dolphin/Source/Core/VideoCommon/RenderBase.cpp
Lioncash c85e0a2586 FramebufferManagerBase: Return a std::pair from GetTargetSize
Keeps associated data together. It also eliminates the possibility of out
parameters not being initialized properly. For example, consider the
following example:

-- some FramebufferManager implementation --

void FBMgrImpl::GetTargetSize(u32* width, u32* height) override
{
  // Do nothing
}

-- somewhere else where the function is used --

u32 width, height;
framebuffer_manager_instance->GetTargetSize(&width, &height);

if (texture_width != width) <-- Uninitialized variable usage
{
  ...
}

It makes it much more obvious to spot any initialization issues, because
it requires something to be returned, as opposed to allowing an
implementation to just not do anything.
2017-02-03 15:27:53 -05:00

943 lines
27 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#include "VideoCommon/RenderBase.h"
#include <cinttypes>
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include <tuple>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/FileUtil.h"
#include "Common/Flag.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Profiler.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "Common/Timer.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/Movie.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PostProcessing.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
// TODO: Move these out of here.
int frameCount;
int OSDChoice;
static int OSDTime;
std::unique_ptr<Renderer> g_renderer;
std::mutex Renderer::s_criticalScreenshot;
std::string Renderer::s_sScreenshotName;
Common::Event Renderer::s_screenshotCompleted;
Common::Flag Renderer::s_screenshot;
// The framebuffer size
int Renderer::s_target_width;
int Renderer::s_target_height;
// TODO: Add functionality to reinit all the render targets when the window is resized.
int Renderer::s_backbuffer_width;
int Renderer::s_backbuffer_height;
std::unique_ptr<PostProcessingShaderImplementation> Renderer::m_post_processor;
// Final surface changing
Common::Flag Renderer::s_surface_needs_change;
Common::Event Renderer::s_surface_changed;
void* Renderer::s_new_surface_handle;
TargetRectangle Renderer::target_rc;
int Renderer::s_last_efb_scale;
bool Renderer::XFBWrited;
PEControl::PixelFormat Renderer::prev_efb_format = PEControl::INVALID_FMT;
unsigned int Renderer::efb_scale_numeratorX = 1;
unsigned int Renderer::efb_scale_numeratorY = 1;
unsigned int Renderer::efb_scale_denominatorX = 1;
unsigned int Renderer::efb_scale_denominatorY = 1;
// The maximum depth that is written to the depth buffer should never exceed this value.
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
// floating-point round-trip errors. However the console GPU doesn't ever write a value
// to the depth buffer that exceeds 2^24 - 1.
const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
static float AspectToWidescreen(float aspect)
{
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
Renderer::Renderer()
{
UpdateActiveConfig();
OSDChoice = 0;
OSDTime = 0;
}
Renderer::~Renderer()
{
// invalidate previous efb format
prev_efb_format = PEControl::INVALID_FMT;
efb_scale_numeratorX = efb_scale_numeratorY = efb_scale_denominatorX = efb_scale_denominatorY = 1;
ShutdownFrameDumping();
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
}
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma)
{
CheckFifoRecording();
if (!fbStride || !fbHeight)
return;
XFBWrited = true;
if (g_ActiveConfig.bUseXFB)
{
FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma);
}
else
{
// The timing is not predictable here. So try to use the XFB path to dump frames.
u64 ticks = CoreTiming::GetTicks();
// below div two to convert from bytes to pixels - it expects width, not stride
Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, ticks, Gamma);
}
}
int Renderer::EFBToScaledX(int x)
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbWidth(x);
default:
return x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
};
}
int Renderer::EFBToScaledY(int y)
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbHeight(y);
default:
return y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
};
}
void Renderer::CalculateTargetScale(int x, int y, int* scaledX, int* scaledY)
{
if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
{
*scaledX = x;
*scaledY = y;
}
else
{
*scaledX = x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
*scaledY = y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
}
}
// return true if target size changed
bool Renderer::CalculateTargetSize()
{
int newEFBWidth, newEFBHeight;
newEFBWidth = newEFBHeight = 0;
// TODO: Ugly. Clean up
switch (s_last_efb_scale)
{
case SCALE_AUTO:
case SCALE_AUTO_INTEGRAL:
newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH);
newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT);
if (s_last_efb_scale == SCALE_AUTO_INTEGRAL)
{
efb_scale_numeratorX = efb_scale_numeratorY =
std::max((newEFBWidth - 1) / EFB_WIDTH + 1, (newEFBHeight - 1) / EFB_HEIGHT + 1);
efb_scale_denominatorX = efb_scale_denominatorY = 1;
newEFBWidth = EFBToScaledX(EFB_WIDTH);
newEFBHeight = EFBToScaledY(EFB_HEIGHT);
}
else
{
efb_scale_numeratorX = newEFBWidth;
efb_scale_denominatorX = EFB_WIDTH;
efb_scale_numeratorY = newEFBHeight;
efb_scale_denominatorY = EFB_HEIGHT;
}
break;
case SCALE_1X:
efb_scale_numeratorX = efb_scale_numeratorY = 1;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case SCALE_1_5X:
efb_scale_numeratorX = efb_scale_numeratorY = 3;
efb_scale_denominatorX = efb_scale_denominatorY = 2;
break;
case SCALE_2X:
efb_scale_numeratorX = efb_scale_numeratorY = 2;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case SCALE_2_5X:
efb_scale_numeratorX = efb_scale_numeratorY = 5;
efb_scale_denominatorX = efb_scale_denominatorY = 2;
break;
default:
efb_scale_numeratorX = efb_scale_numeratorY = s_last_efb_scale - 3;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
const u32 max_size = GetMaxTextureSize();
if (max_size < EFB_WIDTH * efb_scale_numeratorX / efb_scale_denominatorX)
{
efb_scale_numeratorX = efb_scale_numeratorY = (max_size / EFB_WIDTH);
efb_scale_denominatorX = efb_scale_denominatorY = 1;
}
break;
}
if (s_last_efb_scale > SCALE_AUTO_INTEGRAL)
CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, &newEFBWidth, &newEFBHeight);
if (newEFBWidth != s_target_width || newEFBHeight != s_target_height)
{
s_target_width = newEFBWidth;
s_target_height = newEFBHeight;
return true;
}
return false;
}
void Renderer::ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc,
TargetRectangle& rightRc)
{
// Resize target to half its original size
TargetRectangle drawRc = rc;
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
{
// The height may be negative due to flipped rectangles
int height = rc.bottom - rc.top;
drawRc.top += height / 4;
drawRc.bottom -= height / 4;
}
else
{
int width = rc.right - rc.left;
drawRc.left += width / 4;
drawRc.right -= width / 4;
}
// Create two target rectangle offset to the sides of the backbuffer
leftRc = drawRc, rightRc = drawRc;
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
{
leftRc.top -= s_backbuffer_height / 4;
leftRc.bottom -= s_backbuffer_height / 4;
rightRc.top += s_backbuffer_height / 4;
rightRc.bottom += s_backbuffer_height / 4;
}
else
{
leftRc.left -= s_backbuffer_width / 4;
leftRc.right -= s_backbuffer_width / 4;
rightRc.left += s_backbuffer_width / 4;
rightRc.right += s_backbuffer_width / 4;
}
}
void Renderer::SetScreenshot(const std::string& filename)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
s_sScreenshotName = filename;
s_screenshot.Set();
}
// Create On-Screen-Messages
void Renderer::DrawDebugText()
{
std::string final_yellow, final_cyan;
if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount)
{
if (g_ActiveConfig.bShowFPS)
final_cyan += StringFromFormat("FPS: %u", g_renderer->m_fps_counter.GetFPS());
if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount)
final_cyan += " - ";
if (SConfig::GetInstance().m_ShowFrameCount)
{
final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame());
if (Movie::IsPlayingInput())
final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64,
Movie::GetCurrentInputCount(), Movie::GetTotalInputCount());
}
final_cyan += "\n";
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowLag)
{
final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount());
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowInputDisplay)
{
final_cyan += Movie::GetInputDisplay();
final_yellow += "\n";
}
if (SConfig::GetInstance().m_ShowRTC)
{
final_cyan += Movie::GetRTCDisplay();
final_yellow += "\n";
}
// OSD Menu messages
if (OSDChoice > 0)
{
OSDTime = Common::Timer::GetTimeMs() + 3000;
OSDChoice = -OSDChoice;
}
if ((u32)OSDTime > Common::Timer::GetTimeMs())
{
std::string res_text;
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO:
res_text = "Auto (fractional)";
break;
case SCALE_AUTO_INTEGRAL:
res_text = "Auto (integral)";
break;
case SCALE_1X:
res_text = "Native";
break;
case SCALE_1_5X:
res_text = "1.5x";
break;
case SCALE_2X:
res_text = "2x";
break;
case SCALE_2_5X:
res_text = "2.5x";
break;
default:
res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale - 3);
break;
}
const char* ar_text = "";
switch (g_ActiveConfig.iAspectRatio)
{
case ASPECT_AUTO:
ar_text = "Auto";
break;
case ASPECT_STRETCH:
ar_text = "Stretch";
break;
case ASPECT_ANALOG:
ar_text = "Force 4:3";
break;
case ASPECT_ANALOG_WIDE:
ar_text = "Force 16:9";
}
const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM";
// The rows
const std::string lines[] = {
std::string("Internal Resolution: ") + res_text,
std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
std::string("Copy EFB: ") + efbcopy_text,
std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
SConfig::GetInstance().m_EmulationSpeed <= 0 ?
"Speed Limit: Unlimited" :
StringFromFormat("Speed Limit: %li%%",
std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)),
};
enum
{
lines_count = sizeof(lines) / sizeof(*lines)
};
// The latest changed setting in yellow
for (int i = 0; i != lines_count; ++i)
{
if (OSDChoice == -i - 1)
final_yellow += lines[i];
final_yellow += '\n';
}
// The other settings in cyan
for (int i = 0; i != lines_count; ++i)
{
if (OSDChoice != -i - 1)
final_cyan += lines[i];
final_cyan += '\n';
}
}
final_cyan += Common::Profiler::ToString();
if (g_ActiveConfig.bOverlayStats)
final_cyan += Statistics::ToString();
if (g_ActiveConfig.bOverlayProjStats)
final_cyan += Statistics::ToStringProj();
// and then the text
g_renderer->RenderText(final_cyan, 20, 20, 0xFF00FFFF);
g_renderer->RenderText(final_yellow, 20, 20, 0xFFFFFF00);
}
float Renderer::CalculateDrawAspectRatio(int target_width, int target_height)
{
// The dimensions are the sizes that are used to create the EFB/backbuffer textures, so
// they should always be greater than zero.
_assert_(target_width > 0 && target_height > 0);
if (g_ActiveConfig.iAspectRatio == ASPECT_STRETCH)
{
// If stretch is enabled, we prefer the aspect ratio of the window.
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
(static_cast<float>(s_backbuffer_width) / static_cast<float>(s_backbuffer_height));
}
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide))
{
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
AspectToWidescreen(VideoInterface::GetAspectRatio());
}
else
{
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
VideoInterface::GetAspectRatio();
}
}
std::tuple<float, float> Renderer::ScaleToDisplayAspectRatio(const int width, const int height)
{
// Scale either the width or height depending the content aspect ratio.
// This way we preserve as much resolution as possible when scaling.
float ratio = CalculateDrawAspectRatio(width, height);
if (ratio >= 1.0f)
{
// Preserve horizontal resolution, scale vertically.
return std::make_tuple(static_cast<float>(width), static_cast<float>(height) * ratio);
}
// Preserve vertical resolution, scale horizontally.
return std::make_tuple(static_cast<float>(width) / ratio, static_cast<float>(height));
}
TargetRectangle Renderer::CalculateFrameDumpDrawRectangle()
{
// No point including any borders in the frame dump image, since they'd have to be cropped anyway.
TargetRectangle rc;
rc.left = 0;
rc.top = 0;
// If full-resolution frame dumping is disabled, just use the window draw rectangle.
// Also do this if RealXFB is enabled, since the image has been downscaled for the XFB copy
// anyway, and there's no point writing an upscaled frame with no filtering.
if (!g_ActiveConfig.bInternalResolutionFrameDumps || g_ActiveConfig.RealXFBEnabled())
{
// But still remove the borders, since the caller expects this.
rc.right = target_rc.GetWidth();
rc.bottom = target_rc.GetHeight();
return rc;
}
// Grab the dimensions of the EFB textures, we scale either of these depending on the ratio.
u32 efb_width, efb_height;
std::tie(efb_width, efb_height) = g_framebuffer_manager->GetTargetSize();
float draw_width, draw_height;
std::tie(draw_width, draw_height) = ScaleToDisplayAspectRatio(efb_width, efb_height);
rc.right = static_cast<int>(std::ceil(draw_width));
rc.bottom = static_cast<int>(std::ceil(draw_height));
return rc;
}
void Renderer::UpdateDrawRectangle()
{
float FloatGLWidth = static_cast<float>(s_backbuffer_width);
float FloatGLHeight = static_cast<float>(s_backbuffer_height);
float FloatXOffset = 0;
float FloatYOffset = 0;
// The rendering window size
const float WinWidth = FloatGLWidth;
const float WinHeight = FloatGLHeight;
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if (g_ActiveConfig.bWidescreenHack)
{
float source_aspect = VideoInterface::GetAspectRatio();
if (Core::g_aspect_wide)
source_aspect = AspectToWidescreen(source_aspect);
float target_aspect;
switch (g_ActiveConfig.iAspectRatio)
{
case ASPECT_STRETCH:
target_aspect = WinWidth / WinHeight;
break;
case ASPECT_ANALOG:
target_aspect = VideoInterface::GetAspectRatio();
break;
case ASPECT_ANALOG_WIDE:
target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio());
break;
default:
// ASPECT_AUTO
target_aspect = source_aspect;
break;
}
float adjust = source_aspect / target_aspect;
if (adjust > 1)
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1 / adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
// Check for force-settings and override.
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
float Ratio = CalculateDrawAspectRatio(s_backbuffer_width, s_backbuffer_height);
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
if (Ratio >= 0.995f && Ratio <= 1.005f)
{
// If we're very close already, don't scale.
Ratio = 1.0f;
}
else if (Ratio > 1.0f)
{
// Scale down and center in the X direction.
FloatGLWidth /= Ratio;
FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
}
// The window is too high, we have to limit the height
else
{
// Scale down and center in the Y direction.
FloatGLHeight *= Ratio;
FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
}
}
// -----------------------------------------------------------------------
// Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9.
// Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
// ------------------
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
{
Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio();
if (Ratio <= 1.0f)
{
Ratio = 1.0f / Ratio;
}
// The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is
// adjusted)
float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
// The new width and height
FloatGLWidth = FloatGLWidth * Ratio;
FloatGLHeight = FloatGLHeight * Ratio;
// Adjust the X and Y offset
FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
}
int XOffset = (int)(FloatXOffset + 0.5f);
int YOffset = (int)(FloatYOffset + 0.5f);
int iWhidth = (int)ceil(FloatGLWidth);
int iHeight = (int)ceil(FloatGLHeight);
iWhidth -=
iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders
iHeight -= iHeight % 4;
target_rc.left = XOffset;
target_rc.top = YOffset;
target_rc.right = XOffset + iWhidth;
target_rc.bottom = YOffset + iHeight;
}
void Renderer::SetWindowSize(int width, int height)
{
if (width < 1)
width = 1;
if (height < 1)
height = 1;
// Scale the window size by the EFB scale.
CalculateTargetScale(width, height, &width, &height);
float scaled_width, scaled_height;
std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height);
if (g_ActiveConfig.bCrop)
{
// Force 4:3 or 16:9 by cropping the image.
float current_aspect = scaled_width / scaled_height;
float expected_aspect =
(g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide)) ?
(16.0f / 9.0f) :
(4.0f / 3.0f);
if (current_aspect > expected_aspect)
{
// keep height, crop width
scaled_width = scaled_height * expected_aspect;
}
else
{
// keep width, crop height
scaled_height = scaled_width / expected_aspect;
}
}
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
// UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
// encoders, so do that here too to match it
width -= width % 4;
height -= height % 4;
Host_RequestRenderWindowSize(width, height);
}
void Renderer::CheckFifoRecording()
{
bool wasRecording = g_bRecordFifoData;
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
if (g_bRecordFifoData)
{
if (!wasRecording)
{
RecordVideoMemory();
}
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase,
CommandProcessor::fifo.CPEnd);
}
}
void Renderer::RecordVideoMemory()
{
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
u32 cpmem[256] = {};
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
// that split here.
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
FillCPMemoryArray(cpmem);
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
texMem);
}
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
u64 ticks, float Gamma)
{
// TODO: merge more generic parts into VideoCommon
g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, ticks, Gamma);
if (XFBWrited)
g_renderer->m_fps_counter.Update();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
Core::Callback_VideoCopiedToXFB(XFBWrited ||
(g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
}
bool Renderer::IsFrameDumping()
{
if (s_screenshot.IsSet())
return true;
#if defined(HAVE_LIBAV) || defined(_WIN32)
if (SConfig::GetInstance().m_DumpFrames)
return true;
#endif
ShutdownFrameDumping();
return false;
}
void Renderer::ShutdownFrameDumping()
{
if (!m_frame_dump_thread_running.IsSet())
return;
FinishFrameData();
m_frame_dump_thread_running.Clear();
m_frame_dump_start.Set();
}
void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state,
bool swap_upside_down)
{
FinishFrameData();
m_frame_dump_config = FrameDumpConfig{data, w, h, stride, swap_upside_down, state};
if (!m_frame_dump_thread_running.IsSet())
{
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
m_frame_dump_thread_running.Set();
m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this);
}
m_frame_dump_start.Set();
m_frame_dump_frame_running = true;
}
void Renderer::FinishFrameData()
{
if (!m_frame_dump_frame_running)
return;
m_frame_dump_done.Wait();
m_frame_dump_frame_running = false;
}
void Renderer::RunFrameDumps()
{
Common::SetCurrentThreadName("FrameDumping");
bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages;
bool frame_dump_started = false;
// If Dolphin was compiled without libav, we only support dumping to images.
#if !defined(HAVE_LIBAV) && !defined(_WIN32)
if (dump_to_avi)
{
WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. "
"Frame dump will be saved as images instead.");
dump_to_avi = false;
}
#endif
while (true)
{
m_frame_dump_start.Wait();
if (!m_frame_dump_thread_running.IsSet())
break;
auto config = m_frame_dump_config;
if (config.upside_down)
{
config.data = config.data + (config.height - 1) * config.stride;
config.stride = -config.stride;
}
// Save screenshot
if (s_screenshot.TestAndClear())
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
if (TextureToPng(config.data, config.stride, s_sScreenshotName, config.width, config.height,
false))
OSD::AddMessage("Screenshot saved to " + s_sScreenshotName);
// Reset settings
s_sScreenshotName.clear();
s_screenshotCompleted.Set();
}
if (SConfig::GetInstance().m_DumpFrames)
{
if (!frame_dump_started)
{
if (dump_to_avi)
frame_dump_started = StartFrameDumpToAVI(config);
else
frame_dump_started = StartFrameDumpToImage(config);
// Stop frame dumping if we fail to start.
if (!frame_dump_started)
SConfig::GetInstance().m_DumpFrames = false;
}
// If we failed to start frame dumping, don't write a frame.
if (frame_dump_started)
{
if (dump_to_avi)
DumpFrameToAVI(config);
else
DumpFrameToImage(config);
}
}
m_frame_dump_done.Set();
}
if (frame_dump_started)
{
// No additional cleanup is needed when dumping to images.
if (dump_to_avi)
StopFrameDumpToAVI();
}
}
#if defined(HAVE_LIBAV) || defined(_WIN32)
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
{
return AVIDump::Start(config.width, config.height);
}
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
{
AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state);
}
void Renderer::StopFrameDumpToAVI()
{
AVIDump::Stop();
}
#else
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
{
return false;
}
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
{
}
void Renderer::StopFrameDumpToAVI()
{
}
#endif // defined(HAVE_LIBAV) || defined(WIN32)
std::string Renderer::GetFrameDumpNextImageFileName() const
{
return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(),
m_frame_dump_image_counter);
}
bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config)
{
m_frame_dump_image_counter = 1;
if (!SConfig::GetInstance().m_DumpFramesSilent)
{
// Only check for the presence of the first image to confirm overwriting.
// A previous run will always have at least one image, and it's safe to assume that if the user
// has allowed the first image to be overwritten, this will apply any remaining images as well.
std::string filename = GetFrameDumpNextImageFileName();
if (File::Exists(filename))
{
if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str()))
return false;
}
}
return true;
}
void Renderer::DumpFrameToImage(const FrameDumpConfig& config)
{
std::string filename = GetFrameDumpNextImageFileName();
TextureToPng(config.data, config.stride, filename, config.width, config.height, false);
m_frame_dump_image_counter++;
}