Files
dolphin/Source/Core/Core/HW/CPU.cpp
Martino Fontana bd3cf67cbc Debugger: Rework temporary breakpoints
Before:
1. In theory there could be multiple, but in practice they were (manually) cleared before creating one
2. (Some of) the conditions to clear one were either to reach it, to create a new one (due to the point above), or to step. This created weird behavior: let's say you Step Over a `bl` (thus creating a temporary breakpoint on `pc+4`), and you reached a regular breakpoint inside the `bl`. The temporary one would still be there: if you resumed, the emulation would still stop there, as a sort of Step Out. But, if before resuming, you made a Step, then it wouldn't do that.
3. The breakpoint widget had no idea concept of them, and will treat them as regular breakpoints. Also, they'll be shown only when the widget is updated in some other way, leading to more confusion.
4. Because only one breakpoint could exist per address, the creation of a temporary breakpoint on a top of a regular one would delete it and inherit its properties (e.g. being log-only). This could happen, for instance, if you Stepped Over a `bl` specifically, and pc+4 had a regular breakpoint.

Now there can only be one temporary breakpoint, which is automatically cleared whenever emulation is paused. So, removing some manual clearing from 1., and removing the weird behavior of 2. As it is stored in a separate variable, it won't be seen at all depending on the function used (fixing 3., and removing some checks in other places), and it won't replace a regular breakpoint, instead simply having priority (fixing 4.).
2024-07-05 21:33:22 +02:00

370 lines
9.4 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Core/HW/CPU.h"
#include <condition_variable>
#include <mutex>
#include <queue>
#include "AudioCommon/AudioCommon.h"
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Core/CPUThreadConfigCallback.h"
#include "Core/Core.h"
#include "Core/Host.h"
#include "Core/PowerPC/GDBStub.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/Fifo.h"
namespace CPU
{
CPUManager::CPUManager(Core::System& system) : m_system(system)
{
}
CPUManager::~CPUManager() = default;
void CPUManager::Init(PowerPC::CPUCore cpu_core)
{
m_system.GetPowerPC().Init(cpu_core);
m_state = State::Stepping;
}
void CPUManager::Shutdown()
{
Stop();
m_system.GetPowerPC().Shutdown();
}
// Requires holding m_state_change_lock
void CPUManager::FlushStepSyncEventLocked()
{
if (!m_state_cpu_step_instruction)
return;
if (m_state_cpu_step_instruction_sync)
{
m_state_cpu_step_instruction_sync->Set();
m_state_cpu_step_instruction_sync = nullptr;
}
m_state_cpu_step_instruction = false;
}
void CPUManager::ExecutePendingJobs(std::unique_lock<std::mutex>& state_lock)
{
while (!m_pending_jobs.empty())
{
auto callback = m_pending_jobs.front();
m_pending_jobs.pop();
state_lock.unlock();
callback();
state_lock.lock();
}
}
void CPUManager::Run()
{
auto& power_pc = m_system.GetPowerPC();
// Updating the host CPU's rounding mode must be done on the CPU thread.
// We can't rely on PowerPC::Init doing it, since it's called from EmuThread.
PowerPC::RoundingModeUpdated(power_pc.GetPPCState());
std::unique_lock state_lock(m_state_change_lock);
while (m_state != State::PowerDown)
{
m_state_cpu_cvar.wait(state_lock, [this] { return !m_state_paused_and_locked; });
ExecutePendingJobs(state_lock);
CPUThreadConfigCallback::CheckForConfigChanges();
Common::Event gdb_step_sync_event;
switch (m_state)
{
case State::Running:
m_state_cpu_thread_active = true;
state_lock.unlock();
// Adjust PC for JIT when debugging
// SingleStep so that the "continue", "step over" and "step out" debugger functions
// work when the PC is at a breakpoint at the beginning of the block
// Don't use PowerPCManager::CheckBreakPoints, otherwise you get double logging
// If watchpoints are enabled, any instruction could be a breakpoint.
if (power_pc.GetMode() != PowerPC::CoreMode::Interpreter)
{
if (power_pc.GetBreakPoints().IsAddressBreakPoint(power_pc.GetPPCState().pc) ||
power_pc.GetMemChecks().HasAny())
{
m_state = State::Stepping;
PowerPC::CoreMode old_mode = power_pc.GetMode();
power_pc.SetMode(PowerPC::CoreMode::Interpreter);
power_pc.SingleStep();
power_pc.SetMode(old_mode);
m_state = State::Running;
}
}
// Enter a fast runloop
power_pc.RunLoop();
state_lock.lock();
m_state_cpu_thread_active = false;
m_state_cpu_idle_cvar.notify_all();
break;
case State::Stepping:
// Wait for step command.
m_state_cpu_cvar.wait(state_lock, [this, &state_lock, &gdb_step_sync_event] {
ExecutePendingJobs(state_lock);
CPUThreadConfigCallback::CheckForConfigChanges();
state_lock.unlock();
if (GDBStub::IsActive() && GDBStub::HasControl())
{
if (!GDBStub::JustConnected())
GDBStub::SendSignal(GDBStub::Signal::Sigtrap);
GDBStub::ProcessCommands(true);
// If we are still going to step, emulate the fact we just sent a step command
if (GDBStub::HasControl())
{
// Make sure the previous step by gdb was serviced
if (m_state_cpu_step_instruction_sync &&
m_state_cpu_step_instruction_sync != &gdb_step_sync_event)
{
m_state_cpu_step_instruction_sync->Set();
}
m_state_cpu_step_instruction = true;
m_state_cpu_step_instruction_sync = &gdb_step_sync_event;
}
}
state_lock.lock();
return m_state_cpu_step_instruction || !IsStepping();
});
if (!IsStepping())
{
// Signal event if the mode changes.
FlushStepSyncEventLocked();
continue;
}
if (m_state_paused_and_locked)
continue;
// Do step
m_state_cpu_thread_active = true;
state_lock.unlock();
power_pc.SingleStep();
state_lock.lock();
m_state_cpu_thread_active = false;
m_state_cpu_idle_cvar.notify_all();
// Update disasm dialog
FlushStepSyncEventLocked();
Host_UpdateDisasmDialog();
break;
case State::PowerDown:
break;
}
}
state_lock.unlock();
Host_UpdateDisasmDialog();
}
// Requires holding m_state_change_lock
void CPUManager::RunAdjacentSystems(bool running)
{
// NOTE: We're assuming these will not try to call Break or SetStepping.
m_system.GetFifo().EmulatorState(running);
// Core is responsible for shutting down the sound stream.
if (m_state != State::PowerDown)
AudioCommon::SetSoundStreamRunning(m_system, running);
}
void CPUManager::Stop()
{
// Change state and wait for it to be acknowledged.
// We don't need the stepping lock because State::PowerDown is a priority state which
// will stick permanently.
std::unique_lock state_lock(m_state_change_lock);
m_state = State::PowerDown;
m_state_cpu_cvar.notify_one();
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
RunAdjacentSystems(false);
FlushStepSyncEventLocked();
}
bool CPUManager::IsStepping() const
{
return m_state == State::Stepping;
}
State CPUManager::GetState() const
{
return m_state;
}
const State* CPUManager::GetStatePtr() const
{
return &m_state;
}
void CPUManager::Reset()
{
}
void CPUManager::StepOpcode(Common::Event* event)
{
std::lock_guard state_lock(m_state_change_lock);
// If we're not stepping then this is pointless
if (!IsStepping())
{
if (event)
event->Set();
return;
}
// Potential race where the previous step has not been serviced yet.
if (m_state_cpu_step_instruction_sync && m_state_cpu_step_instruction_sync != event)
m_state_cpu_step_instruction_sync->Set();
m_state_cpu_step_instruction = true;
m_state_cpu_step_instruction_sync = event;
m_state_cpu_cvar.notify_one();
}
// Requires m_state_change_lock
bool CPUManager::SetStateLocked(State s)
{
if (m_state == State::PowerDown)
return false;
if (s == State::Stepping)
m_system.GetPowerPC().GetBreakPoints().ClearTemporary();
m_state = s;
return true;
}
void CPUManager::SetStepping(bool stepping)
{
std::lock_guard stepping_lock(m_stepping_lock);
std::unique_lock state_lock(m_state_change_lock);
if (stepping)
{
SetStateLocked(State::Stepping);
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
RunAdjacentSystems(false);
}
else if (SetStateLocked(State::Running))
{
m_state_cpu_cvar.notify_one();
RunAdjacentSystems(true);
}
}
void CPUManager::Break()
{
std::lock_guard state_lock(m_state_change_lock);
// If another thread is trying to PauseAndLock then we need to remember this
// for later to ignore the unpause_on_unlock.
if (m_state_paused_and_locked)
{
m_state_system_request_stepping = true;
return;
}
// We'll deadlock if we synchronize, the CPU may block waiting for our caller to
// finish resulting in the CPU loop never terminating.
SetStateLocked(State::Stepping);
RunAdjacentSystems(false);
}
void CPUManager::Continue()
{
SetStepping(false);
Core::CallOnStateChangedCallbacks(Core::State::Running);
}
bool CPUManager::PauseAndLock(bool do_lock, bool unpause_on_unlock, bool control_adjacent)
{
// NOTE: This is protected by m_stepping_lock.
static bool s_have_fake_cpu_thread = false;
bool was_unpaused = false;
if (do_lock)
{
m_stepping_lock.lock();
std::unique_lock state_lock(m_state_change_lock);
m_state_paused_and_locked = true;
was_unpaused = m_state == State::Running;
SetStateLocked(State::Stepping);
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
if (control_adjacent)
RunAdjacentSystems(false);
state_lock.unlock();
// NOTE: It would make more sense for Core::DeclareAsCPUThread() to keep a
// depth counter instead of being a boolean.
if (!Core::IsCPUThread())
{
s_have_fake_cpu_thread = true;
Core::DeclareAsCPUThread();
}
}
else
{
// Only need the stepping lock for this
if (s_have_fake_cpu_thread)
{
s_have_fake_cpu_thread = false;
Core::UndeclareAsCPUThread();
}
{
std::lock_guard state_lock(m_state_change_lock);
if (m_state_system_request_stepping)
{
m_state_system_request_stepping = false;
}
else if (unpause_on_unlock && SetStateLocked(State::Running))
{
was_unpaused = true;
}
m_state_paused_and_locked = false;
m_state_cpu_cvar.notify_one();
if (control_adjacent)
RunAdjacentSystems(m_state == State::Running);
}
m_stepping_lock.unlock();
}
return was_unpaused;
}
void CPUManager::AddCPUThreadJob(std::function<void()> function)
{
std::unique_lock state_lock(m_state_change_lock);
m_pending_jobs.push(std::move(function));
}
} // namespace CPU