dolphin/Source/Core/InputCommon/ControlReference/FunctionExpression.cpp
Lioncash 6586ecc7a8 InputCommon/FunctionExpression: include <algorithm>
std::min/std::max are used within this translation unit, so it needs to
be included to prevent potential compilation failures.
2019-11-22 14:41:13 -05:00

528 lines
13 KiB
C++

// Copyright 2019 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "InputCommon/ControlReference/FunctionExpression.h"
#include <algorithm>
#include <chrono>
#include <cmath>
namespace ciface
{
namespace ExpressionParser
{
constexpr int LOOP_MAX_REPS = 10000;
constexpr ControlState CONDITION_THRESHOLD = 0.5;
using Clock = std::chrono::steady_clock;
using FSec = std::chrono::duration<ControlState>;
// usage: toggle(toggle_state_input, [clear_state_input])
class ToggleExpression : public FunctionExpression
{
private:
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
// Optional 2nd argument for clearing state:
if (1 == args.size() || 2 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"toggle_state_input, [clear_state_input]"};
}
ControlState GetValue() const override
{
const ControlState inner_value = GetArg(0).GetValue();
if (inner_value < CONDITION_THRESHOLD)
{
m_released = true;
}
else if (m_released && inner_value > CONDITION_THRESHOLD)
{
m_released = false;
m_state ^= true;
}
if (2 == GetArgCount() && GetArg(1).GetValue() > CONDITION_THRESHOLD)
{
m_state = false;
}
return m_state;
}
mutable bool m_released{};
mutable bool m_state{};
};
// usage: not(expression)
class NotExpression : public FunctionExpression
{
private:
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (1 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"expression"};
}
ControlState GetValue() const override { return 1.0 - GetArg(0).GetValue(); }
void SetValue(ControlState value) override { GetArg(0).SetValue(1.0 - value); }
};
// usage: sin(expression)
class SinExpression : public FunctionExpression
{
private:
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (1 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"expression"};
}
ControlState GetValue() const override { return std::sin(GetArg(0).GetValue()); }
};
// usage: timer(seconds)
class TimerExpression : public FunctionExpression
{
private:
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (1 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"seconds"};
}
ControlState GetValue() const override
{
const auto now = Clock::now();
const auto elapsed = now - m_start_time;
const ControlState val = GetArg(0).GetValue();
ControlState progress = std::chrono::duration_cast<FSec>(elapsed).count() / val;
if (std::isinf(progress) || progress < 0.0)
{
// User configured a non-positive timer. Reset the timer and return 0.0.
progress = 0.0;
m_start_time = now;
}
else if (progress >= 1.0)
{
const ControlState reset_count = std::floor(progress);
m_start_time += std::chrono::duration_cast<Clock::duration>(FSec(val * reset_count));
progress -= reset_count;
}
return progress;
}
private:
mutable Clock::time_point m_start_time = Clock::now();
};
// usage: if(condition, true_expression, false_expression)
class IfExpression : public FunctionExpression
{
private:
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (3 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"condition, true_expression, false_expression"};
}
ControlState GetValue() const override
{
return (GetArg(0).GetValue() > CONDITION_THRESHOLD) ? GetArg(1).GetValue() :
GetArg(2).GetValue();
}
};
// usage: minus(expression)
class UnaryMinusExpression : public FunctionExpression
{
private:
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (1 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"expression"};
}
ControlState GetValue() const override
{
// Subtraction for clarity:
return 0.0 - GetArg(0).GetValue();
}
};
// usage: deadzone(input, amount)
class DeadzoneExpression : public FunctionExpression
{
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (2 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"input, amount"};
}
ControlState GetValue() const override
{
const ControlState val = GetArg(0).GetValue();
const ControlState deadzone = GetArg(1).GetValue();
return std::copysign(std::max(0.0, std::abs(val) - deadzone) / (1.0 - deadzone), val);
}
};
// usage: smooth(input, seconds_up, seconds_down = seconds_up)
// seconds is seconds to change from 0.0 to 1.0
class SmoothExpression : public FunctionExpression
{
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (2 == args.size() || 3 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"input, seconds_up, seconds_down = seconds_up"};
}
ControlState GetValue() const override
{
const auto now = Clock::now();
const auto elapsed = now - m_last_update;
m_last_update = now;
const ControlState desired_value = GetArg(0).GetValue();
const ControlState smooth_up = GetArg(1).GetValue();
const ControlState smooth_down = (3 == GetArgCount() ? GetArg(2).GetValue() : smooth_up);
const ControlState smooth = (desired_value < m_value) ? smooth_down : smooth_up;
const ControlState max_move = std::chrono::duration_cast<FSec>(elapsed).count() / smooth;
if (std::isinf(max_move))
{
m_value = desired_value;
}
else
{
const ControlState diff = desired_value - m_value;
m_value += std::copysign(std::min(max_move, std::abs(diff)), diff);
}
return m_value;
}
private:
mutable ControlState m_value = 0.0;
mutable Clock::time_point m_last_update = Clock::now();
};
// usage: hold(input, seconds)
class HoldExpression : public FunctionExpression
{
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (2 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"input, seconds"};
}
ControlState GetValue() const override
{
const auto now = Clock::now();
const ControlState input = GetArg(0).GetValue();
if (input < CONDITION_THRESHOLD)
{
m_state = false;
m_start_time = Clock::now();
}
else if (!m_state)
{
const auto hold_time = now - m_start_time;
if (std::chrono::duration_cast<FSec>(hold_time).count() >= GetArg(1).GetValue())
m_state = true;
}
return m_state;
}
private:
mutable bool m_state = false;
mutable Clock::time_point m_start_time = Clock::now();
};
// usage: tap(input, seconds, taps=2)
class TapExpression : public FunctionExpression
{
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (2 == args.size() || 3 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"input, seconds, taps = 2"};
}
ControlState GetValue() const override
{
const auto now = Clock::now();
const auto elapsed = std::chrono::duration_cast<FSec>(now - m_start_time).count();
const ControlState input = GetArg(0).GetValue();
const ControlState seconds = GetArg(1).GetValue();
const bool is_time_up = elapsed > seconds;
const u32 desired_taps = (3 == GetArgCount()) ? u32(GetArg(2).GetValue() + 0.5) : 2;
if (input < CONDITION_THRESHOLD)
{
m_released = true;
if (m_taps > 0 && is_time_up)
{
m_taps = 0;
}
}
else
{
if (m_released)
{
if (!m_taps)
{
m_start_time = now;
}
++m_taps;
m_released = false;
}
return desired_taps == m_taps;
}
return 0.0;
}
private:
mutable bool m_released = true;
mutable u32 m_taps = 0;
mutable Clock::time_point m_start_time = Clock::now();
};
// usage: relative(input, speed, [max_abs_value, [shared_state]])
// speed is max movement per second
class RelativeExpression : public FunctionExpression
{
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (args.size() >= 2 && args.size() <= 4)
return ArgumentsAreValid{};
else
return ExpectedArguments{"input, speed, [max_abs_value, [shared_state]]"};
}
ControlState GetValue() const override
{
// There is a lot of funky math in this function but it allows for a variety of uses:
//
// e.g. A single mapping with a relatively adjusted value between 0.0 and 1.0
// Potentially useful for a trigger input
// relative(`Up` - `Down`, 2.0)
//
// e.g. A value with two mappings (such as analog stick Up/Down)
// The shared state allows the two mappings to work together.
// This mapping (for up) returns a value clamped between 0.0 and 1.0
// relative(`Up`, 2.0, 1.0, $y)
// This mapping (for down) returns the negative value clamped between 0.0 and 1.0
// (Adjustments created by `Down` are applied negatively to the shared state)
// relative(`Down`, 2.0, -1.0, $y)
const auto now = Clock::now();
if (GetArgCount() >= 4)
m_state = GetArg(3).GetValue();
const auto elapsed = std::chrono::duration_cast<FSec>(now - m_last_update).count();
m_last_update = now;
const ControlState input = GetArg(0).GetValue();
const ControlState speed = GetArg(1).GetValue();
const ControlState max_abs_value = (GetArgCount() >= 3) ? GetArg(2).GetValue() : 1.0;
const ControlState max_move = input * elapsed * speed;
const ControlState diff_from_zero = std::abs(0.0 - m_state);
const ControlState diff_from_max = std::abs(max_abs_value - m_state);
m_state += std::min(std::max(max_move, -diff_from_zero), diff_from_max) *
std::copysign(1.0, max_abs_value);
if (GetArgCount() >= 4)
const_cast<Expression&>(GetArg(3)).SetValue(m_state);
return std::max(0.0, m_state * std::copysign(1.0, max_abs_value));
}
private:
mutable ControlState m_state = 0.0;
mutable Clock::time_point m_last_update = Clock::now();
};
// usage: pulse(input, seconds)
class PulseExpression : public FunctionExpression
{
ArgumentValidation
ValidateArguments(const std::vector<std::unique_ptr<Expression>>& args) override
{
if (2 == args.size())
return ArgumentsAreValid{};
else
return ExpectedArguments{"input, seconds"};
}
ControlState GetValue() const override
{
const auto now = Clock::now();
const ControlState input = GetArg(0).GetValue();
if (input < CONDITION_THRESHOLD)
{
m_released = true;
}
else if (m_released)
{
m_released = false;
const auto seconds = std::chrono::duration_cast<Clock::duration>(FSec(GetArg(1).GetValue()));
if (m_state)
{
m_release_time += seconds;
}
else
{
m_state = true;
m_release_time = now + seconds;
}
}
if (m_state && now >= m_release_time)
{
m_state = false;
}
return m_state;
}
private:
mutable bool m_released = false;
mutable bool m_state = false;
mutable Clock::time_point m_release_time = Clock::now();
};
std::unique_ptr<FunctionExpression> MakeFunctionExpression(std::string name)
{
if ("not" == name)
return std::make_unique<NotExpression>();
else if ("if" == name)
return std::make_unique<IfExpression>();
else if ("sin" == name)
return std::make_unique<SinExpression>();
else if ("timer" == name)
return std::make_unique<TimerExpression>();
else if ("toggle" == name)
return std::make_unique<ToggleExpression>();
else if ("minus" == name)
return std::make_unique<UnaryMinusExpression>();
else if ("deadzone" == name)
return std::make_unique<DeadzoneExpression>();
else if ("smooth" == name)
return std::make_unique<SmoothExpression>();
else if ("hold" == name)
return std::make_unique<HoldExpression>();
else if ("tap" == name)
return std::make_unique<TapExpression>();
else if ("relative" == name)
return std::make_unique<RelativeExpression>();
else if ("pulse" == name)
return std::make_unique<PulseExpression>();
else
return nullptr;
}
int FunctionExpression::CountNumControls() const
{
int result = 0;
for (auto& arg : m_args)
result += arg->CountNumControls();
return result;
}
void FunctionExpression::UpdateReferences(ControlEnvironment& env)
{
for (auto& arg : m_args)
arg->UpdateReferences(env);
}
FunctionExpression::ArgumentValidation
FunctionExpression::SetArguments(std::vector<std::unique_ptr<Expression>>&& args)
{
m_args = std::move(args);
return ValidateArguments(m_args);
}
Expression& FunctionExpression::GetArg(u32 number)
{
return *m_args[number];
}
const Expression& FunctionExpression::GetArg(u32 number) const
{
return *m_args[number];
}
u32 FunctionExpression::GetArgCount() const
{
return u32(m_args.size());
}
void FunctionExpression::SetValue(ControlState)
{
}
} // namespace ExpressionParser
} // namespace ciface