dolphin/Source/Core/VideoBackends/D3D/Render.cpp
Lioncash 75f5fcdfee Assert: Remove unused parameter from DEBUG_ASSERT
This brings the macro in line with the regular ASSERT macro, which only has one
macro parameter.
2018-03-16 13:01:11 -04:00

945 lines
35 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/D3D/Render.h"
#include <array>
#include <cinttypes>
#include <cmath>
#include <cstring>
#include <memory>
#include <string>
#include <strsafe.h>
#include <tuple>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Core/Core.h"
#include "VideoBackends/D3D/BoundingBox.h"
#include "VideoBackends/D3D/D3DBase.h"
#include "VideoBackends/D3D/D3DState.h"
#include "VideoBackends/D3D/D3DUtil.h"
#include "VideoBackends/D3D/DXPipeline.h"
#include "VideoBackends/D3D/DXShader.h"
#include "VideoBackends/D3D/DXTexture.h"
#include "VideoBackends/D3D/FramebufferManager.h"
#include "VideoBackends/D3D/GeometryShaderCache.h"
#include "VideoBackends/D3D/PixelShaderCache.h"
#include "VideoBackends/D3D/TextureCache.h"
#include "VideoBackends/D3D/VertexShaderCache.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
namespace DX11
{
// Reserve 512KB for vertices, and 64KB for uniforms.
// This should be sufficient for our usages, and if more is required,
// we split it into multiple draws.
constexpr u32 UTILITY_VBO_SIZE = 512 * 1024;
constexpr u32 UTILITY_UBO_SIZE = 64 * 1024;
// Nvidia stereo blitting struct defined in "nvstereo.h" from the Nvidia SDK
typedef struct _Nv_Stereo_Image_Header
{
unsigned int dwSignature;
unsigned int dwWidth;
unsigned int dwHeight;
unsigned int dwBPP;
unsigned int dwFlags;
} NVSTEREOIMAGEHEADER, *LPNVSTEREOIMAGEHEADER;
#define NVSTEREO_IMAGE_SIGNATURE 0x4433564e
Renderer::Renderer(int backbuffer_width, int backbuffer_height)
: ::Renderer(backbuffer_width, backbuffer_height)
{
m_last_multisamples = g_ActiveConfig.iMultisamples;
m_last_stereo_mode = g_ActiveConfig.stereo_mode != StereoMode::Off;
m_last_fullscreen_state = D3D::GetFullscreenState();
g_framebuffer_manager = std::make_unique<FramebufferManager>(m_target_width, m_target_height);
SetupDeviceObjects();
// Clear EFB textures
constexpr std::array<float, 4> clear_color{{0.f, 0.f, 0.f, 1.f}};
D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(),
clear_color.data());
D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(),
D3D11_CLEAR_DEPTH, 0.f, 0);
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)m_target_width, (float)m_target_height);
D3D::context->RSSetViewports(1, &vp);
FramebufferManager::BindEFBRenderTarget();
m_current_framebuffer_width = m_target_width;
m_current_framebuffer_height = m_target_height;
}
Renderer::~Renderer()
{
TeardownDeviceObjects();
}
void Renderer::SetupDeviceObjects()
{
HRESULT hr;
D3D11_DEPTH_STENCIL_DESC ddesc;
ddesc.DepthEnable = FALSE;
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
ddesc.DepthFunc = D3D11_COMPARISON_ALWAYS;
ddesc.StencilEnable = FALSE;
ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
hr = D3D::device->CreateDepthStencilState(&ddesc, &m_clear_depth_states[0]);
CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen");
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
ddesc.DepthEnable = TRUE;
hr = D3D::device->CreateDepthStencilState(&ddesc, &m_clear_depth_states[1]);
CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen");
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
hr = D3D::device->CreateDepthStencilState(&ddesc, &m_clear_depth_states[2]);
CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen");
D3D::SetDebugObjectName(m_clear_depth_states[0],
"depth state for Renderer::ClearScreen (depth buffer disabled)");
D3D::SetDebugObjectName(
m_clear_depth_states[1],
"depth state for Renderer::ClearScreen (depth buffer enabled, writing enabled)");
D3D::SetDebugObjectName(
m_clear_depth_states[2],
"depth state for Renderer::ClearScreen (depth buffer enabled, writing disabled)");
D3D11_BLEND_DESC blenddesc;
blenddesc.AlphaToCoverageEnable = FALSE;
blenddesc.IndependentBlendEnable = FALSE;
blenddesc.RenderTarget[0].BlendEnable = FALSE;
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
blenddesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
blenddesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
blenddesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
blenddesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
blenddesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
blenddesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
hr = D3D::device->CreateBlendState(&blenddesc, &m_reset_blend_state);
CHECK(hr == S_OK, "Create blend state for Renderer::ResetAPIState");
D3D::SetDebugObjectName(m_reset_blend_state, "blend state for Renderer::ResetAPIState");
m_clear_blend_states[0] = m_reset_blend_state;
m_reset_blend_state->AddRef();
blenddesc.RenderTarget[0].RenderTargetWriteMask =
D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE;
hr = D3D::device->CreateBlendState(&blenddesc, &m_clear_blend_states[1]);
CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen");
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
hr = D3D::device->CreateBlendState(&blenddesc, &m_clear_blend_states[2]);
CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen");
blenddesc.RenderTarget[0].RenderTargetWriteMask = 0;
hr = D3D::device->CreateBlendState(&blenddesc, &m_clear_blend_states[3]);
CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen");
ddesc.DepthEnable = FALSE;
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
ddesc.DepthFunc = D3D11_COMPARISON_LESS;
ddesc.StencilEnable = FALSE;
ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
hr = D3D::device->CreateDepthStencilState(&ddesc, &m_reset_depth_state);
CHECK(hr == S_OK, "Create depth state for Renderer::ResetAPIState");
D3D::SetDebugObjectName(m_reset_depth_state, "depth stencil state for Renderer::ResetAPIState");
D3D11_RASTERIZER_DESC rastdesc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false,
0, 0.f, 0.f, false, false, false, false);
hr = D3D::device->CreateRasterizerState(&rastdesc, &m_reset_rast_state);
CHECK(hr == S_OK, "Create rasterizer state for Renderer::ResetAPIState");
D3D::SetDebugObjectName(m_reset_rast_state, "rasterizer state for Renderer::ResetAPIState");
m_screenshot_texture = nullptr;
CD3D11_BUFFER_DESC vbo_desc(UTILITY_VBO_SIZE, D3D11_BIND_VERTEX_BUFFER, D3D11_USAGE_DYNAMIC,
D3D11_CPU_ACCESS_WRITE);
hr = D3D::device->CreateBuffer(&vbo_desc, nullptr, &m_utility_vertex_buffer);
CHECK(SUCCEEDED(hr), "Create utility VBO");
CD3D11_BUFFER_DESC ubo_desc(UTILITY_UBO_SIZE, D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DYNAMIC,
D3D11_CPU_ACCESS_WRITE);
hr = D3D::device->CreateBuffer(&ubo_desc, nullptr, &m_utility_uniform_buffer);
CHECK(SUCCEEDED(hr), "Create utility UBO");
}
// Kill off all device objects
void Renderer::TeardownDeviceObjects()
{
g_framebuffer_manager.reset();
SAFE_RELEASE(m_clear_blend_states[0]);
SAFE_RELEASE(m_clear_blend_states[1]);
SAFE_RELEASE(m_clear_blend_states[2]);
SAFE_RELEASE(m_clear_blend_states[3]);
SAFE_RELEASE(m_clear_depth_states[0]);
SAFE_RELEASE(m_clear_depth_states[1]);
SAFE_RELEASE(m_clear_depth_states[2]);
SAFE_RELEASE(m_reset_blend_state);
SAFE_RELEASE(m_reset_depth_state);
SAFE_RELEASE(m_reset_rast_state);
SAFE_RELEASE(m_screenshot_texture);
SAFE_RELEASE(m_3d_vision_texture);
SAFE_RELEASE(m_utility_vertex_buffer);
SAFE_RELEASE(m_utility_uniform_buffer);
}
void Renderer::Create3DVisionTexture(int width, int height)
{
// Create a staging texture for 3D vision with signature information in the last row.
// Nvidia 3D Vision supports full SBS, so there is no loss in resolution during this process.
NVSTEREOIMAGEHEADER header;
header.dwSignature = NVSTEREO_IMAGE_SIGNATURE;
header.dwWidth = static_cast<u32>(width * 2);
header.dwHeight = static_cast<u32>(height + 1);
header.dwBPP = 32;
header.dwFlags = 0;
const u32 pitch = static_cast<u32>(4 * width * 2);
const auto memory = std::make_unique<u8[]>((height + 1) * pitch);
u8* image_header_location = &memory[height * pitch];
std::memcpy(image_header_location, &header, sizeof(header));
D3D11_SUBRESOURCE_DATA sys_data;
sys_data.SysMemPitch = pitch;
sys_data.pSysMem = memory.get();
m_3d_vision_texture =
D3DTexture2D::Create(width * 2, height + 1, D3D11_BIND_RENDER_TARGET, D3D11_USAGE_DEFAULT,
DXGI_FORMAT_R8G8B8A8_UNORM, 1, 1, &sys_data);
}
std::unique_ptr<AbstractTexture> Renderer::CreateTexture(const TextureConfig& config)
{
return std::make_unique<DXTexture>(config);
}
std::unique_ptr<AbstractStagingTexture> Renderer::CreateStagingTexture(StagingTextureType type,
const TextureConfig& config)
{
return DXStagingTexture::Create(type, config);
}
std::unique_ptr<AbstractFramebuffer>
Renderer::CreateFramebuffer(const AbstractTexture* color_attachment,
const AbstractTexture* depth_attachment)
{
return DXFramebuffer::Create(static_cast<const DXTexture*>(color_attachment),
static_cast<const DXTexture*>(depth_attachment));
}
void Renderer::RenderText(const std::string& text, int left, int top, u32 color)
{
D3D::DrawTextScaled(static_cast<float>(left + 1), static_cast<float>(top + 1), 20.f, 0.0f,
color & 0xFF000000, text);
D3D::DrawTextScaled(static_cast<float>(left), static_cast<float>(top), 20.f, 0.0f, color, text);
}
std::unique_ptr<AbstractShader> Renderer::CreateShaderFromSource(ShaderStage stage,
const char* source, size_t length)
{
return DXShader::CreateFromSource(stage, source, length);
}
std::unique_ptr<AbstractShader> Renderer::CreateShaderFromBinary(ShaderStage stage,
const void* data, size_t length)
{
return DXShader::CreateFromBinary(stage, data, length);
}
std::unique_ptr<AbstractPipeline> Renderer::CreatePipeline(const AbstractPipelineConfig& config)
{
return DXPipeline::Create(config);
}
void Renderer::UpdateUtilityUniformBuffer(const void* uniforms, u32 uniforms_size)
{
DEBUG_ASSERT(uniforms_size > 0 && uniforms_size < UTILITY_UBO_SIZE);
D3D11_MAPPED_SUBRESOURCE mapped;
HRESULT hr = D3D::context->Map(m_utility_uniform_buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped);
CHECK(SUCCEEDED(hr), "Map utility UBO");
std::memcpy(mapped.pData, uniforms, uniforms_size);
D3D::context->Unmap(m_utility_uniform_buffer, 0);
}
void Renderer::UpdateUtilityVertexBuffer(const void* vertices, u32 vertex_stride, u32 num_vertices)
{
D3D11_MAPPED_SUBRESOURCE mapped;
HRESULT hr = D3D::context->Map(m_utility_vertex_buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped);
CHECK(SUCCEEDED(hr), "Map utility VBO");
std::memcpy(mapped.pData, vertices, num_vertices * vertex_stride);
D3D::context->Unmap(m_utility_vertex_buffer, 0);
}
void Renderer::SetPipeline(const AbstractPipeline* pipeline)
{
const DXPipeline* dx_pipeline = static_cast<const DXPipeline*>(pipeline);
if (!dx_pipeline)
return;
D3D::stateman->SetRasterizerState(dx_pipeline->GetRasterizerState());
D3D::stateman->SetDepthState(dx_pipeline->GetDepthState());
D3D::stateman->SetBlendState(dx_pipeline->GetBlendState());
D3D::stateman->SetPrimitiveTopology(dx_pipeline->GetPrimitiveTopology());
D3D::stateman->SetInputLayout(dx_pipeline->GetInputLayout());
D3D::stateman->SetVertexShader(dx_pipeline->GetVertexShader());
D3D::stateman->SetGeometryShader(dx_pipeline->GetGeometryShader());
D3D::stateman->SetPixelShader(dx_pipeline->GetPixelShader());
}
void Renderer::DrawUtilityPipeline(const void* uniforms, u32 uniforms_size, const void* vertices,
u32 vertex_stride, u32 num_vertices)
{
// Copy in uniforms.
if (uniforms_size > 0)
{
UpdateUtilityUniformBuffer(uniforms, uniforms_size);
D3D::stateman->SetVertexConstants(m_utility_uniform_buffer);
D3D::stateman->SetPixelConstants(m_utility_uniform_buffer);
D3D::stateman->SetGeometryConstants(m_utility_uniform_buffer);
}
// If the vertices are larger than our buffer, we need to break it up into multiple draws.
const char* vertices_ptr = static_cast<const char*>(vertices);
while (num_vertices > 0)
{
u32 vertices_this_draw = num_vertices;
if (vertices_ptr)
{
vertices_this_draw = std::min(vertices_this_draw, UTILITY_VBO_SIZE / vertex_stride);
DEBUG_ASSERT(vertices_this_draw > 0);
UpdateUtilityVertexBuffer(vertices_ptr, vertex_stride, vertices_this_draw);
D3D::stateman->SetVertexBuffer(m_utility_vertex_buffer, vertex_stride, 0);
}
// Apply pending state and draw.
D3D::stateman->Apply();
D3D::context->Draw(vertices_this_draw, 0);
vertices_ptr += vertex_stride * vertices_this_draw;
num_vertices -= vertices_this_draw;
}
}
void Renderer::DispatchComputeShader(const AbstractShader* shader, const void* uniforms,
u32 uniforms_size, u32 groups_x, u32 groups_y, u32 groups_z)
{
D3D::stateman->SetComputeShader(static_cast<const DXShader*>(shader)->GetD3DComputeShader());
if (uniforms_size > 0)
{
UpdateUtilityUniformBuffer(uniforms, uniforms_size);
D3D::stateman->SetComputeConstants(m_utility_uniform_buffer);
}
D3D::stateman->Apply();
D3D::context->Dispatch(groups_x, groups_y, groups_z);
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(rc.bottom);
return result;
}
void Renderer::SetScissorRect(const MathUtil::Rectangle<int>& rc)
{
const RECT rect = {rc.left, rc.top, rc.right, rc.bottom};
D3D::context->RSSetScissorRects(1, &rect);
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
// Convert EFB dimensions to the ones of our render target
EFBRectangle efbPixelRc;
efbPixelRc.left = x;
efbPixelRc.top = y;
efbPixelRc.right = x + 1;
efbPixelRc.bottom = y + 1;
TargetRectangle targetPixelRc = Renderer::ConvertEFBRectangle(efbPixelRc);
// Take the mean of the resulting dimensions; TODO: Don't use the center pixel, compute the
// average color instead
D3D11_RECT RectToLock;
if (type == EFBAccessType::PeekColor || type == EFBAccessType::PeekZ)
{
RectToLock.left = (targetPixelRc.left + targetPixelRc.right) / 2;
RectToLock.top = (targetPixelRc.top + targetPixelRc.bottom) / 2;
RectToLock.right = RectToLock.left + 1;
RectToLock.bottom = RectToLock.top + 1;
}
else
{
RectToLock.left = targetPixelRc.left;
RectToLock.right = targetPixelRc.right;
RectToLock.top = targetPixelRc.top;
RectToLock.bottom = targetPixelRc.bottom;
}
// Reset any game specific settings.
ResetAPIState();
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, 1.f, 1.f);
D3D::context->RSSetViewports(1, &vp);
D3D::SetPointCopySampler();
// Select copy and read textures depending on if we are doing a color or depth read (since they
// are different formats).
D3DTexture2D* source_tex;
D3DTexture2D* read_tex;
ID3D11Texture2D* staging_tex;
if (type == EFBAccessType::PeekColor)
{
source_tex = FramebufferManager::GetEFBColorTexture();
read_tex = FramebufferManager::GetEFBColorReadTexture();
staging_tex = FramebufferManager::GetEFBColorStagingBuffer();
}
else
{
source_tex = FramebufferManager::GetEFBDepthTexture();
read_tex = FramebufferManager::GetEFBDepthReadTexture();
staging_tex = FramebufferManager::GetEFBDepthStagingBuffer();
}
// Select pixel shader (we don't want to average depth samples, instead select the minimum).
ID3D11PixelShader* copy_pixel_shader;
if (type == EFBAccessType::PeekZ && g_ActiveConfig.iMultisamples > 1)
copy_pixel_shader = PixelShaderCache::GetDepthResolveProgram();
else
copy_pixel_shader = PixelShaderCache::GetColorCopyProgram(true);
// Draw a quad to grab the texel we want to read.
D3D::context->OMSetRenderTargets(1, &read_tex->GetRTV(), nullptr);
D3D::drawShadedTexQuad(source_tex->GetSRV(), &RectToLock, Renderer::GetTargetWidth(),
Renderer::GetTargetHeight(), copy_pixel_shader,
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout());
// Restore expected game state.
RestoreAPIState();
// Copy the pixel from the renderable to cpu-readable buffer.
D3D11_BOX box = CD3D11_BOX(0, 0, 0, 1, 1, 1);
D3D::context->CopySubresourceRegion(staging_tex, 0, 0, 0, 0, read_tex->GetTex(), 0, &box);
D3D11_MAPPED_SUBRESOURCE map;
CHECK(D3D::context->Map(staging_tex, 0, D3D11_MAP_READ, 0, &map) == S_OK,
"Map staging buffer failed");
// Convert the framebuffer data to the format the game is expecting to receive.
u32 ret;
if (type == EFBAccessType::PeekColor)
{
u32 val;
memcpy(&val, map.pData, sizeof(val));
// our buffers are RGBA, yet a BGRA value is expected
val = ((val & 0xFF00FF00) | ((val >> 16) & 0xFF) | ((val << 16) & 0xFF0000));
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
{
val = RGBA8ToRGBA6ToRGBA8(val);
}
else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
val = RGBA8ToRGB565ToRGBA8(val);
}
if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24)
{
val |= 0xFF000000;
}
if (alpha_read_mode.ReadMode == 2)
ret = val; // GX_READ_NONE
else if (alpha_read_mode.ReadMode == 1)
ret = (val | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/
ret = (val & 0x00FFFFFF); // GX_READ_00
}
else // type == EFBAccessType::PeekZ
{
float val;
memcpy(&val, map.pData, sizeof(val));
// depth buffer is inverted in the d3d backend
val = 1.0f - val;
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
ret = MathUtil::Clamp<u32>(static_cast<u32>(val * 65536.0f), 0, 0xFFFF);
}
else
{
ret = MathUtil::Clamp<u32>(static_cast<u32>(val * 16777216.0f), 0, 0xFFFFFF);
}
}
D3D::context->Unmap(staging_tex, 0);
return ret;
}
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
{
ResetAPIState();
if (type == EFBAccessType::PokeColor)
{
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetTargetWidth(), (float)GetTargetHeight());
D3D::context->RSSetViewports(1, &vp);
}
else // if (type == EFBAccessType::PokeZ)
{
D3D::stateman->SetBlendState(m_clear_blend_states[3]);
D3D::stateman->SetDepthState(m_clear_depth_states[1]);
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetTargetWidth(), (float)GetTargetHeight());
D3D::context->RSSetViewports(1, &vp);
}
D3D::DrawEFBPokeQuads(type, points, num_points);
RestoreAPIState();
}
void Renderer::SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
// In D3D, the viewport rectangle must fit within the render target.
D3D11_VIEWPORT vp;
vp.TopLeftX = MathUtil::Clamp(x, 0.0f, static_cast<float>(m_target_width - 1));
vp.TopLeftY = MathUtil::Clamp(y, 0.0f, static_cast<float>(m_target_height - 1));
vp.Width = MathUtil::Clamp(width, 1.0f, static_cast<float>(m_target_width) - vp.TopLeftX);
vp.Height = MathUtil::Clamp(height, 1.0f, static_cast<float>(m_target_height) - vp.TopLeftY);
vp.MinDepth = near_depth;
vp.MaxDepth = far_depth;
D3D::context->RSSetViewports(1, &vp);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable,
u32 color, u32 z)
{
ResetAPIState();
if (colorEnable && alphaEnable)
D3D::stateman->SetBlendState(m_clear_blend_states[0]);
else if (colorEnable)
D3D::stateman->SetBlendState(m_clear_blend_states[1]);
else if (alphaEnable)
D3D::stateman->SetBlendState(m_clear_blend_states[2]);
else
D3D::stateman->SetBlendState(m_clear_blend_states[3]);
// TODO: Should we enable Z testing here?
// if (!bpmem.zmode.testenable) D3D::stateman->PushDepthState(s_clear_depth_states[0]);
// else
if (zEnable)
D3D::stateman->SetDepthState(m_clear_depth_states[1]);
else /*if (!zEnable)*/
D3D::stateman->SetDepthState(m_clear_depth_states[2]);
// Update the view port for clearing the picture
TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc);
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top, (float)targetRc.GetWidth(),
(float)targetRc.GetHeight(), 0.f, 1.f);
D3D::context->RSSetViewports(1, &vp);
FramebufferManager::SetIntegerEFBRenderTarget(false);
// Color is passed in bgra mode so we need to convert it to rgba
u32 rgbaColor = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000);
D3D::drawClearQuad(rgbaColor, 1.0f - (z & 0xFFFFFF) / 16777216.0f);
RestoreAPIState();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
// TODO: MSAA support..
D3D11_RECT source = CD3D11_RECT(0, 0, GetTargetWidth(), GetTargetHeight());
ID3D11PixelShader* pixel_shader;
if (convtype == 0)
pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(true);
else if (convtype == 2)
pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(true);
else
{
ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d",
convtype);
return;
}
// convert data and set the target texture as our new EFB
ResetAPIState();
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, static_cast<float>(GetTargetWidth()),
static_cast<float>(GetTargetHeight()));
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV(),
nullptr);
D3D::SetPointCopySampler();
D3D::drawShadedTexQuad(
FramebufferManager::GetEFBColorTexture()->GetSRV(), &source, GetTargetWidth(),
GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), GeometryShaderCache::GetCopyGeometryShader());
FramebufferManager::SwapReinterpretTexture();
RestoreAPIState();
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::SwapImpl(AbstractTexture* texture, const EFBRectangle& xfb_region, u64 ticks,
float Gamma)
{
ResetAPIState();
// Prepare to copy the XFBs to our backbuffer
CheckForSurfaceChange();
CheckForSurfaceResize();
UpdateDrawRectangle();
TargetRectangle targetRc = GetTargetRectangle();
static constexpr std::array<float, 4> clear_color{{0.f, 0.f, 0.f, 1.f}};
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr);
D3D::context->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV(), clear_color.data());
m_current_framebuffer = nullptr;
m_current_framebuffer_width = m_backbuffer_width;
m_current_framebuffer_height = m_backbuffer_height;
// activate linear filtering for the buffer copies
D3D::SetLinearCopySampler();
auto* xfb_texture = static_cast<DXTexture*>(texture);
BlitScreen(xfb_region, targetRc, xfb_texture->GetRawTexIdentifier(),
xfb_texture->GetConfig().width, xfb_texture->GetConfig().height, Gamma);
// Reset viewport for drawing text
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.0f, 0.0f, static_cast<float>(m_backbuffer_width),
static_cast<float>(m_backbuffer_height));
D3D::context->RSSetViewports(1, &vp);
Renderer::DrawDebugText();
OSD::DrawMessages();
g_texture_cache->Cleanup(frameCount);
// Enable configuration changes
UpdateActiveConfig();
g_texture_cache->OnConfigChanged(g_ActiveConfig);
// Flip/present backbuffer to frontbuffer here
if (D3D::swapchain)
D3D::Present();
// Resize the back buffers NOW to avoid flickering
if (CalculateTargetSize() || m_last_multisamples != g_ActiveConfig.iMultisamples ||
m_last_stereo_mode != (g_ActiveConfig.stereo_mode != StereoMode::Off))
{
m_last_multisamples = g_ActiveConfig.iMultisamples;
m_last_stereo_mode = g_ActiveConfig.stereo_mode != StereoMode::Off;
PixelShaderCache::InvalidateMSAAShaders();
UpdateDrawRectangle();
g_framebuffer_manager.reset();
g_framebuffer_manager = std::make_unique<FramebufferManager>(m_target_width, m_target_height);
D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(),
clear_color.data());
D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(),
D3D11_CLEAR_DEPTH, 0.f, 0);
}
CheckForHostConfigChanges();
// begin next frame
RestoreAPIState();
}
void Renderer::CheckForSurfaceChange()
{
if (!m_surface_changed.TestAndClear())
return;
m_surface_handle = m_new_surface_handle;
m_new_surface_handle = nullptr;
SAFE_RELEASE(m_screenshot_texture);
SAFE_RELEASE(m_3d_vision_texture);
D3D::Reset(reinterpret_cast<HWND>(m_new_surface_handle));
UpdateBackbufferSize();
}
void Renderer::CheckForSurfaceResize()
{
const bool fullscreen_state = D3D::GetFullscreenState();
const bool exclusive_fullscreen_changed = fullscreen_state != m_last_fullscreen_state;
if (!m_surface_resized.TestAndClear() && !exclusive_fullscreen_changed)
return;
m_backbuffer_width = m_new_backbuffer_width;
m_backbuffer_height = m_new_backbuffer_height;
SAFE_RELEASE(m_screenshot_texture);
SAFE_RELEASE(m_3d_vision_texture);
m_last_fullscreen_state = fullscreen_state;
if (D3D::swapchain)
D3D::ResizeSwapChain();
UpdateBackbufferSize();
}
void Renderer::UpdateBackbufferSize()
{
if (D3D::swapchain)
{
DXGI_SWAP_CHAIN_DESC1 desc = {};
D3D::swapchain->GetDesc1(&desc);
m_backbuffer_width = std::max(desc.Width, 1u);
m_backbuffer_height = std::max(desc.Height, 1u);
}
else
{
m_backbuffer_width = 1;
m_backbuffer_height = 1;
}
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
D3D::stateman->SetBlendState(m_reset_blend_state);
D3D::stateman->SetDepthState(m_reset_depth_state);
D3D::stateman->SetRasterizerState(m_reset_rast_state);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
m_current_framebuffer = nullptr;
m_current_framebuffer_width = m_target_width;
m_current_framebuffer_height = m_target_height;
FramebufferManager::BindEFBRenderTarget();
BPFunctions::SetViewport();
BPFunctions::SetScissor();
}
void Renderer::SetFramebuffer(const AbstractFramebuffer* framebuffer)
{
const DXFramebuffer* fb = static_cast<const DXFramebuffer*>(framebuffer);
D3D::context->OMSetRenderTargets(fb->GetNumRTVs(), fb->GetRTVArray(), fb->GetDSV());
m_current_framebuffer = fb;
m_current_framebuffer_width = fb->GetWidth();
m_current_framebuffer_height = fb->GetHeight();
}
void Renderer::SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer)
{
SetFramebuffer(framebuffer);
}
void Renderer::SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer,
const ClearColor& color_value, float depth_value)
{
SetFramebuffer(framebuffer);
if (framebuffer->GetColorFormat() != AbstractTextureFormat::Undefined)
{
D3D::context->ClearRenderTargetView(
static_cast<const DXFramebuffer*>(framebuffer)->GetRTVArray()[0], color_value.data());
}
if (framebuffer->GetDepthFormat() != AbstractTextureFormat::Undefined)
{
D3D::context->ClearDepthStencilView(static_cast<const DXFramebuffer*>(framebuffer)->GetDSV(),
D3D11_CLEAR_DEPTH, depth_value, 0);
}
}
void Renderer::SetTexture(u32 index, const AbstractTexture* texture)
{
D3D::stateman->SetTexture(
index,
texture ? static_cast<const DXTexture*>(texture)->GetRawTexIdentifier()->GetSRV() : nullptr);
}
void Renderer::SetSamplerState(u32 index, const SamplerState& state)
{
D3D::stateman->SetSampler(index, m_state_cache.Get(state));
}
void Renderer::UnbindTexture(const AbstractTexture* texture)
{
D3D::stateman->UnsetTexture(
static_cast<const DXTexture*>(texture)->GetRawTexIdentifier()->GetSRV());
}
void Renderer::SetInterlacingMode()
{
// TODO
}
u16 Renderer::BBoxRead(int index)
{
// Here we get the min/max value of the truncated position of the upscaled framebuffer.
// So we have to correct them to the unscaled EFB sizes.
int value = BBox::Get(index);
if (index < 2)
{
// left/right
value = value * EFB_WIDTH / m_target_width;
}
else
{
// up/down
value = value * EFB_HEIGHT / m_target_height;
}
if (index & 1)
value++; // fix max values to describe the outer border
return value;
}
void Renderer::BBoxWrite(int index, u16 _value)
{
int value = _value; // u16 isn't enough to multiply by the efb width
if (index & 1)
value--;
if (index < 2)
{
value = value * m_target_width / EFB_WIDTH;
}
else
{
value = value * m_target_height / EFB_HEIGHT;
}
BBox::Set(index, value);
}
void Renderer::BlitScreen(TargetRectangle src, TargetRectangle dst, D3DTexture2D* src_texture,
u32 src_width, u32 src_height, float Gamma)
{
if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
TargetRectangle leftRc, rightRc;
std::tie(leftRc, rightRc) = ConvertStereoRectangle(dst);
D3D11_VIEWPORT leftVp = CD3D11_VIEWPORT((float)leftRc.left, (float)leftRc.top,
(float)leftRc.GetWidth(), (float)leftRc.GetHeight());
D3D11_VIEWPORT rightVp = CD3D11_VIEWPORT((float)rightRc.left, (float)rightRc.top,
(float)rightRc.GetWidth(), (float)rightRc.GetHeight());
D3D::context->RSSetViewports(1, &leftVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 0);
D3D::context->RSSetViewports(1, &rightVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 1);
}
else if (g_ActiveConfig.stereo_mode == StereoMode::Nvidia3DVision)
{
if (!m_3d_vision_texture)
Create3DVisionTexture(m_backbuffer_width, m_backbuffer_height);
D3D11_VIEWPORT leftVp = CD3D11_VIEWPORT((float)dst.left, (float)dst.top, (float)dst.GetWidth(),
(float)dst.GetHeight());
D3D11_VIEWPORT rightVp = CD3D11_VIEWPORT((float)(dst.left + m_backbuffer_width), (float)dst.top,
(float)dst.GetWidth(), (float)dst.GetHeight());
// Render to staging texture which is double the width of the backbuffer
D3D::context->OMSetRenderTargets(1, &m_3d_vision_texture->GetRTV(), nullptr);
D3D::context->RSSetViewports(1, &leftVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 0);
D3D::context->RSSetViewports(1, &rightVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 1);
// Copy the left eye to the backbuffer, if Nvidia 3D Vision is enabled it should
// recognize the signature and automatically include the right eye frame.
D3D11_BOX box = CD3D11_BOX(0, 0, 0, m_backbuffer_width, m_backbuffer_height, 1);
D3D::context->CopySubresourceRegion(D3D::GetBackBuffer()->GetTex(), 0, 0, 0, 0,
m_3d_vision_texture->GetTex(), 0, &box);
// Restore render target to backbuffer
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr);
}
else
{
D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)dst.left, (float)dst.top, (float)dst.GetWidth(),
(float)dst.GetHeight());
D3D::context->RSSetViewports(1, &vp);
ID3D11PixelShader* pixelShader = (g_Config.stereo_mode == StereoMode::Anaglyph) ?
PixelShaderCache::GetAnaglyphProgram() :
PixelShaderCache::GetColorCopyProgram(false);
ID3D11GeometryShader* geomShader = (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer) ?
GeometryShaderCache::GetCopyGeometryShader() :
nullptr;
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, pixelShader,
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), geomShader, Gamma);
}
}
void Renderer::SetFullscreen(bool enable_fullscreen)
{
D3D::SetFullscreenState(enable_fullscreen);
}
bool Renderer::IsFullscreen() const
{
return D3D::GetFullscreenState();
}
} // namespace DX11