dolphin/Source/Core/VideoCommon/VertexLoader.h
2014-12-09 18:56:27 +01:00

224 lines
6.3 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
// Top vertex loaders
// Metroid Prime: P I16-flt N I16-s16 T0 I16-u16 T1 i16-flt
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include "Common/CommonTypes.h"
#include "Common/x64Emitter.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/VertexLoaderUtils.h"
#if _M_SSE >= 0x401
#include <smmintrin.h>
#include <emmintrin.h>
#elif _M_SSE >= 0x301 && !(defined __GNUC__ && !defined __SSSE3__)
#include <tmmintrin.h>
#endif
#ifdef _M_X86
#define USE_VERTEX_LOADER_JIT
#endif
// They are used for the communication with the loader functions
extern int tcIndex;
extern int colIndex;
extern int colElements[2];
GC_ALIGNED128(extern float posScale[4]);
GC_ALIGNED64(extern float tcScale[8][2]);
class VertexLoaderUID
{
u32 vid[5];
size_t hash;
public:
VertexLoaderUID()
{
}
VertexLoaderUID(const TVtxDesc& vtx_desc, const VAT& vat)
{
vid[0] = vtx_desc.Hex & 0xFFFFFFFF;
vid[1] = vtx_desc.Hex >> 32;
vid[2] = vat.g0.Hex & ~VAT_0_FRACBITS;
vid[3] = vat.g1.Hex & ~VAT_1_FRACBITS;
vid[4] = vat.g2.Hex & ~VAT_2_FRACBITS;
hash = CalculateHash();
}
bool operator < (const VertexLoaderUID &other) const
{
// This is complex because of speed.
if (vid[0] < other.vid[0])
return true;
else if (vid[0] > other.vid[0])
return false;
for (int i = 1; i < 5; ++i)
{
if (vid[i] < other.vid[i])
return true;
else if (vid[i] > other.vid[i])
return false;
}
return false;
}
bool operator == (const VertexLoaderUID& rh) const
{
return hash == rh.hash && std::equal(vid, vid + sizeof(vid) / sizeof(vid[0]), rh.vid);
}
size_t GetHash() const
{
return hash;
}
private:
size_t CalculateHash()
{
size_t h = -1;
for (auto word : vid)
{
h = h * 137 + word;
}
return h;
}
};
// ARMTODO: This should be done in a better way
#ifndef _M_GENERIC
class VertexLoader : public Gen::X64CodeBlock
#else
class VertexLoader
#endif
{
public:
VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr);
~VertexLoader();
int GetVertexSize() const {return m_VertexSize;}
u32 GetNativeComponents() const { return m_native_components; }
const PortableVertexDeclaration& GetNativeVertexDeclaration() const
{ return m_native_vtx_decl; }
void SetupRunVertices(const VAT& vat, int primitive, int const count);
int RunVertices(const VAT& vat, int primitive, int count, DataReader src, DataReader dst);
// For debugging / profiling
void AppendToString(std::string *dest) const;
int GetNumLoadedVerts() const { return m_numLoadedVertices; }
NativeVertexFormat* GetNativeVertexFormat();
static void ClearNativeVertexFormatCache() { s_native_vertex_map.clear(); }
private:
int m_VertexSize; // number of bytes of a raw GC vertex. Computed by CompileVertexTranslator.
// GC vertex format
TVtxAttr m_VtxAttr; // VAT decoded into easy format
TVtxDesc m_VtxDesc; // Not really used currently - or well it is, but could be easily avoided.
// PC vertex format
u32 m_native_components;
PortableVertexDeclaration m_native_vtx_decl;
#ifndef USE_VERTEX_LOADER_JIT
// Pipeline.
TPipelineFunction m_PipelineStages[64]; // TODO - figure out real max. it's lower.
int m_numPipelineStages;
#endif
const u8 *m_compiledCode;
int m_numLoadedVertices;
NativeVertexFormat* m_native_vertex_format;
static std::unordered_map<PortableVertexDeclaration, std::unique_ptr<NativeVertexFormat>> s_native_vertex_map;
void SetVAT(const VAT& vat);
void CompileVertexTranslator();
void ConvertVertices(int count);
void WriteCall(TPipelineFunction);
#ifndef _M_GENERIC
void WriteGetVariable(int bits, Gen::OpArg dest, void *address);
void WriteSetVariable(int bits, void *address, Gen::OpArg dest);
#endif
};
#if _M_SSE >= 0x301
static const __m128i kMaskSwap32_3 = _mm_set_epi32(0xFFFFFFFFL, 0x08090A0BL, 0x04050607L, 0x00010203L);
static const __m128i kMaskSwap32_2 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x04050607L, 0x00010203L);
static const __m128i kMaskSwap16to32l_3 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L);
static const __m128i kMaskSwap16to32l_2 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L);
static const __m128i kMaskSwap16to32h_3 = _mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL);
static const __m128i kMaskSwap16to32h_2 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL);
static const __m128i kMask8to32l_3 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L);
static const __m128i kMask8to32l_2 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L);
static const __m128i kMask8to32h_3 = _mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL);
static const __m128i kMask8to32h_2 = _mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL);
template <typename T, bool threeIn, bool threeOut>
__forceinline void Vertex_Read_SSSE3(const T* pData, __m128 scale)
{
__m128i coords, mask;
int loadBytes = sizeof(T) * (2 + threeIn);
if (loadBytes > 8)
coords = _mm_loadu_si128((__m128i*)pData);
else if (loadBytes > 4)
coords = _mm_loadl_epi64((__m128i*)pData);
else
coords = _mm_cvtsi32_si128(*(u32*)pData);
// Float case (no scaling)
if (sizeof(T) == 4)
{
coords = _mm_shuffle_epi8(coords, threeIn ? kMaskSwap32_3 : kMaskSwap32_2);
if (threeOut)
_mm_storeu_si128((__m128i*)g_vertex_manager_write_ptr, coords);
else
_mm_storel_epi64((__m128i*)g_vertex_manager_write_ptr, coords);
}
else
{
// Byte swap, unpack, and move to high bytes for sign extend.
if (std::is_unsigned<T>::value)
mask = sizeof(T) == 2 ? (threeIn ? kMaskSwap16to32l_3 : kMaskSwap16to32l_2) : (threeIn ? kMask8to32l_3 : kMask8to32l_2);
else
mask = sizeof(T) == 2 ? (threeIn ? kMaskSwap16to32h_3 : kMaskSwap16to32h_2) : (threeIn ? kMask8to32h_3 : kMask8to32h_2);
coords = _mm_shuffle_epi8(coords, mask);
// Sign extend
if (std::is_signed<T>::value)
coords = _mm_srai_epi32(coords, 32 - sizeof(T) * 8);
__m128 out = _mm_mul_ps(_mm_cvtepi32_ps(coords), scale);
if (threeOut)
_mm_storeu_ps((float*)g_vertex_manager_write_ptr, out);
else
_mm_storel_pi((__m64*)g_vertex_manager_write_ptr, out);
}
g_vertex_manager_write_ptr += sizeof(float) * (2 + threeOut);
}
#endif