dolphin/Externals/WIL/tests/ResourceTests.cpp
2020-02-09 19:01:44 +01:00

736 lines
20 KiB
C++

// Included first and then again later to ensure that we're able to "light up" new functionality based off new includes
#include <wil/resource.h>
#include <wil/com.h>
#include <wil/stl.h>
// Headers to "light up" functionality in resource.h
#include <memory>
#include <roapi.h>
#include <winstring.h>
#include <wil/resource.h>
#include <wrl/implements.h>
#include "common.h"
TEST_CASE("ResourceTests::TestLastErrorContext", "[resource][last_error_context]")
{
// Destructing the last_error_context restores the error.
{
SetLastError(42);
auto error42 = wil::last_error_context();
SetLastError(0);
}
REQUIRE(GetLastError() == 42);
// The context can be moved.
{
SetLastError(42);
auto error42 = wil::last_error_context();
SetLastError(0);
{
auto another_error42 = wil::last_error_context(std::move(error42));
SetLastError(1);
}
REQUIRE(GetLastError() == 42);
SetLastError(0);
// error42 has been moved-from and should not do anything at destruction.
}
REQUIRE(GetLastError() == 0);
// The context can be self-assigned, which has no effect.
{
SetLastError(42);
auto error42 = wil::last_error_context();
SetLastError(0);
error42 = std::move(error42);
SetLastError(1);
}
REQUIRE(GetLastError() == 42);
// The context can be dismissed, which cause it to do nothing at destruction.
{
SetLastError(42);
auto error42 = wil::last_error_context();
SetLastError(0);
error42.release();
SetLastError(1);
}
REQUIRE(GetLastError() == 1);
}
TEST_CASE("ResourceTests::TestScopeExit", "[resource][scope_exit]")
{
int count = 0;
auto validate = [&](int expected) { REQUIRE(count == expected); count = 0; };
{
auto foo = wil::scope_exit([&] { count++; });
}
validate(1);
{
auto foo = wil::scope_exit([&] { count++; });
foo.release();
foo.reset();
}
validate(0);
{
auto foo = wil::scope_exit([&] { count++; });
foo.reset();
foo.reset();
validate(1);
}
validate(0);
#ifdef WIL_ENABLE_EXCEPTIONS
{
auto foo = wil::scope_exit_log(WI_DIAGNOSTICS_INFO, [&] { count++; THROW_HR(E_FAIL); });
}
validate(1);
{
auto foo = wil::scope_exit_log(WI_DIAGNOSTICS_INFO, [&] { count++; THROW_HR(E_FAIL); });
foo.release();
foo.reset();
}
validate(0);
{
auto foo = wil::scope_exit_log(WI_DIAGNOSTICS_INFO, [&] { count++; THROW_HR(E_FAIL); });
foo.reset();
foo.reset();
validate(1);
}
validate(0);
#endif // WIL_ENABLE_EXCEPTIONS
}
interface __declspec(uuid("ececcc6a-5193-4d14-b38e-ed1460c20b00"))
ITest : public IUnknown
{
STDMETHOD_(void, Test)() = 0;
};
class PointerTestObject : witest::AllocatedObject,
public Microsoft::WRL::RuntimeClass<Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::RuntimeClassType::ClassicCom>, ITest>
{
public:
STDMETHOD_(void, Test)() {};
};
TEST_CASE("ResourceTests::TestOperationsOnGenericSmartPointerClasses", "[resource]")
{
#ifdef WIL_ENABLE_EXCEPTIONS
{
// wil::unique_any_t example
wil::unique_event ptr2(wil::EventOptions::ManualReset);
// wil::com_ptr
wil::com_ptr<PointerTestObject> ptr3 = Microsoft::WRL::Make<PointerTestObject>();
// wil::shared_any_t example
wil::shared_event ptr4(wil::EventOptions::ManualReset);
// wistd::unique_ptr example
auto ptr5 = wil::make_unique_failfast<POINT>();
static_assert(wistd::is_same<typename wil::smart_pointer_details<decltype(ptr2)>::pointer, HANDLE>::value, "type-mismatch");
static_assert(wistd::is_same<typename wil::smart_pointer_details<decltype(ptr3)>::pointer, PointerTestObject*>::value, "type-mismatch");
auto p2 = wil::detach_from_smart_pointer(ptr2);
auto p3 = wil::detach_from_smart_pointer(ptr3);
// auto p4 = wil::detach_from_smart_pointer(ptr4); // wil::shared_any_t and std::shared_ptr do not support release().
HANDLE p4{};
auto p5 = wil::detach_from_smart_pointer(ptr5);
REQUIRE((!ptr2 && !ptr3));
REQUIRE((p2 && p3));
wil::attach_to_smart_pointer(ptr2, p2);
wil::attach_to_smart_pointer(ptr3, p3);
wil::attach_to_smart_pointer(ptr4, p4);
wil::attach_to_smart_pointer(ptr5, p5);
p2 = nullptr;
p3 = nullptr;
p4 = nullptr;
p5 = nullptr;
wil::detach_to_opt_param(&p2, ptr2);
wil::detach_to_opt_param(&p3, ptr3);
REQUIRE((!ptr2 && !ptr3));
REQUIRE((p2 && p3));
wil::attach_to_smart_pointer(ptr2, p2);
wil::attach_to_smart_pointer(ptr3, p3);
p2 = nullptr;
p3 = nullptr;
wil::detach_to_opt_param(&p2, ptr2);
wil::detach_to_opt_param(&p3, ptr3);
REQUIRE((!ptr2 && !ptr3));
REQUIRE((p2 && p3));
[&](decltype(p2)* ptr) { *ptr = p2; } (wil::out_param(ptr2));
[&](decltype(p3)* ptr) { *ptr = p3; } (wil::out_param(ptr3));
[&](decltype(p4)* ptr) { *ptr = p4; } (wil::out_param(ptr4));
[&](decltype(p5)* ptr) { *ptr = p5; } (wil::out_param(ptr5));
REQUIRE((ptr2 && ptr3));
// Validate R-Value compilation
wil::detach_to_opt_param(&p2, decltype(ptr2){});
wil::detach_to_opt_param(&p3, decltype(ptr3){});
}
#endif
std::unique_ptr<int> ptr1(new int(1));
Microsoft::WRL::ComPtr<PointerTestObject> ptr4 = Microsoft::WRL::Make<PointerTestObject>();
static_assert(wistd::is_same<typename wil::smart_pointer_details<decltype(ptr1)>::pointer, int*>::value, "type-mismatch");
static_assert(wistd::is_same<typename wil::smart_pointer_details<decltype(ptr4)>::pointer, PointerTestObject*>::value, "type-mismatch");
auto p1 = wil::detach_from_smart_pointer(ptr1);
auto p4 = wil::detach_from_smart_pointer(ptr4);
REQUIRE((!ptr1 && !ptr4));
REQUIRE((p1 && p4));
wil::attach_to_smart_pointer(ptr1, p1);
wil::attach_to_smart_pointer(ptr4, p4);
REQUIRE((ptr1 && ptr4));
p1 = nullptr;
p4 = nullptr;
int** pNull = nullptr;
wil::detach_to_opt_param(pNull, ptr1);
REQUIRE(ptr1);
wil::detach_to_opt_param(&p1, ptr1);
wil::detach_to_opt_param(&p4, ptr4);
REQUIRE((!ptr1 && !ptr4));
REQUIRE((p1 && p4));
[&](decltype(p1)* ptr) { *ptr = p1; } (wil::out_param(ptr1));
[&](decltype(p4)* ptr) { *ptr = p4; } (wil::out_param(ptr4));
REQUIRE((ptr1 && ptr4));
p1 = wil::detach_from_smart_pointer(ptr1);
[&](int** ptr) { *ptr = p1; } (wil::out_param_ptr<int **>(ptr1));
REQUIRE(ptr1);
}
// Compilation only test...
void StlAdlTest()
{
// This test has exposed some Argument Dependent Lookup issues in wistd / stl. Primarily we're
// just looking for clean compilation.
std::vector<wistd::unique_ptr<int>> v;
v.emplace_back(new int{ 1 });
v.emplace_back(new int{ 2 });
v.emplace_back(new int{ 3 });
std::rotate(begin(v), begin(v) + 1, end(v));
REQUIRE(*v[0] == 1);
REQUIRE(*v[1] == 3);
REQUIRE(*v[2] == 2);
decltype(v) v2;
v2 = std::move(v);
REQUIRE(*v2[0] == 1);
REQUIRE(*v2[1] == 3);
REQUIRE(*v2[2] == 2);
decltype(v) v3;
std::swap(v2, v3);
REQUIRE(*v3[0] == 1);
REQUIRE(*v3[1] == 3);
REQUIRE(*v3[2] == 2);
}
// Compilation only test...
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
void UniqueProcessInfo()
{
wil::unique_process_information process;
CreateProcessW(nullptr, nullptr, nullptr, nullptr, FALSE, 0, nullptr, nullptr, nullptr, &process);
ResumeThread(process.hThread);
WaitForSingleObject(process.hProcess, INFINITE);
wil::unique_process_information other(wistd::move(process));
}
#endif
struct FakeComInterface
{
void AddRef()
{
refs++;
}
void Release()
{
refs--;
}
HRESULT __stdcall Close()
{
closes++;
return S_OK;
}
size_t refs = 0;
size_t closes = 0;
bool called()
{
auto old = closes;
closes = 0;
return (old > 0);
}
bool has_ref()
{
return (refs > 0);
}
};
static void __stdcall CloseFakeComInterface(FakeComInterface* fake)
{
fake->Close();
}
using unique_fakeclose_call = wil::unique_com_call<FakeComInterface, decltype(&CloseFakeComInterface), CloseFakeComInterface>;
TEST_CASE("ResourceTests::VerifyUniqueComCall", "[resource][unique_com_call]")
{
unique_fakeclose_call call1;
unique_fakeclose_call call2;
// intentional compilation errors
// unique_fakeclose_call call3 = call1;
// call2 = call1;
FakeComInterface fake1;
unique_fakeclose_call call4(&fake1);
REQUIRE(fake1.has_ref());
unique_fakeclose_call call5(wistd::move(call4));
REQUIRE(!call4);
REQUIRE(call5);
REQUIRE(fake1.has_ref());
call4 = wistd::move(call5);
REQUIRE(call4);
REQUIRE(!call5);
REQUIRE(fake1.has_ref());
REQUIRE(!fake1.called());
FakeComInterface fake2;
{
unique_fakeclose_call scoped(&fake2);
}
REQUIRE(!fake2.has_ref());
REQUIRE(fake2.called());
call4.reset(&fake2);
REQUIRE(fake1.called());
REQUIRE(!fake1.has_ref());
call4.reset();
REQUIRE(!fake2.has_ref());
REQUIRE(fake2.called());
call1.reset(&fake1);
call2.swap(call1);
REQUIRE((call2 && !call1));
call2.release();
REQUIRE(!fake1.called());
REQUIRE(!fake1.has_ref());
REQUIRE(!call2);
REQUIRE(*call1.addressof() == nullptr);
call1.reset(&fake1);
fake2.closes = 0;
fake2.refs = 1;
*(&call1) = &fake2;
REQUIRE(!fake1.has_ref());
REQUIRE(fake1.called());
REQUIRE(fake2.has_ref());
call1.reset(&fake1);
fake2.closes = 0;
fake2.refs = 1;
*call1.put() = &fake2;
REQUIRE(!fake1.has_ref());
REQUIRE(fake1.called());
REQUIRE(fake2.has_ref());
call1.reset();
REQUIRE(!fake2.has_ref());
REQUIRE(fake2.called());
}
static bool g_called = false;
static bool called()
{
auto call = g_called;
g_called = false;
return (call);
}
static void __stdcall FakeCall()
{
g_called = true;
}
using unique_fake_call = wil::unique_call<decltype(&FakeCall), FakeCall>;
TEST_CASE("ResourceTests::VerifyUniqueCall", "[resource][unique_call]")
{
unique_fake_call call1;
unique_fake_call call2;
// intentional compilation errors
// unique_fake_call call3 = call1;
// call2 = call1;
unique_fake_call call4;
REQUIRE(!called());
unique_fake_call call5(wistd::move(call4));
REQUIRE(!call4);
REQUIRE(call5);
call4 = wistd::move(call5);
REQUIRE(call4);
REQUIRE(!call5);
REQUIRE(!called());
{
unique_fake_call scoped;
}
REQUIRE(called());
call4.reset();
REQUIRE(called());
call4.reset();
REQUIRE(!called());
call1.release();
REQUIRE((!call1 && call2));
call2.swap(call1);
REQUIRE((call1 && !call2));
call2.release();
REQUIRE(!called());
REQUIRE(!call2);
#ifdef __WIL__ROAPI_H_APPEXCEPTIONAL
{
auto call = wil::RoInitialize();
}
#endif
#ifdef __WIL__ROAPI_H_APP
{
wil::unique_rouninitialize_call uninit;
uninit.release();
auto call = wil::RoInitialize_failfast();
}
#endif
#ifdef __WIL__COMBASEAPI_H_APPEXCEPTIONAL
{
auto call = wil::CoInitializeEx();
}
#endif
#ifdef __WIL__COMBASEAPI_H_APP
{
wil::unique_couninitialize_call uninit;
uninit.release();
auto call = wil::CoInitializeEx_failfast();
}
#endif
}
void UniqueCallCompilationTest()
{
#ifdef __WIL__COMBASEAPI_H_EXCEPTIONAL
{
auto call = wil::CoImpersonateClient();
}
#endif
#ifdef __WIL__COMBASEAPI_H_
{
wil::unique_coreverttoself_call uninit;
uninit.release();
auto call = wil::CoImpersonateClient_failfast();
}
#endif
}
template<typename StringType, typename VerifyContents>
static void TestStringMaker(VerifyContents&& verifyContents)
{
PCWSTR values[] =
{
L"",
L"value",
// 300 chars
L"0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789"
L"0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789"
L"0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789"
};
for (const auto& value : values)
{
auto const valueLength = wcslen(value);
// Direct construction case.
wil::details::string_maker<StringType> maker;
THROW_IF_FAILED(maker.make(value, valueLength));
auto result = maker.release();
verifyContents(value, valueLength, result);
// Two phase construction case.
THROW_IF_FAILED(maker.make(nullptr, valueLength));
REQUIRE(maker.buffer() != nullptr);
// In the case of the wil::unique_hstring and the empty string the buffer is in a read only
// section and can't be written to, so StringCchCopy(maker.buffer(), valueLength + 1, value) will fault adding the nul terminator.
// Use memcpy_s specifying exact size that will be zero in this case instead.
memcpy_s(maker.buffer(), valueLength * sizeof(*value), value, valueLength * sizeof(*value));
result = maker.release();
verifyContents(value, valueLength, result);
{
// no promote, ensure no leaks (not tested here, inspect in the debugger)
wil::details::string_maker<StringType> maker2;
THROW_IF_FAILED(maker2.make(value, valueLength));
}
}
}
#ifdef WIL_ENABLE_EXCEPTIONS
template <typename StringType>
static void VerifyMakeUniqueString(bool nullValueSupported = true)
{
if (nullValueSupported)
{
auto value0 = wil::make_unique_string<StringType>(nullptr, 5);
}
struct
{
PCWSTR expectedValue;
PCWSTR testValue;
// this is an optional parameter
size_t testLength = static_cast<size_t>(-1);
}
const testCaseEntries[] =
{
{ L"value", L"value", 5 },
{ L"value", L"value" },
{ L"va", L"va\0ue", 5 },
{ L"v", L"value", 1 },
{ L"\0", L"", 5 },
{ L"\0", nullptr, 5 },
};
using maker = wil::details::string_maker<StringType>;
for (auto const &entry : testCaseEntries)
{
bool shouldSkipNullString = ((wcscmp(entry.expectedValue, L"\0") == 0) && !nullValueSupported);
if (!shouldSkipNullString)
{
auto desiredValue = wil::make_unique_string<StringType>(entry.expectedValue);
auto stringValue = wil::make_unique_string<StringType>(entry.testValue, entry.testLength);
auto stringValueNoThrow = wil::make_unique_string_nothrow<StringType>(entry.testValue, entry.testLength);
auto stringValueFailFast = wil::make_unique_string_failfast<StringType>(entry.testValue, entry.testLength);
REQUIRE(wcscmp(maker::get(desiredValue), maker::get(stringValue)) == 0);
REQUIRE(wcscmp(maker::get(desiredValue), maker::get(stringValueNoThrow)) == 0);
REQUIRE(wcscmp(maker::get(desiredValue), maker::get(stringValueFailFast)) == 0);
}
}
}
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerCoTaskMem", "[resource][string_maker]")
{
VerifyMakeUniqueString<wil::unique_cotaskmem_string>();
TestStringMaker<wil::unique_cotaskmem_string>(
[](PCWSTR value, size_t /*valueLength*/, const wil::unique_cotaskmem_string& result)
{
REQUIRE(wcscmp(value, result.get()) == 0);
});
}
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerLocalAlloc", "[resource][string_maker]")
{
VerifyMakeUniqueString<wil::unique_hlocal_string>();
TestStringMaker<wil::unique_hlocal_string>(
[](PCWSTR value, size_t /*valueLength*/, const wil::unique_hlocal_string& result)
{
REQUIRE(wcscmp(value, result.get()) == 0);
});
}
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerGlobalAlloc", "[resource][string_maker]")
{
VerifyMakeUniqueString<wil::unique_hglobal_string>();
TestStringMaker<wil::unique_hglobal_string>(
[](PCWSTR value, size_t /*valueLength*/, const wil::unique_hglobal_string& result)
{
REQUIRE(wcscmp(value, result.get()) == 0);
});
}
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerProcessHeap", "[resource][string_maker]")
{
VerifyMakeUniqueString<wil::unique_process_heap_string>();
TestStringMaker<wil::unique_process_heap_string>(
[](PCWSTR value, size_t /*valueLength*/, const wil::unique_process_heap_string& result)
{
REQUIRE(wcscmp(value, result.get()) == 0);
});
}
#endif
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerMidl", "[resource][string_maker]")
{
VerifyMakeUniqueString<wil::unique_midl_string>();
TestStringMaker<wil::unique_midl_string>(
[](PCWSTR value, size_t /*valueLength*/, const wil::unique_midl_string& result)
{
REQUIRE(wcscmp(value, result.get()) == 0);
});
}
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerHString", "[resource][string_maker]")
{
wil::unique_hstring value;
value.reset(static_cast<HSTRING>(nullptr));
VerifyMakeUniqueString<wil::unique_hstring>(false);
TestStringMaker<wil::unique_hstring>(
[](PCWSTR value, size_t valueLength, const wil::unique_hstring& result)
{
UINT32 length;
REQUIRE(wcscmp(value, WindowsGetStringRawBuffer(result.get(), &length)) == 0);
REQUIRE(valueLength == length);
});
}
#ifdef WIL_ENABLE_EXCEPTIONS
TEST_CASE("UniqueStringAndStringMakerTests::VerifyStringMakerStdWString", "[resource][string_maker]")
{
std::string s;
wil::details::string_maker<std::wstring> maker;
TestStringMaker<std::wstring>(
[](PCWSTR value, size_t valueLength, const std::wstring& result)
{
REQUIRE(wcscmp(value, result.c_str()) == 0);
REQUIRE(result == value);
REQUIRE(result.size() == valueLength);
});
}
#endif
TEST_CASE("UniqueStringAndStringMakerTests::VerifyLegacySTringMakers", "[resource][string_maker]")
{
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
auto l = wil::make_hlocal_string(L"value");
l = wil::make_hlocal_string_nothrow(L"value");
l = wil::make_hlocal_string_failfast(L"value");
auto p = wil::make_process_heap_string(L"value");
p = wil::make_process_heap_string_nothrow(L"value");
p = wil::make_process_heap_string_failfast(L"value");
#endif
auto c = wil::make_cotaskmem_string(L"value");
c = wil::make_cotaskmem_string_nothrow(L"value");
c = wil::make_cotaskmem_string_failfast(L"value");
}
#endif
_Use_decl_annotations_ void* __RPC_USER MIDL_user_allocate(size_t size)
{
return ::HeapAlloc(GetProcessHeap(), 0, size);
}
_Use_decl_annotations_ void __RPC_USER MIDL_user_free(void* p)
{
::HeapFree(GetProcessHeap(), 0, p);
}
TEST_CASE("UniqueMidlStringTests", "[resource][rpc]")
{
wil::unique_midl_ptr<int[]> intArray{ reinterpret_cast<int*>(::MIDL_user_allocate(sizeof(int) * 10)) };
intArray[2] = 1;
wil::unique_midl_ptr<int> intSingle{ reinterpret_cast<int*>(::MIDL_user_allocate(sizeof(int) * 1)) };
}
TEST_CASE("UniqueEnvironmentStrings", "[resource][win32]")
{
wil::unique_environstrings_ptr env{ ::GetEnvironmentStringsW() };
const wchar_t* nextVar = env.get();
while (nextVar &&* nextVar)
{
// consume 'nextVar'
nextVar += wcslen(nextVar) + 1;
}
wil::unique_environansistrings_ptr envAnsi{ ::GetEnvironmentStringsA() };
const char* nextVarAnsi = envAnsi.get();
while (nextVarAnsi && *nextVarAnsi)
{
// consume 'nextVar'
nextVarAnsi += strlen(nextVarAnsi) + 1;
}
}
TEST_CASE("UniqueVariant", "[resource][com]")
{
wil::unique_variant var;
var.vt = VT_BSTR;
var.bstrVal = ::SysAllocString(L"25");
REQUIRE(var.bstrVal != nullptr);
auto call = [](const VARIANT&) {};
call(var);
VARIANT weakVar = var;
(void)weakVar;
wil::unique_variant var2;
REQUIRE_SUCCEEDED(VariantChangeType(&var2, &var, 0, VT_UI4));
REQUIRE(var2.vt == VT_UI4);
REQUIRE(var2.uiVal == 25);
}
TEST_CASE("DefaultTemplateParamCompiles", "[resource]")
{
wil::unique_process_heap_ptr<> a;
wil::unique_virtualalloc_ptr<> b;
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
wil::unique_hlocal_ptr<> c;
wil::unique_hlocal_secure_ptr<> d;
wil::unique_hglobal_ptr<> e;
wil::unique_cotaskmem_secure_ptr<> f;
#endif
wil::unique_midl_ptr<> g;
wil::unique_cotaskmem_ptr<> h;
}