dolphin/Source/Core/AudioCommon/Mixer.cpp
2014-07-28 14:38:35 +02:00

194 lines
6.0 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "AudioCommon/AudioCommon.h"
#include "AudioCommon/Mixer.h"
#include "Common/Atomic.h"
#include "Common/CPUDetect.h"
#include "Common/MathUtil.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/HW/AudioInterface.h"
#include "Core/HW/VideoInterface.h"
// UGLINESS
#include "Core/PowerPC/PowerPC.h"
#if _M_SSE >= 0x301 && !(defined __GNUC__ && !defined __SSSE3__)
#include <tmmintrin.h>
#endif
// Executed from sound stream thread
unsigned int CMixer::MixerFifo::Mix(short* samples, unsigned int numSamples, bool consider_framelimit)
{
unsigned int currentSample = 0;
// Cache access in non-volatile variable
// This is the only function changing the read value, so it's safe to
// cache it locally although it's written here.
// The writing pointer will be modified outside, but it will only increase,
// so we will just ignore new written data while interpolating.
// Without this cache, the compiler wouldn't be allowed to optimize the
// interpolation loop.
u32 indexR = Common::AtomicLoad(m_indexR);
u32 indexW = Common::AtomicLoad(m_indexW);
float numLeft = (float)(((indexW - indexR) & INDEX_MASK) / 2);
m_numLeftI = (numLeft + m_numLeftI*(CONTROL_AVG-1)) / CONTROL_AVG;
float offset = (m_numLeftI - LOW_WATERMARK) * CONTROL_FACTOR;
if (offset > MAX_FREQ_SHIFT) offset = MAX_FREQ_SHIFT;
if (offset < -MAX_FREQ_SHIFT) offset = -MAX_FREQ_SHIFT;
//render numleft sample pairs to samples[]
//advance indexR with sample position
//remember fractional offset
u32 framelimit = SConfig::GetInstance().m_Framelimit;
float aid_sample_rate = m_input_sample_rate + offset;
if (consider_framelimit && framelimit > 1)
{
aid_sample_rate = aid_sample_rate * (framelimit - 1) * 5 / VideoInterface::TargetRefreshRate;
}
const u32 ratio = (u32)( 65536.0f * aid_sample_rate / (float)m_mixer->m_sampleRate );
s32 lvolume = m_LVolume;
s32 rvolume = m_RVolume;
// TODO: consider a higher-quality resampling algorithm.
for (; currentSample < numSamples*2 && ((indexW-indexR) & INDEX_MASK) > 2; currentSample+=2) {
u32 indexR2 = indexR + 2; //next sample
s16 l1 = Common::swap16(m_buffer[indexR & INDEX_MASK]); //current
s16 l2 = Common::swap16(m_buffer[indexR2 & INDEX_MASK]); //next
int sampleL = ((l1 << 16) + (l2 - l1) * (u16)m_frac) >> 16;
sampleL = (sampleL * lvolume) >> 8;
sampleL += samples[currentSample + 1];
MathUtil::Clamp(&sampleL, -32767, 32767);
samples[currentSample+1] = sampleL;
s16 r1 = Common::swap16(m_buffer[(indexR + 1) & INDEX_MASK]); //current
s16 r2 = Common::swap16(m_buffer[(indexR2 + 1) & INDEX_MASK]); //next
int sampleR = ((r1 << 16) + (r2 - r1) * (u16)m_frac) >> 16;
sampleR = (sampleR * rvolume) >> 8;
sampleR += samples[currentSample];
MathUtil::Clamp(&sampleR, -32767, 32767);
samples[currentSample] = sampleR;
m_frac += ratio;
indexR += 2 * (u16)(m_frac >> 16);
m_frac &= 0xffff;
}
// Padding
short s[2];
s[0] = Common::swap16(m_buffer[(indexR - 1) & INDEX_MASK]);
s[1] = Common::swap16(m_buffer[(indexR - 2) & INDEX_MASK]);
s[0] = (s[0] * rvolume) >> 8;
s[1] = (s[1] * lvolume) >> 8;
for (; currentSample < numSamples * 2; currentSample += 2)
{
int sampleR = s[0] + samples[currentSample];
MathUtil::Clamp(&sampleR, -32767, 32767);
samples[currentSample] = sampleR;
int sampleL = s[1] + samples[currentSample + 1];
MathUtil::Clamp(&sampleL, -32767, 32767);
samples[currentSample + 1] = sampleL;
}
// Flush cached variable
Common::AtomicStore(m_indexR, indexR);
return numSamples;
}
unsigned int CMixer::Mix(short* samples, unsigned int num_samples, bool consider_framelimit)
{
if (!samples)
return 0;
std::lock_guard<std::mutex> lk(m_csMixing);
memset(samples, 0, num_samples * 2 * sizeof(short));
if (PowerPC::GetState() != PowerPC::CPU_RUNNING)
{
// Silence
return num_samples;
}
m_dma_mixer.Mix(samples, num_samples, consider_framelimit);
m_streaming_mixer.Mix(samples, num_samples, consider_framelimit);
if (m_logAudio)
g_wave_writer.AddStereoSamples(samples, num_samples);
return num_samples;
}
void CMixer::MixerFifo::PushSamples(const short *samples, unsigned int num_samples)
{
// Cache access in non-volatile variable
// indexR isn't allowed to cache in the audio throttling loop as it
// needs to get updates to not deadlock.
u32 indexW = Common::AtomicLoad(m_indexW);
// Check if we have enough free space
// indexW == m_indexR results in empty buffer, so indexR must always be smaller than indexW
if (num_samples * 2 + ((indexW - Common::AtomicLoad(m_indexR)) & INDEX_MASK) >= MAX_SAMPLES * 2)
return;
// AyuanX: Actual re-sampling work has been moved to sound thread
// to alleviate the workload on main thread
// and we simply store raw data here to make fast mem copy
int over_bytes = num_samples * 4 - (MAX_SAMPLES * 2 - (indexW & INDEX_MASK)) * sizeof(short);
if (over_bytes > 0)
{
memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4 - over_bytes);
memcpy(&m_buffer[0], samples + (num_samples * 4 - over_bytes) / sizeof(short), over_bytes);
}
else
{
memcpy(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 4);
}
Common::AtomicAdd(m_indexW, num_samples * 2);
return;
}
void CMixer::PushSamples(const short *samples, unsigned int num_samples)
{
m_dma_mixer.PushSamples(samples, num_samples);
}
void CMixer::PushStreamingSamples(const short *samples, unsigned int num_samples)
{
m_streaming_mixer.PushSamples(samples, num_samples);
}
void CMixer::SetDMAInputSampleRate(unsigned int rate)
{
m_dma_mixer.SetInputSampleRate(rate);
}
void CMixer::SetStreamInputSampleRate(unsigned int rate)
{
m_streaming_mixer.SetInputSampleRate(rate);
}
void CMixer::SetStreamingVolume(unsigned int lvolume, unsigned int rvolume)
{
m_streaming_mixer.SetVolume(lvolume, rvolume);
}
void CMixer::MixerFifo::SetInputSampleRate(unsigned int rate)
{
m_input_sample_rate = rate;
}
void CMixer::MixerFifo::SetVolume(unsigned int lvolume, unsigned int rvolume)
{
m_LVolume = lvolume + (lvolume >> 7);
m_RVolume = rvolume + (rvolume >> 7);
}