mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2024-11-15 13:57:57 -07:00
e149ad4f0a
SPDX standardizes how source code conveys its copyright and licensing information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX tags are adopted in many large projects, including things like the Linux kernel.
335 lines
11 KiB
C++
335 lines
11 KiB
C++
// Copyright 2009 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "VideoCommon/BPFunctions.h"
|
|
|
|
#include <algorithm>
|
|
#include <string_view>
|
|
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
|
|
#include "VideoCommon/AbstractFramebuffer.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/FramebufferManager.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/RenderState.h"
|
|
#include "VideoCommon/VertexManagerBase.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
namespace BPFunctions
|
|
{
|
|
// ----------------------------------------------
|
|
// State translation lookup tables
|
|
// Reference: Yet Another GameCube Documentation
|
|
// ----------------------------------------------
|
|
|
|
void FlushPipeline()
|
|
{
|
|
g_vertex_manager->Flush();
|
|
}
|
|
|
|
void SetGenerationMode()
|
|
{
|
|
g_vertex_manager->SetRasterizationStateChanged();
|
|
}
|
|
|
|
void SetScissor()
|
|
{
|
|
/* NOTE: the minimum value here for the scissor rect is -342.
|
|
* GX SDK functions internally add an offset of 342 to scissor coords to
|
|
* ensure that the register was always unsigned.
|
|
*
|
|
* The code that was here before tried to "undo" this offset, but
|
|
* since we always take the difference, the +342 added to both
|
|
* sides cancels out. */
|
|
|
|
/* NOTE: With a positive scissor offset, the scissor rect is shifted left and/or up;
|
|
* With a negative scissor offset, the scissor rect is shifted right and/or down.
|
|
*
|
|
* GX SDK functions internally add an offset of 342 to scissor offset.
|
|
* The scissor offset is always even, so to save space, the scissor offset register
|
|
* is scaled down by 2. So, if somebody calls GX_SetScissorBoxOffset(20, 20);
|
|
* the registers will be set to ((20 + 342) / 2 = 181, 181).
|
|
*
|
|
* The scissor offset register is 10bit signed [-512, 511].
|
|
* e.g. In Super Mario Galaxy 1 and 2, during the "Boss roar effect",
|
|
* for a scissor offset of (0, -464), the scissor offset register will be set to
|
|
* (171, (-464 + 342) / 2 = -61).
|
|
*/
|
|
s32 xoff = bpmem.scissorOffset.x * 2;
|
|
s32 yoff = bpmem.scissorOffset.y * 2;
|
|
|
|
MathUtil::Rectangle<int> native_rc(bpmem.scissorTL.x - xoff, bpmem.scissorTL.y - yoff,
|
|
bpmem.scissorBR.x - xoff + 1, bpmem.scissorBR.y - yoff + 1);
|
|
native_rc.ClampUL(0, 0, EFB_WIDTH, EFB_HEIGHT);
|
|
|
|
auto target_rc = g_renderer->ConvertEFBRectangle(native_rc);
|
|
auto converted_rc =
|
|
g_renderer->ConvertFramebufferRectangle(target_rc, g_renderer->GetCurrentFramebuffer());
|
|
g_renderer->SetScissorRect(converted_rc);
|
|
}
|
|
|
|
void SetViewport()
|
|
{
|
|
s32 xoff = bpmem.scissorOffset.x * 2;
|
|
s32 yoff = bpmem.scissorOffset.y * 2;
|
|
float x = g_renderer->EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - xoff);
|
|
float y = g_renderer->EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - yoff);
|
|
|
|
float width = g_renderer->EFBToScaledXf(2.0f * xfmem.viewport.wd);
|
|
float height = g_renderer->EFBToScaledYf(-2.0f * xfmem.viewport.ht);
|
|
float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f;
|
|
float max_depth = xfmem.viewport.farZ / 16777216.0f;
|
|
if (width < 0.f)
|
|
{
|
|
x += width;
|
|
width *= -1;
|
|
}
|
|
if (height < 0.f)
|
|
{
|
|
y += height;
|
|
height *= -1;
|
|
}
|
|
|
|
// The maximum depth that is written to the depth buffer should never exceed this value.
|
|
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
|
|
// floating-point round-trip errors. However the console GPU doesn't ever write a value
|
|
// to the depth buffer that exceeds 2^24 - 1.
|
|
constexpr float GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
|
|
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
|
|
{
|
|
// There's no way to support oversized depth ranges in this situation. Let's just clamp the
|
|
// range to the maximum value supported by the console GPU and hope for the best.
|
|
min_depth = std::clamp(min_depth, 0.0f, GX_MAX_DEPTH);
|
|
max_depth = std::clamp(max_depth, 0.0f, GX_MAX_DEPTH);
|
|
}
|
|
|
|
if (g_renderer->UseVertexDepthRange())
|
|
{
|
|
// We need to ensure depth values are clamped the maximum value supported by the console GPU.
|
|
// Taking into account whether the depth range is inverted or not.
|
|
if (xfmem.viewport.zRange < 0.0f && g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
{
|
|
min_depth = GX_MAX_DEPTH;
|
|
max_depth = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
min_depth = 0.0f;
|
|
max_depth = GX_MAX_DEPTH;
|
|
}
|
|
}
|
|
|
|
float near_depth, far_depth;
|
|
if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
{
|
|
// Set the reversed depth range.
|
|
near_depth = max_depth;
|
|
far_depth = min_depth;
|
|
}
|
|
else
|
|
{
|
|
// We use an inverted depth range here to apply the Reverse Z trick.
|
|
// This trick makes sure we match the precision provided by the 1:0
|
|
// clipping depth range on the hardware.
|
|
near_depth = 1.0f - max_depth;
|
|
far_depth = 1.0f - min_depth;
|
|
}
|
|
|
|
// Clamp to size if oversized not supported. Required for D3D.
|
|
if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports)
|
|
{
|
|
const float max_width = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetWidth());
|
|
const float max_height = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetHeight());
|
|
x = std::clamp(x, 0.0f, max_width - 1.0f);
|
|
y = std::clamp(y, 0.0f, max_height - 1.0f);
|
|
width = std::clamp(width, 1.0f, max_width - x);
|
|
height = std::clamp(height, 1.0f, max_height - y);
|
|
}
|
|
|
|
// Lower-left flip.
|
|
if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin)
|
|
y = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetHeight()) - y - height;
|
|
|
|
g_renderer->SetViewport(x, y, width, height, near_depth, far_depth);
|
|
}
|
|
|
|
void SetDepthMode()
|
|
{
|
|
g_vertex_manager->SetDepthStateChanged();
|
|
}
|
|
|
|
void SetBlendMode()
|
|
{
|
|
g_vertex_manager->SetBlendingStateChanged();
|
|
}
|
|
|
|
/* Explanation of the magic behind ClearScreen:
|
|
There's numerous possible formats for the pixel data in the EFB.
|
|
However, in the HW accelerated backends we're always using RGBA8
|
|
for the EFB format, which causes some problems:
|
|
- We're using an alpha channel although the game doesn't
|
|
- If the actual EFB format is RGBA6_Z24 or R5G6B5_Z16, we are using more bits per channel than the
|
|
native HW
|
|
|
|
To properly emulate the above points, we're doing the following:
|
|
(1)
|
|
- disable alpha channel writing of any kind of rendering if the actual EFB format doesn't use an
|
|
alpha channel
|
|
- NOTE: Always make sure that the EFB has been cleared to an alpha value of 0xFF in this case!
|
|
- Same for color channels, these need to be cleared to 0x00 though.
|
|
(2)
|
|
- convert the RGBA8 color to RGBA6/RGB8/RGB565 and convert it to RGBA8 again
|
|
- convert the Z24 depth value to Z16 and back to Z24
|
|
*/
|
|
void ClearScreen(const MathUtil::Rectangle<int>& rc)
|
|
{
|
|
bool colorEnable = (bpmem.blendmode.colorupdate != 0);
|
|
bool alphaEnable = (bpmem.blendmode.alphaupdate != 0);
|
|
bool zEnable = (bpmem.zmode.updateenable != 0);
|
|
auto pixel_format = bpmem.zcontrol.pixel_format;
|
|
|
|
// (1): Disable unused color channels
|
|
if (pixel_format == PixelFormat::RGB8_Z24 || pixel_format == PixelFormat::RGB565_Z16 ||
|
|
pixel_format == PixelFormat::Z24)
|
|
{
|
|
alphaEnable = false;
|
|
}
|
|
|
|
if (colorEnable || alphaEnable || zEnable)
|
|
{
|
|
u32 color = (bpmem.clearcolorAR << 16) | bpmem.clearcolorGB;
|
|
u32 z = bpmem.clearZValue;
|
|
|
|
// (2) drop additional accuracy
|
|
if (pixel_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
color = RGBA8ToRGBA6ToRGBA8(color);
|
|
}
|
|
else if (pixel_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
color = RGBA8ToRGB565ToRGBA8(color);
|
|
z = Z24ToZ16ToZ24(z);
|
|
}
|
|
g_renderer->ClearScreen(rc, colorEnable, alphaEnable, zEnable, color, z);
|
|
}
|
|
}
|
|
|
|
void OnPixelFormatChange()
|
|
{
|
|
// TODO : Check for Z compression format change
|
|
// When using 16bit Z, the game may enable a special compression format which we might need to
|
|
// handle. Only a few games like RS2 and RS3 even use z compression but it looks like they
|
|
// always use ZFAR when using 16bit Z (on top of linear 24bit Z)
|
|
|
|
// Besides, we currently don't even emulate 16bit depth and force it to 24bit.
|
|
|
|
/*
|
|
* When changing the EFB format, the pixel data won't get converted to the new format but stays
|
|
* the same.
|
|
* Since we are always using an RGBA8 buffer though, this causes issues in some games.
|
|
* Thus, we reinterpret the old EFB data with the new format here.
|
|
*/
|
|
if (!g_ActiveConfig.bEFBEmulateFormatChanges)
|
|
return;
|
|
|
|
const auto old_format = g_renderer->GetPrevPixelFormat();
|
|
const auto new_format = bpmem.zcontrol.pixel_format;
|
|
g_renderer->StorePixelFormat(new_format);
|
|
|
|
DEBUG_LOG_FMT(VIDEO, "pixelfmt: pixel={}, zc={}", new_format, bpmem.zcontrol.zformat);
|
|
|
|
// no need to reinterpret pixel data in these cases
|
|
if (new_format == old_format || old_format == PixelFormat::INVALID_FMT)
|
|
return;
|
|
|
|
// Check for pixel format changes
|
|
switch (old_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::Z24:
|
|
{
|
|
// Z24 and RGB8_Z24 are treated equal, so just return in this case
|
|
if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24)
|
|
return;
|
|
|
|
if (new_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGBA6);
|
|
return;
|
|
}
|
|
else if (new_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGB565);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PixelFormat::RGBA6_Z24:
|
|
{
|
|
if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB8);
|
|
return;
|
|
}
|
|
else if (new_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB565);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PixelFormat::RGB565_Z16:
|
|
{
|
|
if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGB8);
|
|
return;
|
|
}
|
|
else if (new_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGBA6);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ERROR_LOG_FMT(VIDEO, "Unhandled EFB format change: {} to {}", old_format, new_format);
|
|
}
|
|
|
|
void SetInterlacingMode(const BPCmd& bp)
|
|
{
|
|
// TODO
|
|
switch (bp.address)
|
|
{
|
|
case BPMEM_FIELDMODE:
|
|
{
|
|
// SDK always sets bpmem.lineptwidth.lineaspect via BPMEM_LINEPTWIDTH
|
|
// just before this cmd
|
|
DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMODE texLOD:{} lineaspect:{}", bpmem.fieldmode.texLOD,
|
|
bpmem.lineptwidth.adjust_for_aspect_ratio);
|
|
}
|
|
break;
|
|
case BPMEM_FIELDMASK:
|
|
{
|
|
// Determines if fields will be written to EFB (always computed)
|
|
DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMASK even:{} odd:{}", bpmem.fieldmask.even,
|
|
bpmem.fieldmask.odd);
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "SetInterlacingMode default");
|
|
break;
|
|
}
|
|
}
|
|
}; // namespace BPFunctions
|