\chars\\too\\\\many\\\\namespaces") );
REQUIRE_THROWS(event3.create(wil::EventOptions::ManualReset, L"\\illegal\\chars\\too\\\\many\\\\namespaces") );
wil::unique_event var1(wil::EventOptions::ManualReset);
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
{
auto autoset = wil::SetEvent_scope_exit(var1.get());
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
REQUIRE(autoset.get() == var1.get());
// &autoset; // verified disabled
// autoset.addressof(); // verified disabled
}
REQUIRE(wil::event_is_signaled(var1.get()));
{
auto autoreset = wil::ResetEvent_scope_exit(var1.get());
REQUIRE(wil::event_is_signaled(var1.get()));
autoreset.reset();
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
}
{
auto autoset = wil::SetEvent_scope_exit(var1.get());
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
autoset.release();
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
}
REQUIRE_FALSE(wil::event_is_signaled(var1.get()));
#endif
}
typedef wil::unique_struct<PROPVARIANT, decltype(&::PropVariantClear), ::PropVariantClear> unique_prop_variant_no_init;
void SetPropVariantValue(_In_ int intVal, _Out_ PROPVARIANT* ppropvar)
{
ppropvar->intVal = intVal;
ppropvar->vt = VT_INT;
}
template<typename T>
void TestUniquePropVariant()
{
{
wil::unique_prop_variant spPropVariant;
REQUIRE(spPropVariant.vt == VT_EMPTY);
}
// constructor test
{
PROPVARIANT propVariant;
SetPropVariantValue(12, &propVariant);
T spPropVariant(propVariant);
REQUIRE(((spPropVariant.intVal == 12) && (spPropVariant.vt == VT_INT)));
T spPropVariant2(wistd::move(propVariant));
REQUIRE(((spPropVariant2.intVal == 12) && (spPropVariant2.vt == VT_INT)));
//spPropVariant = propVariant; // deleted function
//spPropVariant = wistd::move(propVariant); // deleted function
//spPropVariant.swap(propVariant); //deleted function
}
// move constructor
{
T spPropVariant;
SetPropVariantValue(12, &spPropVariant);
REQUIRE(((spPropVariant.intVal == 12) && (spPropVariant.vt == VT_INT)));
T spPropVariant2(wistd::move(spPropVariant));
REQUIRE(spPropVariant.vt == VT_EMPTY);
REQUIRE(((spPropVariant2.intVal == 12) && (spPropVariant2.vt == VT_INT)));
//T spPropVariant3(spPropVariant); // deleted function
//spPropVariant2 = spPropVariant; // deleted function
}
// move operator
{
T spPropVariant;
SetPropVariantValue(12, &spPropVariant);
T spPropVariant2 = wistd::move(spPropVariant);
REQUIRE(spPropVariant.vt == VT_EMPTY);
REQUIRE(((spPropVariant2.intVal == 12) && (spPropVariant2.vt == VT_INT)));
}
// reset
{
PROPVARIANT propVariant;
SetPropVariantValue(22, &propVariant);
T spPropVariant;
SetPropVariantValue(12, &spPropVariant);
T spPropVariant2;
//spPropVariant2.reset(spPropVariant); // deleted function
spPropVariant.reset(propVariant);
REQUIRE(spPropVariant.intVal == 22);
REQUIRE(propVariant.intVal == 22);
spPropVariant.reset();
REQUIRE(spPropVariant.vt == VT_EMPTY);
}
// swap
{
T spPropVariant;
SetPropVariantValue(12, &spPropVariant);
T spPropVariant2;
SetPropVariantValue(22, &spPropVariant2);
spPropVariant.swap(spPropVariant2);
REQUIRE(spPropVariant.intVal == 22);
REQUIRE(spPropVariant2.intVal == 12);
}
// release, addressof, reset_and_addressof
{
T spPropVariant;
SetPropVariantValue(12, &spPropVariant);
[](PROPVARIANT* propVariant)
{
REQUIRE(propVariant->vt == VT_EMPTY);
}(spPropVariant.reset_and_addressof());
SetPropVariantValue(12, &spPropVariant);
PROPVARIANT* pPropVariant = spPropVariant.addressof();
REQUIRE(pPropVariant->intVal == 12);
REQUIRE(spPropVariant.intVal == 12);
PROPVARIANT propVariant = spPropVariant.release();
REQUIRE(propVariant.intVal == 12);
REQUIRE(spPropVariant.vt == VT_EMPTY);
}
}
TEST_CASE("WindowsInternalTests::ResourceTemplateTests", "[resource]")
{
EventTests();
TestUniquePropVariant<wil::unique_prop_variant>();
TestUniquePropVariant<unique_prop_variant_no_init>();
}
inline unsigned long long ToInt64(const FILETIME &ft)
{
return (static_cast<unsigned long long>(ft.dwHighDateTime) << 32) + ft.dwLowDateTime;
}
inline FILETIME FromInt64(unsigned long long i64)
{
FILETIME ft = { static_cast<DWORD>(i64), static_cast<DWORD>(i64 >> 32) };
return ft;
}
TEST_CASE("WindowsInternalTests::Win32HelperTests", "[win32_helpers]")
{
auto systemTime = wil::filetime::get_system_time();
REQUIRE(ToInt64(systemTime) == wil::filetime::to_int64(systemTime));
auto systemTime64 = wil::filetime::to_int64(systemTime);
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
auto ft1 = FromInt64(systemTime64);
auto ft2 = wil::filetime::from_int64(systemTime64);
REQUIRE(CompareFileTime(&ft1, &ft2) == 0);
#endif /* WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) */
REQUIRE(systemTime64 == wil::filetime::to_int64(wil::filetime::from_int64(systemTime64)));
REQUIRE((systemTime64 + wil::filetime_duration::one_hour) == (systemTime64 + (wil::filetime_duration::one_minute * 60)));
auto systemTimePlusOneHour = wil::filetime::add(systemTime, wil::filetime_duration::one_hour);
auto systemTimePlusOneHour64 = wil::filetime::to_int64(systemTimePlusOneHour);
REQUIRE(systemTimePlusOneHour64 == (systemTime64 + wil::filetime_duration::one_hour));
}
TEST_CASE("WindowsInternalTests::InitOnceNonTests")
{
bool called = false;
bool winner = false;
INIT_ONCE init{};
REQUIRE_FALSE(wil::init_once_initialized(init));
// Call, but fail. Should transport the HRESULT back, but mark us as not the winner
called = false;
winner = false;
REQUIRE(E_FAIL == wil::init_once_nothrow(init, [&] { called = true; return E_FAIL; }, &winner));
REQUIRE_FALSE(wil::init_once_initialized(init));
REQUIRE(called);
REQUIRE_FALSE(winner);
// Call, succeed. Should mark us as the winner.
called = false;
winner = false;
REQUIRE_SUCCEEDED(wil::init_once_nothrow(init, [&] { called = true; return S_OK; }, &winner));
REQUIRE(wil::init_once_initialized(init));
REQUIRE(called);
REQUIRE(winner);
// Call again. Should not actually be invoked and should not be the winner
called = false;
winner = false;
REQUIRE_SUCCEEDED(wil::init_once_nothrow(init, [&] { called = false; return S_OK; }, &winner));
REQUIRE(wil::init_once_initialized(init));
REQUIRE_FALSE(called);
REQUIRE_FALSE(winner);
// Call again. Still not invoked, but we don't care if we're the winner
called = false;
REQUIRE_SUCCEEDED(wil::init_once_nothrow(init, [&] { called = false; return S_OK; }));
REQUIRE(wil::init_once_initialized(init));
REQUIRE_FALSE(called);
#ifdef WIL_ENABLE_EXCEPTIONS
called = false;
winner = false;
init = {};
// A thrown exception leaves the object un-initialized
REQUIRE_THROWS_AS(winner = wil::init_once(init, [&] { called = true; throw wil::ResultException(E_FAIL); }), wil::ResultException);
REQUIRE_FALSE(wil::init_once_initialized(init));
REQUIRE(called);
REQUIRE_FALSE(winner);
// Success!
called = false;
winner = false;
REQUIRE_NOTHROW(winner = wil::init_once(init, [&] { called = true; }));
REQUIRE(wil::init_once_initialized(init));
REQUIRE(called);
REQUIRE(winner);
// No-op success!
called = false;
winner = false;
REQUIRE_NOTHROW(winner = wil::init_once(init, [&] { called = true; }));
REQUIRE(wil::init_once_initialized(init));
REQUIRE_FALSE(called);
REQUIRE_FALSE(winner);
#endif // WIL_ENABLE_EXCEPTIONS
}
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
TEST_CASE("WindowsInternalTests::TestUniquePointerCases", "[resource][unique_any]")
{
// wil::unique_process_heap_ptr tests
{
wil::unique_process_heap_ptr<void> empty; // null case
}
{
wil::unique_process_heap_ptr<void> heapMemory(::HeapAlloc(::GetProcessHeap(), 0, 100));
REQUIRE(static_cast<bool>(heapMemory));
}
// wil::unique_cotaskmem_ptr tests
{
wil::unique_cotaskmem_ptr<void> empty; // null case
}
{
wil::unique_cotaskmem_ptr<void> cotaskmemMemory(CoTaskMemAlloc(100));
REQUIRE(static_cast<bool>(cotaskmemMemory));
}
{
auto cotaskmemMemory = wil::make_unique_cotaskmem_nothrow<DWORD>(42);
REQUIRE(static_cast<bool>(cotaskmemMemory));
REQUIRE(*cotaskmemMemory == static_cast<DWORD>(42));
}
{
struct S { size_t s; S() : s(42) {} };
auto cotaskmemMemory = wil::make_unique_cotaskmem_nothrow<S>();
REQUIRE(static_cast<bool>(cotaskmemMemory));
REQUIRE(cotaskmemMemory->s == static_cast<size_t>(42));
}
{
auto cotaskmemArrayMemory = wil::make_unique_cotaskmem_nothrow<BYTE[]>(12);
REQUIRE(static_cast<bool>(cotaskmemArrayMemory));
}
{
struct S { size_t s; S() : s(42) {} };
const size_t size = 12;
auto cotaskmemArrayMemory = wil::make_unique_cotaskmem_nothrow<S[]>(size);
REQUIRE(static_cast<bool>(cotaskmemArrayMemory));
bool verified = true;
for (auto& elem : wil::make_range(cotaskmemArrayMemory.get(), size)) if (elem.s != 42) verified = false;
REQUIRE(verified);
}
// wil::unique_cotaskmem_secure_ptr tests
{
wil::unique_cotaskmem_secure_ptr<void> empty; // null case
}
{
wil::unique_cotaskmem_secure_ptr<void> cotaskmemMemory(CoTaskMemAlloc(100));
REQUIRE(static_cast<bool>(cotaskmemMemory));
}
{
auto cotaskmemMemory = wil::make_unique_cotaskmem_secure_nothrow<DWORD>(42);
REQUIRE(static_cast<bool>(cotaskmemMemory));
REQUIRE(*cotaskmemMemory == static_cast<DWORD>(42));
}
{
struct S { size_t s; S() : s(42) {} };
auto cotaskmemMemory = wil::make_unique_cotaskmem_secure_nothrow<S>();
REQUIRE(static_cast<bool>(cotaskmemMemory));
REQUIRE(cotaskmemMemory->s == static_cast<size_t>(42));
}
{
auto cotaskmemArrayMemory = wil::make_unique_cotaskmem_secure_nothrow<BYTE[]>(12);
REQUIRE(static_cast<bool>(cotaskmemArrayMemory));
}
{
struct S { size_t s; S() : s(42) {} };
const size_t size = 12;
auto cotaskmemArrayMemory = wil::make_unique_cotaskmem_secure_nothrow<S[]>(size);
REQUIRE(static_cast<bool>(cotaskmemArrayMemory));
bool verified = true;
for (auto& elem : wil::make_range(cotaskmemArrayMemory.get(), size)) if (elem.s != 42) verified = false;
REQUIRE(verified);
}
// wil::unique_hlocal_ptr tests
{
wil::unique_hlocal_ptr<void> empty; // null case
}
{
wil::unique_hlocal_ptr<void> localMemory(LocalAlloc(LPTR, 100));
REQUIRE(static_cast<bool>(localMemory));
}
{
auto localMemory = wil::make_unique_hlocal_nothrow<DWORD>(42);
REQUIRE(static_cast<bool>(localMemory));
REQUIRE(*localMemory == static_cast<DWORD>(42));
}
{
struct S { size_t s; S() : s(42) {} };
auto localMemory = wil::make_unique_hlocal_nothrow<S>();
REQUIRE(static_cast<bool>(localMemory));
REQUIRE(localMemory->s == static_cast<size_t>(42));
}
{
auto localArrayMemory = wil::make_unique_hlocal_nothrow<BYTE[]>(12);
REQUIRE(static_cast<bool>(localArrayMemory));
}
{
struct S { size_t s; S() : s(42) {} };
const size_t size = 12;
auto localArrayMemory = wil::make_unique_hlocal_nothrow<S[]>(size);
REQUIRE(static_cast<bool>(localArrayMemory));
bool verified = true;
for (auto& elem : wil::make_range(localArrayMemory.get(), size)) if (elem.s != 42) verified = false;
REQUIRE(verified);
}
// wil::unique_hlocal_secure_ptr tests
{
wil::unique_hlocal_secure_ptr<void> empty; // null case
}
{
wil::unique_hlocal_secure_ptr<void> localMemory(LocalAlloc(LPTR, 100));
REQUIRE(static_cast<bool>(localMemory));
}
{
auto localMemory = wil::make_unique_hlocal_secure_nothrow<DWORD>(42);
REQUIRE(static_cast<bool>(localMemory));
REQUIRE(*localMemory == static_cast<DWORD>(42));
}
{
struct S { size_t s; S() : s(42) {} };
auto localMemory = wil::make_unique_hlocal_secure_nothrow<S>();
REQUIRE(static_cast<bool>(localMemory));
REQUIRE(localMemory->s == static_cast<size_t>(42));
}
{
auto localArrayMemory = wil::make_unique_hlocal_secure_nothrow<BYTE[]>(12);
REQUIRE(static_cast<bool>(localArrayMemory));
}
{
struct S { size_t s; S() : s(42) {} };
const size_t size = 12;
auto localArrayMemory = wil::make_unique_hlocal_secure_nothrow<S[]>(size);
REQUIRE(static_cast<bool>(localArrayMemory));
bool verified = true;
for (auto& elem : wil::make_range(localArrayMemory.get(), size)) if (elem.s != 42) verified = false;
REQUIRE(verified);
}
// wil::unique_hglobal_ptr tests
{
wil::unique_hglobal_ptr<void> empty; // null case
}
{
wil::unique_hglobal_ptr<void> globalMemory(GlobalAlloc(GPTR, 100));
REQUIRE(static_cast<bool>(globalMemory));
}
{
// The following uses are blocked due to a static assert failure
//struct S { ~S() {} };
//auto cotaskmemMemory = wil::make_unique_cotaskmem_nothrow<S>();
//auto cotaskmemArrayMemory = wil::make_unique_cotaskmem_nothrow<S[]>(1);
//auto cotaskmemMemory2 = wil::make_unique_cotaskmem_secure_nothrow<S>();
//auto cotaskmemArrayMemory2 = wil::make_unique_cotaskmem_secure_nothrow<S[]>(1);
//auto localMemory = wil::make_unique_hlocal_nothrow<S>();
//auto localArrayMemory = wil::make_unique_hlocal_nothrow<S[]>(1);
//auto localMemory2 = wil::make_unique_hlocal_secure_nothrow<S>();
//auto localArrayMemory2 = wil::make_unique_hlocal_secure_nothrow<S[]>(1);
}
}
#endif
void GetDWORDArray(_Out_ size_t* count, _Outptr_result_buffer_(*count) DWORD** numbers)
{
const size_t size = 5;
auto ptr = static_cast<DWORD*>(::CoTaskMemAlloc(sizeof(DWORD) * size));
REQUIRE(ptr);
::ZeroMemory(ptr, sizeof(DWORD) * size);
*numbers = ptr;
*count = size;
}
void GetHSTRINGArray(_Out_ ULONG* count, _Outptr_result_buffer_(*count) HSTRING** strings)
{
const size_t size = 5;
auto ptr = static_cast<HSTRING*>(::CoTaskMemAlloc(sizeof(HSTRING) * size));
REQUIRE(ptr);
for (UINT i = 0; i < size; ++i)
{
REQUIRE_SUCCEEDED(WindowsCreateString(L"test", static_cast<UINT32>(wcslen(L"test")), &ptr[i]));
}
*strings = ptr;
*count = static_cast<ULONG>(size);
}
void GetPOINTArray(_Out_ UINT32* count, _Outptr_result_buffer_(*count) POINT** points)
{
const size_t size = 5;
auto ptr = static_cast<POINT*>(::CoTaskMemAlloc(sizeof(POINT) * size));
REQUIRE(ptr);
for (UINT i = 0; i < size; ++i)
{
ptr[i].x = ptr[i].y = i;
}
*points = ptr;
*count = static_cast<UINT32>(size);
}
#ifdef WIL_ENABLE_EXCEPTIONS
void GetHANDLEArray(_Out_ size_t* count, _Outptr_result_buffer_(*count) HANDLE** events)
{
const size_t size = 5;
HANDLE* ptr = reinterpret_cast<HANDLE*>(::CoTaskMemAlloc(sizeof(HANDLE) * size));
for (auto& val : wil::make_range(ptr, size))
{
val = wil::unique_event(wil::EventOptions::ManualReset).release();
}
*events = ptr;
*count = size;
}
#endif
interface __declspec(uuid("EDCA4ADC-DF46-442A-A69D-FDFD8BC37B31")) IFakeObject : public IUnknown
{
STDMETHOD_(void, DoStuff)() = 0;
};
class ArrayTestObject : witest::AllocatedObject,
public Microsoft::WRL::RuntimeClass<Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::RuntimeClassType::ClassicCom>, IFakeObject>
{
public:
HRESULT RuntimeClassInitialize(UINT n) { m_number = n; return S_OK; };
STDMETHOD_(void, DoStuff)() {}
private:
UINT m_number{};
};
void GetUnknownArray(_Out_ size_t* count, _Outptr_result_buffer_(*count) IFakeObject*** objects)
{
const size_t size = 5;
auto ptr = reinterpret_cast<IFakeObject**>(::CoTaskMemAlloc(sizeof(IFakeObject*) * size));
REQUIRE(ptr);
for (UINT i = 0; i < size; ++i)
{
Microsoft::WRL::ComPtr<IFakeObject> obj;
REQUIRE_SUCCEEDED(Microsoft::WRL::MakeAndInitialize<ArrayTestObject>(&obj, i));
ptr[i] = obj.Detach();
}
*objects = ptr;
*count = size;
}
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
TEST_CASE("WindowsInternalTests::TestUniqueArrayCases", "[resource]")
{
// wil::unique_cotaskmem_array_ptr tests
{
wil::unique_cotaskmem_array_ptr<DWORD> values;
GetDWORDArray(values.size_address(), &values);
}
{
wil::unique_cotaskmem_array_ptr<wil::unique_hstring> strings;
GetHSTRINGArray(strings.size_address<ULONG>(), &strings);
for (ULONG i = 0; i < strings.size(); ++i)
{
REQUIRE(WindowsGetStringLen(strings[i]) == wcslen(L"test"));
}
}
{
wil::unique_cotaskmem_array_ptr<POINT> points;
GetPOINTArray(points.size_address<UINT32>(), &points);
for (ULONG i = 0; i < points.size(); ++i)
{
REQUIRE((ULONG)points[i].x == i);
}
}
#ifdef WIL_ENABLE_EXCEPTIONS
{
wil::unique_cotaskmem_array_ptr<wil::unique_event> events;
GetHANDLEArray(events.size_address(), &events);
}
{
wil::unique_cotaskmem_array_ptr<wil::com_ptr<IFakeObject>> objects;
GetUnknownArray(objects.size_address(), &objects);
for (ULONG i = 0; i < objects.size(); ++i)
{
objects[i]->DoStuff();
}
}
#endif
{
wil::unique_cotaskmem_array_ptr<DWORD> values = nullptr;
REQUIRE(!values);
REQUIRE(values.size() == 0);
// move onto self
values = wistd::move(values);
REQUIRE(!values);
// fetch
GetDWORDArray(values.size_address(), &values);
REQUIRE(!!values);
REQUIRE(values.size() > 0);
REQUIRE(!values.empty());
// move onto self
values = wistd::move(values);
REQUIRE(!!values);
decltype(values) values2(wistd::move(values));
REQUIRE(!values);
REQUIRE(!!values2);
REQUIRE(values2.size() > 0);
values = wistd::move(values2);
REQUIRE(!!values);
REQUIRE(!values2);
values = nullptr;
REQUIRE(!values);
GetDWORDArray(values.size_address(), values.put());
REQUIRE(!!values);
values = nullptr;
REQUIRE(!values);
GetDWORDArray(values.size_address(), &values);
REQUIRE(!!values);
auto size = values.size();
auto ptr = values.release();
REQUIRE(!values);
REQUIRE(values.empty());
decltype(values) values3(ptr, size);
REQUIRE(!!values3);
REQUIRE(values3.size() == size);
values3.swap(values);
REQUIRE(!!values);
REQUIRE(!values.empty());
REQUIRE(!values3);
REQUIRE(values3.empty());
REQUIRE(!values.empty());
size_t count = 0;
for (auto it = values.begin(); it != values.end(); ++it)
{
++count;
}
REQUIRE(count == values.size());
count = 0;
for (auto it = values.cbegin(); it != values.cend(); ++it)
{
++count;
}
REQUIRE(count == values.size());
for (size_t index = 0; index < values.size(); index++)
{
auto& val = values[index];
REQUIRE(val == 0);
}
auto& front = values.front();
REQUIRE(front == 0);
auto& back = values.back();
REQUIRE(back == 0);
[](const wil::unique_cotaskmem_array_ptr<DWORD>& cvalues)
{
size_t count = 0;
for (auto it = cvalues.begin(); it != cvalues.end(); ++it)
{
++count;
}
REQUIRE(count == cvalues.size());
for (size_t index = 0; index < cvalues.size(); index++)
{
auto& val = cvalues[index];
REQUIRE(val == 0);
}
auto& front = cvalues.front();
REQUIRE(front == 0);
auto& back = cvalues.back();
REQUIRE(back == 0);
REQUIRE(cvalues.data() != nullptr);
}(values);
auto data1 = values.data();
auto data2 = values.get();
REQUIRE((data1 && (data1 == data2)));
values.reset();
REQUIRE(!values);
REQUIRE(values.empty());
GetDWORDArray(values2.size_address(), &values2);
size = values2.size();
ptr = values2.release();
values.reset(ptr, size);
REQUIRE(!!values);
REQUIRE(!values.empty());
REQUIRE(values2.put() == values2.addressof());
REQUIRE(&values2 == values2.addressof());
}
}
#endif
#ifndef __cplusplus_winrt
TEST_CASE("WindowsInternalTests::VerifyMakeAgileCallback", "[wrl]")
{
using namespace ABI::Windows::Foundation;
class CallbackClient
{
public:
HRESULT On(IMemoryBufferReference*, IInspectable*)
{
return S_OK;
}
};
CallbackClient callbackClient;
#ifdef WIL_ENABLE_EXCEPTIONS
auto cbAgile = wil::MakeAgileCallback<ITypedEventHandler<IMemoryBufferReference*, IInspectable*>>([](IMemoryBufferReference*, IInspectable*) -> HRESULT
{
return S_OK;
});
REQUIRE(wil::is_agile(cbAgile));
auto cbAgileWithMember = wil::MakeAgileCallback<ITypedEventHandler<IMemoryBufferReference*, IInspectable*>>(&callbackClient, &CallbackClient::On);
REQUIRE(wil::is_agile(cbAgileWithMember));
#endif
auto cbAgileNoThrow = wil::MakeAgileCallbackNoThrow<ITypedEventHandler<IMemoryBufferReference*, IInspectable*>>([](IMemoryBufferReference*, IInspectable*) -> HRESULT
{
return S_OK;
});
REQUIRE(wil::is_agile(cbAgileNoThrow));
auto cbAgileWithMemberNoThrow = wil::MakeAgileCallbackNoThrow<ITypedEventHandler<IMemoryBufferReference*, IInspectable*>>(&callbackClient, &CallbackClient::On);
REQUIRE(wil::is_agile(cbAgileWithMemberNoThrow));
}
#endif
TEST_CASE("WindowsInternalTests::Ranges", "[common]")
{
{
int things[10]{};
unsigned int count = 0;
for (auto& m : wil::make_range(things, ARRAYSIZE(things)))
{
++count;
m = 1;
}
REQUIRE(ARRAYSIZE(things) == count);
REQUIRE(1 == things[1]);
}
{
int things[10]{};
unsigned int count = 0;
for (auto m : wil::make_range(things, ARRAYSIZE(things)))
{
++count;
m = 1;
}
REQUIRE(ARRAYSIZE(things) == count);
REQUIRE(0 == things[0]);
}
{
int things[10]{};
unsigned int count = 0;
auto range = wil::make_range(things, ARRAYSIZE(things));
for (auto m : range)
{
(void)m;
++count;
}
REQUIRE(ARRAYSIZE(things) == count);
}
{
int things[10]{};
unsigned int count = 0;
const auto range = wil::make_range(things, ARRAYSIZE(things));
for (auto m : range)
{
(void)m;
++count;
}
REQUIRE(ARRAYSIZE(things) == count);
}
}
TEST_CASE("WindowsInternalTests::HStringTests", "[resource][unique_any]")
{
const wchar_t kittens[] = L"kittens";
{
wchar_t* bufferStorage = nullptr;
wil::unique_hstring_buffer theBuffer;
REQUIRE_SUCCEEDED(::WindowsPreallocateStringBuffer(ARRAYSIZE(kittens), &bufferStorage, &theBuffer));
REQUIRE_SUCCEEDED(StringCchCopyW(bufferStorage, ARRAYSIZE(kittens), kittens));
// Promote sets the promoted-to value but resets theBuffer
wil::unique_hstring promoted;
REQUIRE_SUCCEEDED(wil::make_hstring_from_buffer_nothrow(wistd::move(theBuffer), &promoted));
REQUIRE(static_cast<bool>(promoted));
REQUIRE_FALSE(static_cast<bool>(theBuffer));
}
{
wchar_t* bufferStorage = nullptr;
wil::unique_hstring_buffer theBuffer;
REQUIRE_SUCCEEDED(::WindowsPreallocateStringBuffer(ARRAYSIZE(kittens), &bufferStorage, &theBuffer));
REQUIRE_SUCCEEDED(StringCchCopyW(bufferStorage, ARRAYSIZE(kittens), kittens));
// Failure to promote retains the buffer state
REQUIRE_FAILED(wil::make_hstring_from_buffer_nothrow(wistd::move(theBuffer), nullptr));
REQUIRE(static_cast<bool>(theBuffer));
}
#ifdef WIL_ENABLE_EXCEPTIONS
{
wchar_t* bufferStorage = nullptr;
wil::unique_hstring_buffer theBuffer;
THROW_IF_FAILED(::WindowsPreallocateStringBuffer(ARRAYSIZE(kittens), &bufferStorage, &theBuffer));
THROW_IF_FAILED(StringCchCopyW(bufferStorage, ARRAYSIZE(kittens), kittens));
wil::unique_hstring promoted;
REQUIRE_NOTHROW(promoted = wil::make_hstring_from_buffer(wistd::move(theBuffer)));
REQUIRE(static_cast<bool>(promoted));
REQUIRE_FALSE(static_cast<bool>(theBuffer));
}
#endif
}
struct ThreadPoolWaitTestContext
{
volatile LONG Counter = 0;
wil::unique_event_nothrow Event;
};
static void __stdcall ThreadPoolWaitTestCallback(
_Inout_ PTP_CALLBACK_INSTANCE /*instance*/,
_Inout_opt_ void* context,
_Inout_ PTP_WAIT wait,
_In_ TP_WAIT_RESULT /*waitResult*/)
{
ThreadPoolWaitTestContext& myContext = *reinterpret_cast<ThreadPoolWaitTestContext*>(context);
SetThreadpoolWait(wait, myContext.Event.get(), nullptr);
::InterlockedIncrement(&myContext.Counter);
}
template <typename WaitResourceT>
void ThreadPoolWaitTestHelper(bool requireExactCallbackCount)
{
ThreadPoolWaitTestContext myContext;
REQUIRE_SUCCEEDED(myContext.Event.create());
WaitResourceT wait;
wait.reset(CreateThreadpoolWait(ThreadPoolWaitTestCallback, &myContext, NULL));
REQUIRE(wait);
SetThreadpoolWait(wait.get(), myContext.Event.get(), nullptr);
const int loopCount = 5;
for (int currCallbackCount = 0; currCallbackCount != loopCount; ++currCallbackCount)
{
// Signal event.
myContext.Event.SetEvent();
// Wait until 'myContext.Counter' increments by 1.
for (int itr = 0; itr != 50 && currCallbackCount == myContext.Counter; ++itr)
{
Sleep(10);
}
// Ensure we didn't timeout
REQUIRE(currCallbackCount + 1 == myContext.Counter);
}
// Signal one last event.
myContext.Event.SetEvent();
// Close thread-pool wait.
wait.reset();
myContext.Event.reset();
// Verify counter.
if (requireExactCallbackCount)
{
REQUIRE(loopCount + 1 == myContext.Counter);
}
else
{
REQUIRE((loopCount + 1 == myContext.Counter || loopCount == myContext.Counter));
}
}
TEST_CASE("WindowsInternalTests::ThreadPoolWaitTest", "[resource][unique_threadpool_wait]")
{
ThreadPoolWaitTestHelper<wil::unique_threadpool_wait>(false);
ThreadPoolWaitTestHelper<wil::unique_threadpool_wait_nocancel>(true);
}
struct ThreadPoolWaitWorkContext
{
volatile LONG Counter = 0;
};
static void __stdcall ThreadPoolWaitWorkCallback(
_Inout_ PTP_CALLBACK_INSTANCE /*instance*/,
_Inout_opt_ void* context,
_Inout_ PTP_WORK /*work*/)
{
ThreadPoolWaitWorkContext& myContext = *reinterpret_cast<ThreadPoolWaitWorkContext*>(context);
::InterlockedIncrement(&myContext.Counter);
}
template <typename WaitResourceT>
void ThreadPoolWaitWorkHelper(bool requireExactCallbackCount)
{
ThreadPoolWaitWorkContext myContext;
WaitResourceT work;
work.reset(CreateThreadpoolWork(ThreadPoolWaitWorkCallback, &myContext, NULL));
REQUIRE(work);
const int loopCount = 5;
for (int itr = 0; itr != loopCount; ++itr)
{
SubmitThreadpoolWork(work.get());
}
work.reset();
if (requireExactCallbackCount)
{
REQUIRE(loopCount == myContext.Counter);
}
else
{
REQUIRE(loopCount >= myContext.Counter);
}
}
TEST_CASE("WindowsInternalTests::ThreadPoolWorkTest", "[resource][unique_threadpool_work]")
{
ThreadPoolWaitWorkHelper<wil::unique_threadpool_work>(false);
ThreadPoolWaitWorkHelper<wil::unique_threadpool_work_nocancel>(true);
}
struct ThreadPoolTimerWorkContext
{
volatile LONG Counter = 0;
wil::unique_event_nothrow Event;
};
static void __stdcall ThreadPoolTimerWorkCallback(
_Inout_ PTP_CALLBACK_INSTANCE /*instance*/,
_Inout_opt_ void* context,
_Inout_ PTP_TIMER /*timer*/)
{
ThreadPoolTimerWorkContext& myContext = *reinterpret_cast<ThreadPoolTimerWorkContext*>(context);
myContext.Event.SetEvent();
::InterlockedIncrement(&myContext.Counter);
}
template <typename TimerResourceT, typename DueTimeT, typename SetThreadpoolTimerT>
void ThreadPoolTimerWorkHelper(SetThreadpoolTimerT const &setThreadpoolTimerFn, bool requireExactCallbackCount)
{
ThreadPoolTimerWorkContext myContext;
REQUIRE_SUCCEEDED(myContext.Event.create());
TimerResourceT timer;
timer.reset(CreateThreadpoolTimer(ThreadPoolTimerWorkCallback, &myContext, nullptr));
REQUIRE(timer);
const int loopCount = 5;
for (int currCallbackCount = 0; currCallbackCount != loopCount; ++currCallbackCount)
{
// Schedule timer
myContext.Event.ResetEvent();
const auto allowedWindow = 0;
LONGLONG dueTime = -5 * 10000I64; // 5ms
setThreadpoolTimerFn(timer.get(), reinterpret_cast<DueTimeT *>(&dueTime), 0, allowedWindow);
// Wait until 'myContext.Counter' increments by 1.
REQUIRE(myContext.Event.wait(500));
for (int itr = 0; itr != 50 && currCallbackCount == myContext.Counter; ++itr)
{
Sleep(10);
}
// Ensure we didn't timeout
REQUIRE(currCallbackCount + 1 == myContext.Counter);
}
// Schedule one last timer.
myContext.Event.ResetEvent();
const auto allowedWindow = 0;
LONGLONG dueTime = -5 * 10000I64; // 5ms
setThreadpoolTimerFn(timer.get(), reinterpret_cast<DueTimeT *>(&dueTime), 0, allowedWindow);
if (requireExactCallbackCount)
{
// Wait for the event to be set
REQUIRE(myContext.Event.wait(500));
}
// Close timer.
timer.reset();
myContext.Event.reset();
// Verify counter.
if (requireExactCallbackCount)
{
REQUIRE(loopCount + 1 == myContext.Counter);
}
else
{
REQUIRE((loopCount + 1 == myContext.Counter || loopCount == myContext.Counter));
}
}
TEST_CASE("WindowsInternalTests::ThreadPoolTimerTest", "[resource][unique_threadpool_timer]")
{
static_assert(sizeof(FILETIME) == sizeof(LONGLONG), "FILETIME and LONGLONG must be same size");
ThreadPoolTimerWorkHelper<wil::unique_threadpool_timer, FILETIME>(SetThreadpoolTimer, false);
ThreadPoolTimerWorkHelper<wil::unique_threadpool_timer_nocancel, FILETIME>(SetThreadpoolTimer, true);
}
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
static void __stdcall SlimEventTrollCallback(
_Inout_ PTP_CALLBACK_INSTANCE /*instance*/,
_Inout_opt_ void* context,
_Inout_ PTP_TIMER /*timer*/)
{
auto event = reinterpret_cast<wil::slim_event*>(context);
// Wake up the thread without setting the event.
// Note: This relies on the fact that the 'wil::slim_event' class only has a single member variable.
WakeByAddressAll(event);
}
static void __stdcall SlimEventFriendlyCallback(
_Inout_ PTP_CALLBACK_INSTANCE /*instance*/,
_Inout_opt_ void* context,
_Inout_ PTP_TIMER /*timer*/)
{
auto event = reinterpret_cast<wil::slim_event*>(context);
event->SetEvent();
}
TEST_CASE("WindowsInternalTests::SlimEventTests", "[resource][slim_event]")
{
{
wil::slim_event event;
// Verify simple timeouts work on an auto-reset event.
REQUIRE_FALSE(event.wait(/*timeout(ms)*/ 0));
REQUIRE_FALSE(event.wait(/*timeout(ms)*/ 10));
wil::unique_threadpool_timer trollTimer(CreateThreadpoolTimer(SlimEventTrollCallback, &event, nullptr));
REQUIRE(trollTimer);
FILETIME trollDueTime = wil::filetime::from_int64(0);
SetThreadpoolTimer(trollTimer.get(), &trollDueTime, /*period(ms)*/ 5, /*window(ms)*/ 0);
// Ensure we timeout in spite of being constantly woken up unnecessarily.
REQUIRE_FALSE(event.wait(/*timeout(ms)*/ 100));
wil::unique_threadpool_timer friendlyTimer(CreateThreadpoolTimer(SlimEventFriendlyCallback, &event, nullptr));
REQUIRE(friendlyTimer);
FILETIME friendlyDueTime = wil::filetime::from_int64(UINT64(-100 * wil::filetime_duration::one_millisecond)); // 100ms (relative to now)
SetThreadpoolTimer(friendlyTimer.get(), &friendlyDueTime, /*period(ms)*/ 0, /*window(ms)*/ 0);
// Now that the 'friendlyTimer' is queued, we should succeed.
REQUIRE(event.wait(INFINITE));
// Ensure event is auto-reset.
REQUIRE_FALSE(event.wait(/*timeout(ms)*/ 100));
}
{
wil::slim_event_manual_reset manualResetEvent;
// Verify simple timeouts work on a manual-reset event.
REQUIRE_FALSE(manualResetEvent.wait(/*timeout(ms)*/ 0));
REQUIRE_FALSE(manualResetEvent.wait(/*timeout(ms)*/ 10));
// Ensure multiple waits can occur on a manual-reset event.
manualResetEvent.SetEvent();
REQUIRE(manualResetEvent.wait());
REQUIRE(manualResetEvent.wait(/*timeout(ms)*/ 100));
REQUIRE(manualResetEvent.wait(INFINITE));
// Verify 'ResetEvent' works.
manualResetEvent.ResetEvent();
REQUIRE_FALSE(manualResetEvent.wait(/*timeout(ms)*/ 10));
}
}
#endif // WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
struct ConditionVariableCSCallbackContext
{
wil::condition_variable event;
wil::critical_section lock;
auto acquire() { return lock.lock(); }
};
struct ConditionVariableSRWCallbackContext
{
wil::condition_variable event;
wil::srwlock lock;
auto acquire() { return lock.lock_exclusive(); }
};
template <typename T>
static void __stdcall ConditionVariableCallback(
_Inout_ PTP_CALLBACK_INSTANCE /*Instance*/,
_In_ void* Context)
{
auto callbackContext = reinterpret_cast<T*>(Context);
// Acquire the lock to ensure we don't notify the condition variable before the other thread has
// gone to sleep.
auto gate = callbackContext->acquire();
// Signal the condition variable.
callbackContext->event.notify_all();
}
// A quick sanity check of the 'wil::condition_variable' type.
TEST_CASE("WindowsInternalTests::ConditionVariableTests", "[resource][condition_variable]")
{
SECTION("Test 'wil::condition_variable' with 'wil::critical_section'")
{
ConditionVariableCSCallbackContext callbackContext;
auto gate = callbackContext.lock.lock();
// Schedule the thread that will wake up this thread.
REQUIRE(TrySubmitThreadpoolCallback(ConditionVariableCallback<ConditionVariableCSCallbackContext>, &callbackContext, nullptr));
// Wait on the condition variable.
REQUIRE(callbackContext.event.wait_for(gate, /*timeout(ms)*/ 500));
}
SECTION("Test 'wil::condition_variable' with 'wil::srwlock'")
{
ConditionVariableSRWCallbackContext callbackContext;
// Test exclusive lock.
{
auto gate = callbackContext.lock.lock_exclusive();
// Schedule the thread that will wake up this thread.
REQUIRE(TrySubmitThreadpoolCallback(ConditionVariableCallback<ConditionVariableSRWCallbackContext>, &callbackContext, nullptr));
// Wait on the condition variable.
REQUIRE(callbackContext.event.wait_for(gate, /*timeout(ms)*/ 500));
}
// Test shared lock.
{
auto gate = callbackContext.lock.lock_shared();
// Schedule the thread that will wake up this thread.
REQUIRE(TrySubmitThreadpoolCallback(ConditionVariableCallback<ConditionVariableSRWCallbackContext>, &callbackContext, nullptr));
// Wait on the condition variable.
REQUIRE(callbackContext.event.wait_for(gate, /*timeout(ms)*/ 500));
}
}
}
TEST_CASE("WindowsInternalTests::ReturnWithExpectedTests", "[result_macros]")
{
wil::g_pfnResultLoggingCallback = ResultMacrosLoggingCallback;
// Succeeded
REQUIRE_RETURNS_EXPECTED(S_OK, [] { RETURN_IF_FAILED_WITH_EXPECTED(MDEC(hrOKRef()), E_UNEXPECTED); return S_OK; });
// Expected
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_IF_FAILED_WITH_EXPECTED(E_FAIL, E_FAIL); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_UNEXPECTED, [] { RETURN_IF_FAILED_WITH_EXPECTED(E_UNEXPECTED, E_FAIL, E_UNEXPECTED, E_POINTER, E_INVALIDARG); return S_OK; });
// Unexpected
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_IF_FAILED_WITH_EXPECTED(E_FAIL, E_UNEXPECTED); return S_OK; });
REQUIRE_RETURNS_EXPECTED(E_FAIL, [] { RETURN_IF_FAILED_WITH_EXPECTED(E_FAIL, E_UNEXPECTED, E_POINTER, E_INVALIDARG); return S_OK; });
}
TEST_CASE("WindowsInternalTests::LogWithExpectedTests", "[result_macros]")
{
wil::g_pfnResultLoggingCallback = ResultMacrosLoggingCallback;
// Succeeded
REQUIRE_LOG(S_OK, [] { REQUIRE(S_OK == LOG_IF_FAILED_WITH_EXPECTED(MDEC(hrOKRef()), E_FAIL, E_INVALIDARG)); });
// Expected
REQUIRE_LOG(S_OK, [] { REQUIRE(E_UNEXPECTED == LOG_IF_FAILED_WITH_EXPECTED(E_UNEXPECTED, E_UNEXPECTED, E_INVALIDARG)); });
REQUIRE_LOG(S_OK, [] { REQUIRE(E_UNEXPECTED == LOG_IF_FAILED_WITH_EXPECTED(E_UNEXPECTED, E_FAIL, E_UNEXPECTED, E_POINTER, E_INVALIDARG)); });
// Unexpected
REQUIRE_LOG(E_FAIL, [] { REQUIRE(E_FAIL == LOG_IF_FAILED_WITH_EXPECTED(E_FAIL, E_UNEXPECTED)); });
REQUIRE_LOG(E_FAIL, [] { REQUIRE(E_FAIL == LOG_IF_FAILED_WITH_EXPECTED(E_FAIL, E_UNEXPECTED, E_POINTER, E_INVALIDARG)); });
}
// Verifies that the shutdown-aware objects respect the alignment
// of the wrapped object.
template<template<typename> class Wrapper>
void VerifyAlignment()
{
// Some of the wrappers require a method called ProcessShutdown(), so we'll give it one.
struct alignment_sensitive_struct
{
// Use SLIST_HEADER as our poster child alignment-sensitive data type.
SLIST_HEADER value;
void ProcessShutdown() { }
};
static_assert(alignof(alignment_sensitive_struct) != alignof(char), "Need to choose a better alignment-sensitive type");
// Create a custom structure that tries to force misalignment.
struct attempted_misalignment
{
char c;
Wrapper<alignment_sensitive_struct> wrapper;
} possibly_misaligned{};
static_assert(alignof(attempted_misalignment) == alignof(alignment_sensitive_struct), "Wrapper type does not respect alignment");
// Verify that the wrapper type placed the inner object at proper alignment.
// Note: use std::addressof in case the alignment_sensitive_struct overrides the & operator.
REQUIRE(reinterpret_cast<uintptr_t>(std::addressof(possibly_misaligned.wrapper.get())) % alignof(alignment_sensitive_struct) == 0);
}
TEST_CASE("WindowsInternalTests::ShutdownAwareObjectAlignmentTests", "[result_macros]")
{
VerifyAlignment<wil::manually_managed_shutdown_aware_object>();
VerifyAlignment<wil::shutdown_aware_object>();
VerifyAlignment<wil::object_without_destructor_on_shutdown>();
}
#pragma warning(pop)