dolphin/Source/Core/DiscIO/LaggedFibonacciGenerator.cpp
mitaclaw 7c96762f5f Simplify std::copy with std::copy_n
+ a surprise `std::memcpy` in VolumeVerifier.cpp.
2024-10-07 15:34:56 -07:00

213 lines
5.9 KiB
C++

// SPDX-License-Identifier: CC0-1.0
#include "DiscIO/LaggedFibonacciGenerator.h"
#include <algorithm>
#include <cstddef>
#include <cstring>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Swap.h"
namespace DiscIO
{
void LaggedFibonacciGenerator::SetSeed(const u32 seed[SEED_SIZE])
{
SetSeed(reinterpret_cast<const u8*>(seed));
}
void LaggedFibonacciGenerator::SetSeed(const u8 seed[SEED_SIZE * sizeof(u32)])
{
m_position_bytes = 0;
for (size_t i = 0; i < SEED_SIZE; ++i)
m_buffer[i] = Common::swap32(seed + i * sizeof(u32));
Initialize(false);
}
size_t LaggedFibonacciGenerator::GetSeed(const u8* data, size_t size, size_t data_offset,
u32 seed_out[SEED_SIZE])
{
if ((reinterpret_cast<uintptr_t>(data) - data_offset) % alignof(u32) != 0)
{
ASSERT(false);
return 0;
}
// For code simplicity, only include whole u32 words when regenerating the seed. It would be
// possible to get rid of this restriction and use a few additional bytes, but it's probably more
// effort than it's worth considering that junk data often starts or ends on 4-byte offsets.
const size_t bytes_to_skip = Common::AlignUp(data_offset, sizeof(u32)) - data_offset;
const u32* u32_data = reinterpret_cast<const u32*>(data + bytes_to_skip);
const size_t u32_size = (size - bytes_to_skip) / sizeof(u32);
const size_t u32_data_offset = (data_offset + bytes_to_skip) / sizeof(u32);
LaggedFibonacciGenerator lfg;
if (!GetSeed(u32_data, u32_size, u32_data_offset, &lfg, seed_out))
return false;
lfg.m_position_bytes = data_offset % (LFG_K * sizeof(u32));
const u8* end = data + size;
size_t reconstructed_bytes = 0;
while (data < end && lfg.GetByte() == *data)
{
++reconstructed_bytes;
++data;
}
return reconstructed_bytes;
}
bool LaggedFibonacciGenerator::GetSeed(const u32* data, size_t size, size_t data_offset,
LaggedFibonacciGenerator* lfg, u32 seed_out[SEED_SIZE])
{
if (size < LFG_K)
return false;
// If the data doesn't look like something we can regenerate, return early to save time
if (!std::all_of(data, data + LFG_K, [](u32 x) {
return (Common::swap32(x) & 0x00C00000) == (Common::swap32(x) >> 2 & 0x00C00000);
}))
{
return false;
}
const size_t data_offset_mod_k = data_offset % LFG_K;
const size_t data_offset_div_k = data_offset / LFG_K;
std::copy_n(data, LFG_K - data_offset_mod_k, lfg->m_buffer.data() + data_offset_mod_k);
std::copy_n(data + LFG_K - data_offset_mod_k, data_offset_mod_k, lfg->m_buffer.data());
lfg->Backward(0, data_offset_mod_k);
for (size_t i = 0; i < data_offset_div_k; ++i)
lfg->Backward();
if (!lfg->Reinitialize(seed_out))
return false;
for (size_t i = 0; i < data_offset_div_k; ++i)
lfg->Forward();
return true;
}
void LaggedFibonacciGenerator::GetBytes(size_t count, u8* out)
{
while (count > 0)
{
const size_t length = std::min(count, LFG_K * sizeof(u32) - m_position_bytes);
std::memcpy(out, reinterpret_cast<u8*>(m_buffer.data()) + m_position_bytes, length);
m_position_bytes += length;
count -= length;
out += length;
if (m_position_bytes == LFG_K * sizeof(u32))
{
Forward();
m_position_bytes = 0;
}
}
}
u8 LaggedFibonacciGenerator::GetByte()
{
const u8 result = reinterpret_cast<u8*>(m_buffer.data())[m_position_bytes];
++m_position_bytes;
if (m_position_bytes == LFG_K * sizeof(u32))
{
Forward();
m_position_bytes = 0;
}
return result;
}
void LaggedFibonacciGenerator::Forward(size_t count)
{
m_position_bytes += count;
while (m_position_bytes >= LFG_K * sizeof(u32))
{
Forward();
m_position_bytes -= LFG_K * sizeof(u32);
}
}
void LaggedFibonacciGenerator::Forward()
{
for (size_t i = 0; i < LFG_J; ++i)
m_buffer[i] ^= m_buffer[i + LFG_K - LFG_J];
for (size_t i = LFG_J; i < LFG_K; ++i)
m_buffer[i] ^= m_buffer[i - LFG_J];
}
void LaggedFibonacciGenerator::Backward(size_t start_word, size_t end_word)
{
const size_t loop_end = std::max(LFG_J, start_word);
for (size_t i = std::min(end_word, LFG_K); i > loop_end; --i)
m_buffer[i - 1] ^= m_buffer[i - 1 - LFG_J];
for (size_t i = std::min(end_word, LFG_J); i > start_word; --i)
m_buffer[i - 1] ^= m_buffer[i - 1 + LFG_K - LFG_J];
}
bool LaggedFibonacciGenerator::Reinitialize(u32 seed_out[SEED_SIZE])
{
for (size_t i = 0; i < 4; ++i)
Backward();
for (u32& x : m_buffer)
x = Common::swap32(x);
// Reconstruct the bits which are missing due to the output code shifting by 18 instead of 16.
// Unfortunately we can't reconstruct bits 16 and 17 (counting LSB as 0) for the first word,
// but the observable result (when shifting by 18 instead of 16) is not affected by this.
for (size_t i = 0; i < SEED_SIZE; ++i)
{
m_buffer[i] = (m_buffer[i] & 0xFF00FFFF) | (m_buffer[i] << 2 & 0x00FC0000) |
((m_buffer[i + 16] ^ m_buffer[i + 15]) << 9 & 0x00030000);
}
for (size_t i = 0; i < SEED_SIZE; ++i)
seed_out[i] = Common::swap32(m_buffer[i]);
return Initialize(true);
}
bool LaggedFibonacciGenerator::Initialize(bool check_existing_data)
{
for (size_t i = SEED_SIZE; i < LFG_K; ++i)
{
const u32 calculated = (m_buffer[i - 17] << 23) ^ (m_buffer[i - 16] >> 9) ^ m_buffer[i - 1];
if (check_existing_data)
{
const u32 actual = (m_buffer[i] & 0xFF00FFFF) | (m_buffer[i] << 2 & 0x00FC0000);
if ((calculated & 0xFFFCFFFF) != actual)
return false;
}
m_buffer[i] = calculated;
}
// Instead of doing the "shift by 18 instead of 16" oddity when actually outputting the data,
// we can do the shifting (and byteswapping) at this point to make the output code simpler.
for (u32& x : m_buffer)
x = Common::swap32((x & 0xFF00FFFF) | ((x >> 2) & 0x00FF0000));
for (size_t i = 0; i < 4; ++i)
Forward();
return true;
}
} // namespace DiscIO