dolphin/Source/Core/VideoCommon/CommandProcessor.cpp
Lioncache f97b2d472a VideoCommon/CommandProcessor: Pass system instance through constructor
Makes the use of the interface a little less noisy, especially given
how much of the interface depends on an instance being present.
2023-12-20 09:02:53 -05:00

739 lines
29 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/CommandProcessor.h"
#include <atomic>
#include <cstring>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/Flag.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Core/ConfigManager.h"
#include "Core/CoreTiming.h"
#include "Core/HW/GPFifo.h"
#include "Core/HW/MMIO.h"
#include "Core/HW/ProcessorInterface.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/Fifo.h"
namespace CommandProcessor
{
static bool IsOnThread(const Core::System& system)
{
return system.IsDualCoreMode();
}
static void UpdateInterrupts_Wrapper(Core::System& system, u64 userdata, s64 cyclesLate)
{
system.GetCommandProcessor().UpdateInterrupts(userdata);
}
void SCPFifoStruct::Init()
{
CPBase = 0;
CPEnd = 0;
CPHiWatermark = 0;
CPLoWatermark = 0;
CPReadWriteDistance = 0;
CPWritePointer = 0;
CPReadPointer = 0;
CPBreakpoint = 0;
SafeCPReadPointer = 0;
bFF_GPLinkEnable = 0;
bFF_GPReadEnable = 0;
bFF_BPEnable = 0;
bFF_BPInt = 0;
bFF_Breakpoint.store(0, std::memory_order_relaxed);
bFF_HiWatermark.store(0, std::memory_order_relaxed);
bFF_HiWatermarkInt.store(0, std::memory_order_relaxed);
bFF_LoWatermark.store(0, std::memory_order_relaxed);
bFF_LoWatermarkInt.store(0, std::memory_order_relaxed);
}
void SCPFifoStruct::DoState(PointerWrap& p)
{
p.Do(CPBase);
p.Do(CPEnd);
p.Do(CPHiWatermark);
p.Do(CPLoWatermark);
p.Do(CPReadWriteDistance);
p.Do(CPWritePointer);
p.Do(CPReadPointer);
p.Do(CPBreakpoint);
p.Do(SafeCPReadPointer);
p.Do(bFF_GPLinkEnable);
p.Do(bFF_GPReadEnable);
p.Do(bFF_BPEnable);
p.Do(bFF_BPInt);
p.Do(bFF_Breakpoint);
p.Do(bFF_LoWatermarkInt);
p.Do(bFF_HiWatermarkInt);
p.Do(bFF_LoWatermark);
p.Do(bFF_HiWatermark);
}
void CommandProcessorManager::DoState(PointerWrap& p)
{
p.Do(m_cp_status_reg);
p.Do(m_cp_ctrl_reg);
p.Do(m_cp_clear_reg);
p.Do(m_bbox_left);
p.Do(m_bbox_top);
p.Do(m_bbox_right);
p.Do(m_bbox_bottom);
p.Do(m_token_reg);
m_fifo.DoState(p);
p.Do(m_interrupt_set);
p.Do(m_interrupt_waiting);
}
static inline void WriteHigh(std::atomic<u32>& reg, u16 highbits)
{
reg.store((reg.load(std::memory_order_relaxed) & 0x0000FFFF) | (static_cast<u32>(highbits) << 16),
std::memory_order_relaxed);
}
CommandProcessorManager::CommandProcessorManager(Core::System& system) : m_system{system}
{
}
void CommandProcessorManager::Init()
{
m_cp_status_reg.Hex = 0;
m_cp_status_reg.CommandIdle = 1;
m_cp_status_reg.ReadIdle = 1;
m_cp_ctrl_reg.Hex = 0;
m_cp_clear_reg.Hex = 0;
m_bbox_left = 0;
m_bbox_top = 0;
m_bbox_right = 640;
m_bbox_bottom = 480;
m_token_reg = 0;
m_fifo.Init();
m_is_fifo_error_seen = false;
m_interrupt_set.Clear();
m_interrupt_waiting.Clear();
m_event_type_update_interrupts =
m_system.GetCoreTiming().RegisterEvent("CPInterrupt", UpdateInterrupts_Wrapper);
}
u32 GetPhysicalAddressMask()
{
// Physical addresses in CP seem to ignore some of the upper bits (depending on platform)
// This can be observed in CP MMIO registers by setting to 0xffffffff and then reading back.
return SConfig::GetInstance().bWii ? 0x1fffffff : 0x03ffffff;
}
void CommandProcessorManager::RegisterMMIO(MMIO::Mapping* mmio, u32 base)
{
constexpr u16 WMASK_NONE = 0x0000;
constexpr u16 WMASK_ALL = 0xffff;
constexpr u16 WMASK_LO_ALIGN_32BIT = 0xffe0;
const u16 WMASK_HI_RESTRICT = GetPhysicalAddressMask() >> 16;
struct
{
u32 addr;
u16* ptr;
bool readonly;
// FIFO mmio regs in the range [cc000020-cc00003e] have certain bits that always read as 0
// For _LO registers in this range, only bits 0xffe0 can be set
// For _HI registers in this range, only bits 0x03ff can be set on GCN and 0x1fff on Wii
u16 wmask;
} directly_mapped_vars[] = {
{FIFO_TOKEN_REGISTER, &m_token_reg, false, WMASK_ALL},
// Bounding box registers are read only.
{FIFO_BOUNDING_BOX_LEFT, &m_bbox_left, true, WMASK_NONE},
{FIFO_BOUNDING_BOX_RIGHT, &m_bbox_right, true, WMASK_NONE},
{FIFO_BOUNDING_BOX_TOP, &m_bbox_top, true, WMASK_NONE},
{FIFO_BOUNDING_BOX_BOTTOM, &m_bbox_bottom, true, WMASK_NONE},
{FIFO_BASE_LO, MMIO::Utils::LowPart(&m_fifo.CPBase), false, WMASK_LO_ALIGN_32BIT},
{FIFO_BASE_HI, MMIO::Utils::HighPart(&m_fifo.CPBase), false, WMASK_HI_RESTRICT},
{FIFO_END_LO, MMIO::Utils::LowPart(&m_fifo.CPEnd), false, WMASK_LO_ALIGN_32BIT},
{FIFO_END_HI, MMIO::Utils::HighPart(&m_fifo.CPEnd), false, WMASK_HI_RESTRICT},
{FIFO_HI_WATERMARK_LO, MMIO::Utils::LowPart(&m_fifo.CPHiWatermark), false,
WMASK_LO_ALIGN_32BIT},
{FIFO_HI_WATERMARK_HI, MMIO::Utils::HighPart(&m_fifo.CPHiWatermark), false,
WMASK_HI_RESTRICT},
{FIFO_LO_WATERMARK_LO, MMIO::Utils::LowPart(&m_fifo.CPLoWatermark), false,
WMASK_LO_ALIGN_32BIT},
{FIFO_LO_WATERMARK_HI, MMIO::Utils::HighPart(&m_fifo.CPLoWatermark), false,
WMASK_HI_RESTRICT},
// FIFO_RW_DISTANCE has some complex read code different for
// single/dual core.
{FIFO_WRITE_POINTER_LO, MMIO::Utils::LowPart(&m_fifo.CPWritePointer), false,
WMASK_LO_ALIGN_32BIT},
{FIFO_WRITE_POINTER_HI, MMIO::Utils::HighPart(&m_fifo.CPWritePointer), false,
WMASK_HI_RESTRICT},
// FIFO_READ_POINTER has different code for single/dual core.
{FIFO_BP_LO, MMIO::Utils::LowPart(&m_fifo.CPBreakpoint), false, WMASK_LO_ALIGN_32BIT},
{FIFO_BP_HI, MMIO::Utils::HighPart(&m_fifo.CPBreakpoint), false, WMASK_HI_RESTRICT},
};
for (auto& mapped_var : directly_mapped_vars)
{
mmio->Register(base | mapped_var.addr, MMIO::DirectRead<u16>(mapped_var.ptr),
mapped_var.readonly ? MMIO::InvalidWrite<u16>() :
MMIO::DirectWrite<u16>(mapped_var.ptr, mapped_var.wmask));
}
// Timing and metrics MMIOs are stubbed with fixed values.
struct
{
u32 addr;
u16 value;
} metrics_mmios[] = {
{XF_RASBUSY_L, 0},
{XF_RASBUSY_H, 0},
{XF_CLKS_L, 0},
{XF_CLKS_H, 0},
{XF_WAIT_IN_L, 0},
{XF_WAIT_IN_H, 0},
{XF_WAIT_OUT_L, 0},
{XF_WAIT_OUT_H, 0},
{VCACHE_METRIC_CHECK_L, 0},
{VCACHE_METRIC_CHECK_H, 0},
{VCACHE_METRIC_MISS_L, 0},
{VCACHE_METRIC_MISS_H, 0},
{VCACHE_METRIC_STALL_L, 0},
{VCACHE_METRIC_STALL_H, 0},
{CLKS_PER_VTX_OUT, 4},
};
for (auto& metrics_mmio : metrics_mmios)
{
mmio->Register(base | metrics_mmio.addr, MMIO::Constant<u16>(metrics_mmio.value),
MMIO::InvalidWrite<u16>());
}
mmio->Register(base | STATUS_REGISTER, MMIO::ComplexRead<u16>([](Core::System& system_, u32) {
auto& cp = system_.GetCommandProcessor();
system_.GetFifo().SyncGPUForRegisterAccess();
cp.SetCpStatusRegister();
return cp.m_cp_status_reg.Hex;
}),
MMIO::InvalidWrite<u16>());
mmio->Register(base | CTRL_REGISTER, MMIO::DirectRead<u16>(&m_cp_ctrl_reg.Hex),
MMIO::ComplexWrite<u16>([](Core::System& system_, u32, u16 val) {
auto& cp = system_.GetCommandProcessor();
UCPCtrlReg tmp(val);
cp.m_cp_ctrl_reg.Hex = tmp.Hex;
cp.SetCpControlRegister();
system_.GetFifo().RunGpu();
}));
mmio->Register(base | CLEAR_REGISTER, MMIO::DirectRead<u16>(&m_cp_clear_reg.Hex),
MMIO::ComplexWrite<u16>([](Core::System& system_, u32, u16 val) {
auto& cp = system_.GetCommandProcessor();
UCPClearReg tmp(val);
cp.m_cp_clear_reg.Hex = tmp.Hex;
cp.SetCpClearRegister();
system_.GetFifo().RunGpu();
}));
mmio->Register(base | PERF_SELECT, MMIO::InvalidRead<u16>(), MMIO::Nop<u16>());
// Some MMIOs have different handlers for single core vs. dual core mode.
const bool is_on_thread = IsOnThread(m_system);
MMIO::ReadHandlingMethod<u16>* fifo_rw_distance_lo_r;
if (is_on_thread)
{
fifo_rw_distance_lo_r = MMIO::ComplexRead<u16>([](Core::System& system_, u32) {
const auto& fifo_ = system_.GetCommandProcessor().GetFifo();
if (fifo_.CPWritePointer.load(std::memory_order_relaxed) >=
fifo_.SafeCPReadPointer.load(std::memory_order_relaxed))
{
return static_cast<u16>(fifo_.CPWritePointer.load(std::memory_order_relaxed) -
fifo_.SafeCPReadPointer.load(std::memory_order_relaxed));
}
else
{
return static_cast<u16>(fifo_.CPEnd.load(std::memory_order_relaxed) -
fifo_.SafeCPReadPointer.load(std::memory_order_relaxed) +
fifo_.CPWritePointer.load(std::memory_order_relaxed) -
fifo_.CPBase.load(std::memory_order_relaxed) + 32);
}
});
}
else
{
fifo_rw_distance_lo_r =
MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&m_fifo.CPReadWriteDistance));
}
mmio->Register(base | FIFO_RW_DISTANCE_LO, fifo_rw_distance_lo_r,
MMIO::DirectWrite<u16>(MMIO::Utils::LowPart(&m_fifo.CPReadWriteDistance),
WMASK_LO_ALIGN_32BIT));
MMIO::ReadHandlingMethod<u16>* fifo_rw_distance_hi_r;
if (is_on_thread)
{
fifo_rw_distance_hi_r = MMIO::ComplexRead<u16>([](Core::System& system_, u32) {
const auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
if (fifo_.CPWritePointer.load(std::memory_order_relaxed) >=
fifo_.SafeCPReadPointer.load(std::memory_order_relaxed))
{
return (fifo_.CPWritePointer.load(std::memory_order_relaxed) -
fifo_.SafeCPReadPointer.load(std::memory_order_relaxed)) >>
16;
}
else
{
return (fifo_.CPEnd.load(std::memory_order_relaxed) -
fifo_.SafeCPReadPointer.load(std::memory_order_relaxed) +
fifo_.CPWritePointer.load(std::memory_order_relaxed) -
fifo_.CPBase.load(std::memory_order_relaxed) + 32) >>
16;
}
});
}
else
{
fifo_rw_distance_hi_r = MMIO::ComplexRead<u16>([](Core::System& system_, u32) {
const auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
return fifo_.CPReadWriteDistance.load(std::memory_order_relaxed) >> 16;
});
}
mmio->Register(base | FIFO_RW_DISTANCE_HI, fifo_rw_distance_hi_r,
MMIO::ComplexWrite<u16>([WMASK_HI_RESTRICT](Core::System& system_, u32, u16 val) {
auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
WriteHigh(fifo_.CPReadWriteDistance, val & WMASK_HI_RESTRICT);
system_.GetFifo().RunGpu();
}));
mmio->Register(
base | FIFO_READ_POINTER_LO,
is_on_thread ? MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&m_fifo.SafeCPReadPointer)) :
MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&m_fifo.CPReadPointer)),
MMIO::DirectWrite<u16>(MMIO::Utils::LowPart(&m_fifo.CPReadPointer), WMASK_LO_ALIGN_32BIT));
MMIO::ReadHandlingMethod<u16>* fifo_read_hi_r;
MMIO::WriteHandlingMethod<u16>* fifo_read_hi_w;
if (is_on_thread)
{
fifo_read_hi_r = MMIO::ComplexRead<u16>([](Core::System& system_, u32) {
auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
return fifo_.SafeCPReadPointer.load(std::memory_order_relaxed) >> 16;
});
fifo_read_hi_w =
MMIO::ComplexWrite<u16>([WMASK_HI_RESTRICT](Core::System& system_, u32, u16 val) {
auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
WriteHigh(fifo_.CPReadPointer, val & WMASK_HI_RESTRICT);
fifo_.SafeCPReadPointer.store(fifo_.CPReadPointer.load(std::memory_order_relaxed),
std::memory_order_relaxed);
});
}
else
{
fifo_read_hi_r = MMIO::ComplexRead<u16>([](Core::System& system_, u32) {
const auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
return fifo_.CPReadPointer.load(std::memory_order_relaxed) >> 16;
});
fifo_read_hi_w =
MMIO::ComplexWrite<u16>([WMASK_HI_RESTRICT](Core::System& system_, u32, u16 val) {
auto& fifo_ = system_.GetCommandProcessor().GetFifo();
system_.GetFifo().SyncGPUForRegisterAccess();
WriteHigh(fifo_.CPReadPointer, val & WMASK_HI_RESTRICT);
});
}
mmio->Register(base | FIFO_READ_POINTER_HI, fifo_read_hi_r, fifo_read_hi_w);
}
void CommandProcessorManager::GatherPipeBursted()
{
SetCPStatusFromCPU();
auto& processor_interface = m_system.GetProcessorInterface();
// if we aren't linked, we don't care about gather pipe data
if (!m_cp_ctrl_reg.GPLinkEnable)
{
if (IsOnThread(m_system) && !m_system.GetFifo().UseDeterministicGPUThread())
{
// In multibuffer mode is not allowed write in the same FIFO attached to the GPU.
// Fix Pokemon XD in DC mode.
if ((processor_interface.m_fifo_cpu_end == m_fifo.CPEnd.load(std::memory_order_relaxed)) &&
(processor_interface.m_fifo_cpu_base == m_fifo.CPBase.load(std::memory_order_relaxed)) &&
m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > 0)
{
m_system.GetFifo().FlushGpu();
}
}
m_system.GetFifo().RunGpu();
return;
}
// update the fifo pointer
if (m_fifo.CPWritePointer.load(std::memory_order_relaxed) ==
m_fifo.CPEnd.load(std::memory_order_relaxed))
{
m_fifo.CPWritePointer.store(m_fifo.CPBase, std::memory_order_relaxed);
}
else
{
m_fifo.CPWritePointer.fetch_add(GPFifo::GATHER_PIPE_SIZE, std::memory_order_relaxed);
}
if (m_cp_ctrl_reg.GPReadEnable && m_cp_ctrl_reg.GPLinkEnable)
{
processor_interface.m_fifo_cpu_write_pointer =
m_fifo.CPWritePointer.load(std::memory_order_relaxed);
processor_interface.m_fifo_cpu_base = m_fifo.CPBase.load(std::memory_order_relaxed);
processor_interface.m_fifo_cpu_end = m_fifo.CPEnd.load(std::memory_order_relaxed);
}
// If the game is running close to overflowing, make the exception checking more frequent.
if (m_fifo.bFF_HiWatermark.load(std::memory_order_relaxed) != 0)
m_system.GetCoreTiming().ForceExceptionCheck(0);
m_fifo.CPReadWriteDistance.fetch_add(GPFifo::GATHER_PIPE_SIZE, std::memory_order_seq_cst);
m_system.GetFifo().RunGpu();
ASSERT_MSG(COMMANDPROCESSOR,
m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) <=
m_fifo.CPEnd.load(std::memory_order_relaxed) -
m_fifo.CPBase.load(std::memory_order_relaxed),
"FIFO is overflowed by GatherPipe !\nCPU thread is too fast!");
// check if we are in sync
ASSERT_MSG(COMMANDPROCESSOR,
m_fifo.CPWritePointer.load(std::memory_order_relaxed) ==
processor_interface.m_fifo_cpu_write_pointer,
"FIFOs linked but out of sync");
ASSERT_MSG(COMMANDPROCESSOR,
m_fifo.CPBase.load(std::memory_order_relaxed) == processor_interface.m_fifo_cpu_base,
"FIFOs linked but out of sync");
ASSERT_MSG(COMMANDPROCESSOR,
m_fifo.CPEnd.load(std::memory_order_relaxed) == processor_interface.m_fifo_cpu_end,
"FIFOs linked but out of sync");
}
void CommandProcessorManager::UpdateInterrupts(u64 userdata)
{
if (userdata)
{
m_interrupt_set.Set();
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt set");
m_system.GetProcessorInterface().SetInterrupt(INT_CAUSE_CP, true);
}
else
{
m_interrupt_set.Clear();
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt cleared");
m_system.GetProcessorInterface().SetInterrupt(INT_CAUSE_CP, false);
}
m_system.GetCoreTiming().ForceExceptionCheck(0);
m_interrupt_waiting.Clear();
m_system.GetFifo().RunGpu();
}
void CommandProcessorManager::UpdateInterruptsFromVideoBackend(u64 userdata)
{
if (!m_system.GetFifo().UseDeterministicGPUThread())
{
m_system.GetCoreTiming().ScheduleEvent(0, m_event_type_update_interrupts, userdata,
CoreTiming::FromThread::NON_CPU);
}
}
bool CommandProcessorManager::IsInterruptWaiting() const
{
return m_interrupt_waiting.IsSet();
}
void CommandProcessorManager::SetCPStatusFromGPU()
{
// breakpoint
const bool breakpoint = m_fifo.bFF_Breakpoint.load(std::memory_order_relaxed);
if (m_fifo.bFF_BPEnable.load(std::memory_order_relaxed) != 0)
{
if (m_fifo.CPBreakpoint.load(std::memory_order_relaxed) ==
m_fifo.CPReadPointer.load(std::memory_order_relaxed))
{
if (!breakpoint)
{
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Hit breakpoint at {}",
m_fifo.CPReadPointer.load(std::memory_order_relaxed));
m_fifo.bFF_Breakpoint.store(1, std::memory_order_relaxed);
}
}
else
{
if (breakpoint)
{
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}",
m_fifo.CPReadPointer.load(std::memory_order_relaxed));
m_fifo.bFF_Breakpoint.store(0, std::memory_order_relaxed);
}
}
}
else
{
if (breakpoint)
{
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}",
m_fifo.CPReadPointer.load(std::memory_order_relaxed));
m_fifo.bFF_Breakpoint = false;
}
}
// overflow & underflow check
m_fifo.bFF_HiWatermark.store(
(m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > m_fifo.CPHiWatermark),
std::memory_order_relaxed);
m_fifo.bFF_LoWatermark.store(
(m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < m_fifo.CPLoWatermark),
std::memory_order_relaxed);
bool bpInt = m_fifo.bFF_Breakpoint.load(std::memory_order_relaxed) &&
m_fifo.bFF_BPInt.load(std::memory_order_relaxed);
bool ovfInt = m_fifo.bFF_HiWatermark.load(std::memory_order_relaxed) &&
m_fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed);
bool undfInt = m_fifo.bFF_LoWatermark.load(std::memory_order_relaxed) &&
m_fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed);
bool interrupt = (bpInt || ovfInt || undfInt) && m_cp_ctrl_reg.GPReadEnable;
if (interrupt != m_interrupt_set.IsSet() && !m_interrupt_waiting.IsSet())
{
const u64 userdata = interrupt ? 1 : 0;
if (IsOnThread(m_system))
{
if (!interrupt || bpInt || undfInt || ovfInt)
{
// Schedule the interrupt asynchronously
m_interrupt_waiting.Set();
UpdateInterruptsFromVideoBackend(userdata);
}
}
else
{
UpdateInterrupts(userdata);
}
}
}
void CommandProcessorManager::SetCPStatusFromCPU()
{
// overflow & underflow check
m_fifo.bFF_HiWatermark.store(
(m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > m_fifo.CPHiWatermark),
std::memory_order_relaxed);
m_fifo.bFF_LoWatermark.store(
(m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < m_fifo.CPLoWatermark),
std::memory_order_relaxed);
bool bpInt = m_fifo.bFF_Breakpoint.load(std::memory_order_relaxed) &&
m_fifo.bFF_BPInt.load(std::memory_order_relaxed);
bool ovfInt = m_fifo.bFF_HiWatermark.load(std::memory_order_relaxed) &&
m_fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed);
bool undfInt = m_fifo.bFF_LoWatermark.load(std::memory_order_relaxed) &&
m_fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed);
bool interrupt = (bpInt || ovfInt || undfInt) && m_cp_ctrl_reg.GPReadEnable;
if (interrupt != m_interrupt_set.IsSet() && !m_interrupt_waiting.IsSet())
{
const u64 userdata = interrupt ? 1 : 0;
if (IsOnThread(m_system))
{
if (!interrupt || bpInt || undfInt || ovfInt)
{
m_interrupt_set.Set(interrupt);
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt set");
m_system.GetProcessorInterface().SetInterrupt(INT_CAUSE_CP, interrupt);
}
}
else
{
UpdateInterrupts(userdata);
}
}
}
void CommandProcessorManager::SetCpStatusRegister()
{
// Here always there is one fifo attached to the GPU
m_cp_status_reg.Breakpoint = m_fifo.bFF_Breakpoint.load(std::memory_order_relaxed);
m_cp_status_reg.ReadIdle = !m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) ||
(m_fifo.CPReadPointer.load(std::memory_order_relaxed) ==
m_fifo.CPWritePointer.load(std::memory_order_relaxed));
m_cp_status_reg.CommandIdle = !m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed) ||
Fifo::AtBreakpoint(m_system) ||
!m_fifo.bFF_GPReadEnable.load(std::memory_order_relaxed);
m_cp_status_reg.UnderflowLoWatermark = m_fifo.bFF_LoWatermark.load(std::memory_order_relaxed);
m_cp_status_reg.OverflowHiWatermark = m_fifo.bFF_HiWatermark.load(std::memory_order_relaxed);
DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t Read from STATUS_REGISTER : {:04x}", m_cp_status_reg.Hex);
DEBUG_LOG_FMT(COMMANDPROCESSOR,
"(r) status: iBP {} | fReadIdle {} | fCmdIdle {} | iOvF {} | iUndF {}",
m_cp_status_reg.Breakpoint ? "ON" : "OFF", m_cp_status_reg.ReadIdle ? "ON" : "OFF",
m_cp_status_reg.CommandIdle ? "ON" : "OFF",
m_cp_status_reg.OverflowHiWatermark ? "ON" : "OFF",
m_cp_status_reg.UnderflowLoWatermark ? "ON" : "OFF");
}
void CommandProcessorManager::SetCpControlRegister()
{
m_fifo.bFF_BPInt.store(m_cp_ctrl_reg.BPInt, std::memory_order_relaxed);
m_fifo.bFF_BPEnable.store(m_cp_ctrl_reg.BPEnable, std::memory_order_relaxed);
m_fifo.bFF_HiWatermarkInt.store(m_cp_ctrl_reg.FifoOverflowIntEnable, std::memory_order_relaxed);
m_fifo.bFF_LoWatermarkInt.store(m_cp_ctrl_reg.FifoUnderflowIntEnable, std::memory_order_relaxed);
m_fifo.bFF_GPLinkEnable.store(m_cp_ctrl_reg.GPLinkEnable, std::memory_order_relaxed);
if (m_fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) && !m_cp_ctrl_reg.GPReadEnable)
{
m_fifo.bFF_GPReadEnable.store(m_cp_ctrl_reg.GPReadEnable, std::memory_order_relaxed);
m_system.GetFifo().FlushGpu();
}
else
{
m_fifo.bFF_GPReadEnable = m_cp_ctrl_reg.GPReadEnable;
}
DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t GPREAD {} | BP {} | Int {} | OvF {} | UndF {} | LINK {}",
m_fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "ON" : "OFF",
m_fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "ON" : "OFF",
m_fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "ON" : "OFF",
m_cp_ctrl_reg.FifoOverflowIntEnable ? "ON" : "OFF",
m_cp_ctrl_reg.FifoUnderflowIntEnable ? "ON" : "OFF",
m_cp_ctrl_reg.GPLinkEnable ? "ON" : "OFF");
}
// NOTE: We intentionally don't emulate this function at the moment.
// We don't emulate proper GP timing anyway at the moment, so it would just slow down emulation.
void CommandProcessorManager::SetCpClearRegister()
{
}
void CommandProcessorManager::HandleUnknownOpcode(u8 cmd_byte, const u8* buffer, bool preprocess)
{
// Datel software uses 0x01 during startup, and Mario Party 5's Wiggler capsule accidentally uses
// 0x01-0x03 due to sending 4 more vertices than intended (see https://dolp.in/i8104).
// Prince of Persia: Rival Swords sends 0x3f if the home menu is opened during the intro cutscene
// due to a game bug resulting in an incorrect vertex desc that results in the float value 1.0,
// encoded as 0x3f800000, being parsed as an opcode (see https://dolp.in/i9203).
//
// Hardware testing indicates that these opcodes do nothing, so to avoid annoying the user with
// spurious popups, we don't create a panic alert in those cases. Other unknown opcodes
// (such as 0x18) seem to result in actual hangs on real hardware, so the alert still is important
// to keep around for unexpected cases.
const bool suppress_panic_alert = (cmd_byte <= 0x7) || (cmd_byte == 0x3f);
const auto log_level =
suppress_panic_alert ? Common::Log::LogLevel::LWARNING : Common::Log::LogLevel::LERROR;
// We always generate this log message, though we only generate the panic alerts once.
//
// PC and LR are generally inaccurate in dual-core and are still misleading in single-core
// due to the gather pipe queueing data. Changing GATHER_PIPE_SIZE to 1 and
// GATHER_PIPE_EXTRA_SIZE to 16 * 32 in GPFifo.h, and using the cached interpreter CPU emulation
// engine, can result in more accurate information (though it is still a bit delayed).
// PC and LR are meaningless when using the fifoplayer, and will generally not be helpful if the
// unknown opcode is inside of a display list. Also note that the changes in GPFifo.h are not
// accurate and may introduce timing issues.
const auto& ppc_state = m_system.GetPPCState();
GENERIC_LOG_FMT(
Common::Log::LogType::VIDEO, log_level,
"FIFO: Unknown Opcode {:#04x} @ {}, preprocessing = {}, CPBase: {:#010x}, CPEnd: "
"{:#010x}, CPHiWatermark: {:#010x}, CPLoWatermark: {:#010x}, CPReadWriteDistance: "
"{:#010x}, CPWritePointer: {:#010x}, CPReadPointer: {:#010x}, CPBreakpoint: "
"{:#010x}, bFF_GPReadEnable: {}, bFF_BPEnable: {}, bFF_BPInt: {}, bFF_Breakpoint: "
"{}, bFF_GPLinkEnable: {}, bFF_HiWatermarkInt: {}, bFF_LoWatermarkInt: {}, "
"approximate PC: {:08x}, approximate LR: {:08x}",
cmd_byte, fmt::ptr(buffer), preprocess ? "yes" : "no",
m_fifo.CPBase.load(std::memory_order_relaxed), m_fifo.CPEnd.load(std::memory_order_relaxed),
m_fifo.CPHiWatermark, m_fifo.CPLoWatermark,
m_fifo.CPReadWriteDistance.load(std::memory_order_relaxed),
m_fifo.CPWritePointer.load(std::memory_order_relaxed),
m_fifo.CPReadPointer.load(std::memory_order_relaxed),
m_fifo.CPBreakpoint.load(std::memory_order_relaxed),
m_fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "true" : "false",
m_fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "true" : "false",
m_fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "true" : "false",
m_fifo.bFF_Breakpoint.load(std::memory_order_relaxed) ? "true" : "false",
m_fifo.bFF_GPLinkEnable.load(std::memory_order_relaxed) ? "true" : "false",
m_fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false",
m_fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false", ppc_state.pc,
LR(ppc_state));
if (!m_is_fifo_error_seen && !suppress_panic_alert)
{
m_is_fifo_error_seen = true;
// The panic alert contains an explanatory part that's worded differently depending on the
// user's settings, so as to offer the most relevant advice to the user.
const char* advice;
if (IsOnThread(m_system) && !m_system.GetFifo().UseDeterministicGPUThread())
{
if (!m_system.GetCoreTiming().UseSyncOnSkipIdle() && !m_system.GetFifo().UseSyncGPU())
{
// The SyncOnSkipIdle setting is only in the Android GUI, so we use the INI name on other platforms.
//
// TODO: Mark the Android string as translatable once we have translations on Android. It's
// currently untranslatable so translators won't try to look up how they translated "Synchronize
// GPU Thread" and "On Idle Skipping" and then not find those strings and become confused.
#ifdef ANDROID
advice = "Please change the \"Synchronize GPU Thread\" setting to \"On Idle Skipping\"! "
"It's currently set to \"Never\", which makes this problem very likely to happen.";
#else
// i18n: Please leave SyncOnSkipIdle and True untranslated.
// The user needs to enter these terms as-is in an INI file.
advice = _trans("Please change the \"SyncOnSkipIdle\" setting to \"True\"! "
"It's currently disabled, which makes this problem very likely to happen.");
#endif
}
else
{
advice = _trans(
"This error is usually caused by the emulated GPU desyncing with the emulated CPU. "
"Turn off the \"Dual Core\" setting to avoid this.");
}
}
else
{
advice = _trans(
"This error is usually caused by the emulated GPU desyncing with the emulated CPU, "
"but your current settings make this unlikely to happen. If this error is stopping the "
"game from working, please report it to the developers.");
}
PanicAlertFmtT("GFX FIFO: Unknown Opcode ({0:#04x} @ {1}, preprocess={2}).\n"
"\n"
"{3}\n"
"\n"
"Further errors will be sent to the Video Backend log and "
"Dolphin will now likely crash or hang.",
cmd_byte, fmt::ptr(buffer), preprocess, Common::GetStringT(advice));
}
}
} // namespace CommandProcessor