dolphin/Source/Core/Common/MemArena.h
2022-02-06 18:06:04 +01:00

118 lines
3.8 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <cstddef>
#include <vector>
#include "Common/CommonTypes.h"
namespace Common
{
#ifdef _WIN32
struct WindowsMemoryRegion;
#endif
// This class lets you create a block of anonymous RAM, and then arbitrarily map views into it.
// Multiple views can mirror the same section of the block, which makes it very convenient for
// emulating memory mirrors.
class MemArena final
{
public:
MemArena();
~MemArena();
MemArena(const MemArena&) = delete;
MemArena(MemArena&&) = delete;
MemArena& operator=(const MemArena&) = delete;
MemArena& operator=(MemArena&&) = delete;
///
/// Allocate the singular memory segment handled by this MemArena. This will be the actual
/// 'physical' available memory for this arena. After allocation, it can be interacted with using
/// CreateView() and ReleaseView(). Used to make a mappable region for emulated memory.
///
/// @param size The amount of bytes that should be allocated in this region.
///
void GrabSHMSegment(size_t size);
///
/// Release the memory segment previously allocated with GrabSHMSegment().
/// Should not be called before all views have been released.
///
void ReleaseSHMSegment();
///
/// Map a memory region in the memory segment previously allocated with GrabSHMSegment().
///
/// @param offset Offset within the memory segment to map at.
/// @param size Size of the region to map.
///
/// @return Pointer to the memory region, or nullptr on failure.
///
void* CreateView(s64 offset, size_t size);
///
/// Unmap a memory region previously mapped with CreateView().
/// Should not be called on a view that is still mapped into the virtual memory region.
///
/// @param view Pointer returned by CreateView().
/// @param size Size passed to the corresponding CreateView() call.
///
void ReleaseView(void* view, size_t size);
///
/// Reserve the singular 'virtual' memory region handled by this MemArena. This is used to create
/// our 'fastmem' memory area for the emulated game code to access directly.
///
/// @param memory_size Size in bytes of the memory region to reserve.
///
/// @return Pointer to the memory region, or nullptr on failure.
///
u8* ReserveMemoryRegion(size_t memory_size);
///
/// Release the memory region previously reserved with ReserveMemoryRegion().
/// Should not be called while any memory region is still mapped.
///
void ReleaseMemoryRegion();
///
/// Map a section from the memory segment previously allocated with GrabSHMSegment()
/// into the region previously reserved with ReserveMemoryRegion().
///
/// @param offset Offset within the memory segment previous allocated by GrabSHMSegment() to map
/// from.
/// @param size Size of the region to map.
/// @param base Address within the memory region from ReserveMemoryRegion() where to map it.
///
/// @return The address we actually ended up mapping, which should be the given 'base'.
///
void* MapInMemoryRegion(s64 offset, size_t size, void* base);
///
/// Unmap a memory region previously mapped with MapInMemoryRegion().
///
/// @param view Pointer returned by MapInMemoryRegion().
/// @param size Size passed to the corresponding MapInMemoryRegion() call.
///
void UnmapFromMemoryRegion(void* view, size_t size);
private:
#ifdef _WIN32
WindowsMemoryRegion* EnsureSplitRegionForMapping(void* address, size_t size);
bool JoinRegionsAfterUnmap(void* address, size_t size);
std::vector<WindowsMemoryRegion> m_regions;
void* m_reserved_region = nullptr;
void* m_memory_handle = nullptr;
void* m_api_ms_win_core_memory_l1_1_6_handle = nullptr;
void* m_address_VirtualAlloc2 = nullptr;
void* m_address_MapViewOfFile3 = nullptr;
#else
int fd;
#endif
};
} // namespace Common