dolphin/Source/Core/VideoCommon/XFStructs.cpp
JosJuice 54773bc5d2 VideoCommon: Remove calls to GetPointer
This fourth part of my series of patches to get rid of unsafe uses of
GetPointer takes care of the "easy" cases in VideoCommon. Three uses of
GetPointer now remain in Dolphin: VertexLoaderManager, TextureInfo, and
the software renderer's TextureSampler.
2024-04-09 21:08:57 +02:00

658 lines
22 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/XFStructs.h"
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/Swap.h"
#include "Core/DolphinAnalytics.h"
#include "Core/HW/Memmap.h"
#include "Core/System.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/Fifo.h"
#include "VideoCommon/GeometryShaderManager.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/XFMemory.h"
#include "VideoCommon/XFStateManager.h"
static void XFMemWritten(XFStateManager& xf_state_manager, u32 transferSize, u32 baseAddress)
{
g_vertex_manager->Flush();
xf_state_manager.InvalidateXFRange(baseAddress, baseAddress + transferSize);
}
static void XFRegWritten(Core::System& system, XFStateManager& xf_state_manager, u32 address,
u32 value)
{
if (address >= XFMEM_REGISTERS_START && address < XFMEM_REGISTERS_END)
{
switch (address)
{
case XFMEM_ERROR:
case XFMEM_DIAG:
case XFMEM_STATE0: // internal state 0
case XFMEM_STATE1: // internal state 1
case XFMEM_CLOCK:
case XFMEM_SETGPMETRIC:
// Not implemented
break;
case XFMEM_CLIPDISABLE:
{
ClipDisable setting{.hex = value};
if (setting.disable_clipping_detection)
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::SETS_XF_CLIPDISABLE_BIT_0);
if (setting.disable_trivial_rejection)
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::SETS_XF_CLIPDISABLE_BIT_1);
if (setting.disable_cpoly_clipping_acceleration)
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::SETS_XF_CLIPDISABLE_BIT_2);
break;
}
case XFMEM_VTXSPECS: //__GXXfVtxSpecs, wrote 0004
VertexLoaderManager::g_needs_cp_xf_consistency_check = true;
break;
case XFMEM_SETNUMCHAN:
if (xfmem.numChan.numColorChans != (value & 3))
g_vertex_manager->Flush();
xf_state_manager.SetLightingConfigChanged();
break;
case XFMEM_SETCHAN0_AMBCOLOR: // Channel Ambient Color
case XFMEM_SETCHAN1_AMBCOLOR:
{
u8 chan = address - XFMEM_SETCHAN0_AMBCOLOR;
if (xfmem.ambColor[chan] != value)
{
g_vertex_manager->Flush();
xf_state_manager.SetMaterialColorChanged(chan);
}
break;
}
case XFMEM_SETCHAN0_MATCOLOR: // Channel Material Color
case XFMEM_SETCHAN1_MATCOLOR:
{
u8 chan = address - XFMEM_SETCHAN0_MATCOLOR;
if (xfmem.matColor[chan] != value)
{
g_vertex_manager->Flush();
xf_state_manager.SetMaterialColorChanged(chan + 2);
}
break;
}
case XFMEM_SETCHAN0_COLOR: // Channel Color
case XFMEM_SETCHAN1_COLOR:
case XFMEM_SETCHAN0_ALPHA: // Channel Alpha
case XFMEM_SETCHAN1_ALPHA:
if (((u32*)&xfmem)[address] != (value & 0x7fff))
g_vertex_manager->Flush();
xf_state_manager.SetLightingConfigChanged();
break;
case XFMEM_DUALTEX:
if (xfmem.dualTexTrans.enabled != bool(value & 1))
g_vertex_manager->Flush();
xf_state_manager.SetTexMatrixInfoChanged(-1);
break;
case XFMEM_SETMATRIXINDA:
xf_state_manager.SetTexMatrixChangedA(value);
VertexLoaderManager::g_needs_cp_xf_consistency_check = true;
break;
case XFMEM_SETMATRIXINDB:
xf_state_manager.SetTexMatrixChangedB(value);
VertexLoaderManager::g_needs_cp_xf_consistency_check = true;
break;
case XFMEM_SETVIEWPORT:
case XFMEM_SETVIEWPORT + 1:
case XFMEM_SETVIEWPORT + 2:
case XFMEM_SETVIEWPORT + 3:
case XFMEM_SETVIEWPORT + 4:
case XFMEM_SETVIEWPORT + 5:
g_vertex_manager->Flush();
xf_state_manager.SetViewportChanged();
system.GetPixelShaderManager().SetViewportChanged();
system.GetGeometryShaderManager().SetViewportChanged();
break;
case XFMEM_SETPROJECTION:
case XFMEM_SETPROJECTION + 1:
case XFMEM_SETPROJECTION + 2:
case XFMEM_SETPROJECTION + 3:
case XFMEM_SETPROJECTION + 4:
case XFMEM_SETPROJECTION + 5:
case XFMEM_SETPROJECTION + 6:
g_vertex_manager->Flush();
xf_state_manager.SetProjectionChanged();
system.GetGeometryShaderManager().SetProjectionChanged();
break;
case XFMEM_SETNUMTEXGENS: // GXSetNumTexGens
if (xfmem.numTexGen.numTexGens != (value & 15))
g_vertex_manager->Flush();
break;
case XFMEM_SETTEXMTXINFO:
case XFMEM_SETTEXMTXINFO + 1:
case XFMEM_SETTEXMTXINFO + 2:
case XFMEM_SETTEXMTXINFO + 3:
case XFMEM_SETTEXMTXINFO + 4:
case XFMEM_SETTEXMTXINFO + 5:
case XFMEM_SETTEXMTXINFO + 6:
case XFMEM_SETTEXMTXINFO + 7:
g_vertex_manager->Flush();
xf_state_manager.SetTexMatrixInfoChanged(address - XFMEM_SETTEXMTXINFO);
break;
case XFMEM_SETPOSTMTXINFO:
case XFMEM_SETPOSTMTXINFO + 1:
case XFMEM_SETPOSTMTXINFO + 2:
case XFMEM_SETPOSTMTXINFO + 3:
case XFMEM_SETPOSTMTXINFO + 4:
case XFMEM_SETPOSTMTXINFO + 5:
case XFMEM_SETPOSTMTXINFO + 6:
case XFMEM_SETPOSTMTXINFO + 7:
g_vertex_manager->Flush();
xf_state_manager.SetTexMatrixInfoChanged(address - XFMEM_SETPOSTMTXINFO);
break;
// --------------
// Unknown Regs
// --------------
// Maybe these are for Normals?
case 0x1048: // xfmem.texcoords[0].nrmmtxinfo.hex = data; break; ??
case 0x1049:
case 0x104a:
case 0x104b:
case 0x104c:
case 0x104d:
case 0x104e:
case 0x104f:
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_UNKNOWN_XF_COMMAND);
DEBUG_LOG_FMT(VIDEO, "Possible Normal Mtx XF reg?: {:x}={:x}", address, value);
break;
case 0x1013:
case 0x1014:
case 0x1015:
case 0x1016:
case 0x1017:
default:
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_UNKNOWN_XF_COMMAND);
WARN_LOG_FMT(VIDEO, "Unknown XF Reg: {:x}={:x}", address, value);
break;
}
}
}
void LoadXFReg(u16 base_address, u8 transfer_size, const u8* data)
{
if (base_address > XFMEM_REGISTERS_END)
{
WARN_LOG_FMT(VIDEO, "XF load base address past end of address space: {:x} {} bytes",
base_address, transfer_size);
return;
}
u32 end_address = base_address + transfer_size; // exclusive
// do not allow writes past registers
if (end_address > XFMEM_REGISTERS_END)
{
WARN_LOG_FMT(VIDEO, "XF load ends past end of address space: {:x} {} bytes", base_address,
transfer_size);
end_address = XFMEM_REGISTERS_END;
}
auto& system = Core::System::GetInstance();
auto& xf_state_manager = system.GetXFStateManager();
// write to XF mem
if (base_address < XFMEM_REGISTERS_START)
{
const u32 xf_mem_base = base_address;
u32 xf_mem_transfer_size = transfer_size;
if (end_address > XFMEM_REGISTERS_START)
{
xf_mem_transfer_size = XFMEM_REGISTERS_START - base_address;
base_address = XFMEM_REGISTERS_START;
}
XFMemWritten(xf_state_manager, xf_mem_transfer_size, xf_mem_base);
for (u32 i = 0; i < xf_mem_transfer_size; i++)
{
((u32*)&xfmem)[xf_mem_base + i] = Common::swap32(data);
data += 4;
}
}
// write to XF regs
if (base_address >= XFMEM_REGISTERS_START)
{
for (u32 address = base_address; address < end_address; address++)
{
const u32 value = Common::swap32(data);
XFRegWritten(system, xf_state_manager, address, value);
((u32*)&xfmem)[address] = value;
data += 4;
}
}
}
// TODO - verify that it is correct. Seems to work, though.
void LoadIndexedXF(CPArray array, u32 index, u16 address, u8 size)
{
// load stuff from array to address in xf mem
const u32 buf_size = size * sizeof(u32);
u32* currData = reinterpret_cast<u32*>(&xfmem) + address;
u32* newData;
auto& system = Core::System::GetInstance();
auto& fifo = system.GetFifo();
if (fifo.UseDeterministicGPUThread())
{
newData = reinterpret_cast<u32*>(fifo.PopFifoAuxBuffer(buf_size));
}
else
{
auto& memory = system.GetMemory();
newData = reinterpret_cast<u32*>(memory.GetPointerForRange(
g_main_cp_state.array_bases[array] + g_main_cp_state.array_strides[array] * index,
buf_size));
}
auto& xf_state_manager = system.GetXFStateManager();
bool changed = false;
for (u32 i = 0; i < size; ++i)
{
if (currData[i] != Common::swap32(newData[i]))
{
changed = true;
XFMemWritten(xf_state_manager, size, address);
break;
}
}
if (changed)
{
for (u32 i = 0; i < size; ++i)
currData[i] = Common::swap32(newData[i]);
}
}
void PreprocessIndexedXF(CPArray array, u32 index, u16 address, u8 size)
{
const size_t buf_size = size * sizeof(u32);
auto& system = Core::System::GetInstance();
auto& memory = system.GetMemory();
const u8* new_data = memory.GetPointerForRange(
g_preprocess_cp_state.array_bases[array] + g_preprocess_cp_state.array_strides[array] * index,
buf_size);
system.GetFifo().PushFifoAuxBuffer(new_data, buf_size);
}
std::pair<std::string, std::string> GetXFRegInfo(u32 address, u32 value)
{
// Macro to set the register name and make sure it was written correctly via compile time assertion
#define RegName(reg) ((void)(reg), #reg)
#define DescriptionlessReg(reg) std::make_pair(RegName(reg), "");
switch (address)
{
case XFMEM_ERROR:
return DescriptionlessReg(XFMEM_ERROR);
case XFMEM_DIAG:
return DescriptionlessReg(XFMEM_DIAG);
case XFMEM_STATE0: // internal state 0
return std::make_pair(RegName(XFMEM_STATE0), "internal state 0");
case XFMEM_STATE1: // internal state 1
return std::make_pair(RegName(XFMEM_STATE1), "internal state 1");
case XFMEM_CLOCK:
return DescriptionlessReg(XFMEM_CLOCK);
case XFMEM_SETGPMETRIC:
return DescriptionlessReg(XFMEM_SETGPMETRIC);
case XFMEM_CLIPDISABLE:
return std::make_pair(RegName(XFMEM_CLIPDISABLE), fmt::to_string(ClipDisable{.hex = value}));
case XFMEM_VTXSPECS:
return std::make_pair(RegName(XFMEM_VTXSPECS), fmt::to_string(INVTXSPEC{.hex = value}));
case XFMEM_SETNUMCHAN:
return std::make_pair(RegName(XFMEM_SETNUMCHAN),
fmt::format("Number of color channels: {}", value & 3));
break;
case XFMEM_SETCHAN0_AMBCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN0_AMBCOLOR),
fmt::format("Channel 0 Ambient Color: {:08x}", value));
case XFMEM_SETCHAN1_AMBCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN1_AMBCOLOR),
fmt::format("Channel 1 Ambient Color: {:08x}", value));
case XFMEM_SETCHAN0_MATCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN0_MATCOLOR),
fmt::format("Channel 0 Material Color: {:08x}", value));
case XFMEM_SETCHAN1_MATCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN1_MATCOLOR),
fmt::format("Channel 1 Material Color: {:08x}", value));
case XFMEM_SETCHAN0_COLOR: // Channel Color
return std::make_pair(RegName(XFMEM_SETCHAN0_COLOR),
fmt::format("Channel 0 Color config:\n{}", LitChannel{.hex = value}));
case XFMEM_SETCHAN1_COLOR:
return std::make_pair(RegName(XFMEM_SETCHAN1_COLOR),
fmt::format("Channel 1 Color config:\n{}", LitChannel{.hex = value}));
case XFMEM_SETCHAN0_ALPHA: // Channel Alpha
return std::make_pair(RegName(XFMEM_SETCHAN0_ALPHA),
fmt::format("Channel 0 Alpha config:\n{}", LitChannel{.hex = value}));
case XFMEM_SETCHAN1_ALPHA:
return std::make_pair(RegName(XFMEM_SETCHAN1_ALPHA),
fmt::format("Channel 1 Alpha config:\n{}", LitChannel{.hex = value}));
case XFMEM_DUALTEX:
return std::make_pair(RegName(XFMEM_DUALTEX),
fmt::format("Dual Tex Trans {}", (value & 1) ? "enabled" : "disabled"));
case XFMEM_SETMATRIXINDA:
return std::make_pair(RegName(XFMEM_SETMATRIXINDA),
fmt::format("Matrix index A:\n{}", TMatrixIndexA{.Hex = value}));
case XFMEM_SETMATRIXINDB:
return std::make_pair(RegName(XFMEM_SETMATRIXINDB),
fmt::format("Matrix index B:\n{}", TMatrixIndexB{.Hex = value}));
case XFMEM_SETVIEWPORT:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 0),
fmt::format("Viewport width: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 1:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 1),
fmt::format("Viewport height: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 2:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 2),
fmt::format("Viewport z range: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 3:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 3),
fmt::format("Viewport x origin: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 4:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 4),
fmt::format("Viewport y origin: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 5:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 5),
fmt::format("Viewport far z: {}", Common::BitCast<float>(value)));
break;
case XFMEM_SETPROJECTION:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 0),
fmt::format("Projection[0]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 1:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 1),
fmt::format("Projection[1]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 2:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 2),
fmt::format("Projection[2]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 3:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 3),
fmt::format("Projection[3]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 4:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 4),
fmt::format("Projection[4]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 5:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 5),
fmt::format("Projection[5]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 6:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 6),
fmt::to_string(static_cast<ProjectionType>(value)));
case XFMEM_SETNUMTEXGENS:
return std::make_pair(RegName(XFMEM_SETNUMTEXGENS),
fmt::format("Number of tex gens: {}", value & 15));
case XFMEM_SETTEXMTXINFO:
case XFMEM_SETTEXMTXINFO + 1:
case XFMEM_SETTEXMTXINFO + 2:
case XFMEM_SETTEXMTXINFO + 3:
case XFMEM_SETTEXMTXINFO + 4:
case XFMEM_SETTEXMTXINFO + 5:
case XFMEM_SETTEXMTXINFO + 6:
case XFMEM_SETTEXMTXINFO + 7:
return std::make_pair(
fmt::format("XFMEM_SETTEXMTXINFO Matrix {}", address - XFMEM_SETTEXMTXINFO),
fmt::to_string(TexMtxInfo{.hex = value}));
case XFMEM_SETPOSTMTXINFO:
case XFMEM_SETPOSTMTXINFO + 1:
case XFMEM_SETPOSTMTXINFO + 2:
case XFMEM_SETPOSTMTXINFO + 3:
case XFMEM_SETPOSTMTXINFO + 4:
case XFMEM_SETPOSTMTXINFO + 5:
case XFMEM_SETPOSTMTXINFO + 6:
case XFMEM_SETPOSTMTXINFO + 7:
return std::make_pair(
fmt::format("XFMEM_SETPOSTMTXINFO Matrix {}", address - XFMEM_SETPOSTMTXINFO),
fmt::to_string(PostMtxInfo{.hex = value}));
// --------------
// Unknown Regs
// --------------
// Maybe these are for Normals?
case 0x1048: // xfmem.texcoords[0].nrmmtxinfo.hex = data; break; ??
case 0x1049:
case 0x104a:
case 0x104b:
case 0x104c:
case 0x104d:
case 0x104e:
case 0x104f:
return std::make_pair(
fmt::format("Possible Normal Mtx XF reg?: {:x}={:x}", address, value),
"Maybe these are for Normals? xfmem.texcoords[0].nrmmtxinfo.hex = data; break; ??");
break;
case 0x1013:
case 0x1014:
case 0x1015:
case 0x1016:
case 0x1017:
default:
return std::make_pair(fmt::format("Unknown XF Reg: {:x}={:x}", address, value), "");
}
#undef RegName
#undef DescriptionlessReg
}
std::string GetXFMemName(u32 address)
{
if (address >= XFMEM_POSMATRICES && address < XFMEM_POSMATRICES_END)
{
const u32 row = (address - XFMEM_POSMATRICES) / 4;
const u32 col = (address - XFMEM_POSMATRICES) % 4;
return fmt::format("Position matrix row {:2d} col {:2d}", row, col);
}
else if (address >= XFMEM_NORMALMATRICES && address < XFMEM_NORMALMATRICES_END)
{
const u32 row = (address - XFMEM_NORMALMATRICES) / 3;
const u32 col = (address - XFMEM_NORMALMATRICES) % 3;
return fmt::format("Normal matrix row {:2d} col {:2d}", row, col);
}
else if (address >= XFMEM_POSTMATRICES && address < XFMEM_POSTMATRICES_END)
{
const u32 row = (address - XFMEM_POSTMATRICES) / 4;
const u32 col = (address - XFMEM_POSTMATRICES) % 4;
return fmt::format("Post matrix row {:2d} col {:2d}", row, col);
}
else if (address >= XFMEM_LIGHTS && address < XFMEM_LIGHTS_END)
{
const u32 light = (address - XFMEM_LIGHTS) / 16;
const u32 offset = (address - XFMEM_LIGHTS) % 16;
switch (offset)
{
default:
return fmt::format("Light {} unused param {}", light, offset);
case 3:
return fmt::format("Light {} color", light);
case 4:
case 5:
case 6:
return fmt::format("Light {} cosine attenuation {}", light, offset - 4);
case 7:
case 8:
case 9:
return fmt::format("Light {} distance attenuation {}", light, offset - 7);
case 10:
case 11:
case 12:
// Yagcd says light pos or "inf ldir", while dolphin has a union for dpos and sdir with only
// dpos being used nowadays. As far as I can tell only the DX9 engine once at
// Source/Plugins/Plugin_VideoDX9/Src/TransformEngine.cpp used sdir directly...
return fmt::format("Light {0} {1} position or inf ldir {1}", light, "xyz"[offset - 10]);
case 13:
case 14:
case 15:
// Yagcd says light dir or "1/2 angle", dolphin has union for ddir or shalfangle.
// It would make sense if d stood for direction and s for specular, but it's ddir and
// shalfangle that have the comment "specular lights only", both at the same offset,
// while dpos and sdir have none...
return fmt::format("Light {0} {1} direction or half angle {1}", light, "xyz"[offset - 13]);
}
}
else
{
return fmt::format("Unknown memory {:04x}", address);
}
}
std::string GetXFMemDescription(u32 address, u32 value)
{
if ((address >= XFMEM_POSMATRICES && address < XFMEM_POSMATRICES_END) ||
(address >= XFMEM_NORMALMATRICES && address < XFMEM_NORMALMATRICES_END) ||
(address >= XFMEM_POSTMATRICES && address < XFMEM_POSTMATRICES_END))
{
// The matrices all use floats
return fmt::format("{} = {}", GetXFMemName(address), Common::BitCast<float>(value));
}
else if (address >= XFMEM_LIGHTS && address < XFMEM_LIGHTS_END)
{
// Each light is 16 words; for this function we don't care which light it is
const u32 offset = (address - XFMEM_LIGHTS) % 16;
if (offset <= 3)
{
// The unused parameters (0, 1, 2) and the color (3) should be hex-formatted
return fmt::format("{} = {:08x}", GetXFMemName(address), value);
}
else
{
// Everything else is a float
return fmt::format("{} = {}", GetXFMemName(address), Common::BitCast<float>(value));
}
}
else
{
// Unknown address
return fmt::format("{} = {:08x}", GetXFMemName(address), value);
}
}
std::pair<std::string, std::string> GetXFTransferInfo(u16 base_address, u8 transfer_size,
const u8* data)
{
if (base_address > XFMEM_REGISTERS_END)
{
return std::make_pair("Invalid XF Transfer", "Base address past end of address space");
}
else if (transfer_size == 1 && base_address >= XFMEM_REGISTERS_START)
{
// Write directly to a single register
const u32 value = Common::swap32(data);
return GetXFRegInfo(base_address, value);
}
// More complicated cases
fmt::memory_buffer name, desc;
u32 end_address = base_address + transfer_size; // exclusive
// do not allow writes past registers
if (end_address > XFMEM_REGISTERS_END)
{
fmt::format_to(std::back_inserter(name), "Invalid XF Transfer ");
fmt::format_to(std::back_inserter(desc), "Transfer ends past end of address space\n\n");
end_address = XFMEM_REGISTERS_END;
}
// write to XF mem
if (base_address < XFMEM_REGISTERS_START)
{
const u32 xf_mem_base = base_address;
u32 xf_mem_transfer_size = transfer_size;
if (end_address > XFMEM_REGISTERS_START)
{
xf_mem_transfer_size = XFMEM_REGISTERS_START - base_address;
base_address = XFMEM_REGISTERS_START;
}
fmt::format_to(std::back_inserter(name), "Write {} XF mem words at {:04x}",
xf_mem_transfer_size, xf_mem_base);
for (u32 i = 0; i < xf_mem_transfer_size; i++)
{
const auto mem_desc = GetXFMemDescription(xf_mem_base + i, Common::swap32(data));
fmt::format_to(std::back_inserter(desc), "{}{}", i != 0 ? "\n" : "", mem_desc);
data += 4;
}
if (end_address > XFMEM_REGISTERS_START)
fmt::format_to(std::back_inserter(name), "; ");
}
// write to XF regs
if (base_address >= XFMEM_REGISTERS_START)
{
fmt::format_to(std::back_inserter(name), "Write {} XF regs at {:04x}",
end_address - base_address, base_address);
for (u32 address = base_address; address < end_address; address++)
{
const u32 value = Common::swap32(data);
const auto [regname, regdesc] = GetXFRegInfo(address, value);
fmt::format_to(std::back_inserter(desc), "{}\n{}\n", regname, regdesc);
data += 4;
}
}
return std::make_pair(fmt::to_string(name), fmt::to_string(desc));
}
std::pair<std::string, std::string> GetXFIndexedLoadInfo(CPArray array, u32 index, u16 address,
u8 size)
{
const auto desc = fmt::format("Load {} bytes to XF address {:03x} from CP array {} row {}", size,
address, array, index);
fmt::memory_buffer written;
for (u32 i = 0; i < size; i++)
{
fmt::format_to(std::back_inserter(written), "{}\n", GetXFMemName(address + i));
}
return std::make_pair(desc, fmt::to_string(written));
}