mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2024-11-15 13:57:57 -07:00
965 lines
28 KiB
C++
965 lines
28 KiB
C++
// Copyright 2010 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
// ---------------------------------------------------------------------------------------------
|
|
// GC graphics pipeline
|
|
// ---------------------------------------------------------------------------------------------
|
|
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
|
|
// The efb can be copied back into ram in two forms: as textures or as XFB.
|
|
// The XFB is the region in RAM that the VI chip scans out to the television.
|
|
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
|
|
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
|
|
// ---------------------------------------------------------------------------------------------
|
|
|
|
#include "VideoCommon/RenderBase.h"
|
|
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Event.h"
|
|
#include "Common/FileUtil.h"
|
|
#include "Common/Flag.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
#include "Common/Profiler.h"
|
|
#include "Common/StringUtil.h"
|
|
#include "Common/Thread.h"
|
|
#include "Common/Timer.h"
|
|
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/Core.h"
|
|
#include "Core/CoreTiming.h"
|
|
#include "Core/FifoPlayer/FifoRecorder.h"
|
|
#include "Core/HW/VideoInterface.h"
|
|
#include "Core/Host.h"
|
|
#include "Core/Movie.h"
|
|
|
|
#include "VideoCommon/AVIDump.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/CPMemory.h"
|
|
#include "VideoCommon/CommandProcessor.h"
|
|
#include "VideoCommon/Debugger.h"
|
|
#include "VideoCommon/FPSCounter.h"
|
|
#include "VideoCommon/FramebufferManagerBase.h"
|
|
#include "VideoCommon/ImageWrite.h"
|
|
#include "VideoCommon/OnScreenDisplay.h"
|
|
#include "VideoCommon/PixelShaderManager.h"
|
|
#include "VideoCommon/PostProcessing.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/TextureCacheBase.h"
|
|
#include "VideoCommon/TextureDecoder.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
// TODO: Move these out of here.
|
|
int frameCount;
|
|
int OSDChoice;
|
|
static int OSDTime;
|
|
|
|
std::unique_ptr<Renderer> g_renderer;
|
|
|
|
// The maximum depth that is written to the depth buffer should never exceed this value.
|
|
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
|
|
// floating-point round-trip errors. However the console GPU doesn't ever write a value
|
|
// to the depth buffer that exceeds 2^24 - 1.
|
|
const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
|
|
|
|
static float AspectToWidescreen(float aspect)
|
|
{
|
|
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
|
|
}
|
|
|
|
Renderer::Renderer(int backbuffer_width, int backbuffer_height)
|
|
: m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height),
|
|
m_last_efb_scale(g_ActiveConfig.iEFBScale)
|
|
{
|
|
FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
|
|
FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
|
|
|
|
UpdateActiveConfig();
|
|
UpdateDrawRectangle();
|
|
CalculateTargetSize();
|
|
|
|
OSDChoice = 0;
|
|
OSDTime = 0;
|
|
}
|
|
|
|
Renderer::~Renderer()
|
|
{
|
|
ShutdownFrameDumping();
|
|
if (m_frame_dump_thread.joinable())
|
|
m_frame_dump_thread.join();
|
|
}
|
|
|
|
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
|
|
float Gamma)
|
|
{
|
|
CheckFifoRecording();
|
|
|
|
if (!fbStride || !fbHeight)
|
|
return;
|
|
|
|
m_xfb_written = true;
|
|
|
|
if (g_ActiveConfig.bUseXFB)
|
|
{
|
|
FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma);
|
|
}
|
|
else
|
|
{
|
|
// The timing is not predictable here. So try to use the XFB path to dump frames.
|
|
u64 ticks = CoreTiming::GetTicks();
|
|
|
|
// below div two to convert from bytes to pixels - it expects width, not stride
|
|
Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, ticks, Gamma);
|
|
}
|
|
}
|
|
|
|
int Renderer::EFBToScaledX(int x) const
|
|
{
|
|
switch (g_ActiveConfig.iEFBScale)
|
|
{
|
|
case SCALE_AUTO: // fractional
|
|
return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, m_target_rectangle);
|
|
|
|
default:
|
|
return x * (int)m_efb_scale_numeratorX / (int)m_efb_scale_denominatorX;
|
|
};
|
|
}
|
|
|
|
int Renderer::EFBToScaledY(int y) const
|
|
{
|
|
switch (g_ActiveConfig.iEFBScale)
|
|
{
|
|
case SCALE_AUTO: // fractional
|
|
return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, m_target_rectangle);
|
|
|
|
default:
|
|
return y * (int)m_efb_scale_numeratorY / (int)m_efb_scale_denominatorY;
|
|
};
|
|
}
|
|
|
|
float Renderer::EFBToScaledXf(float x) const
|
|
{
|
|
return x * ((float)GetTargetWidth() / (float)EFB_WIDTH);
|
|
}
|
|
|
|
float Renderer::EFBToScaledYf(float y) const
|
|
{
|
|
return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT);
|
|
}
|
|
|
|
std::tuple<int, int> Renderer::CalculateTargetScale(int x, int y) const
|
|
{
|
|
if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
|
|
{
|
|
return std::make_tuple(x, y);
|
|
}
|
|
|
|
const int scaled_x =
|
|
x * static_cast<int>(m_efb_scale_numeratorX) / static_cast<int>(m_efb_scale_denominatorX);
|
|
|
|
const int scaled_y =
|
|
y * static_cast<int>(m_efb_scale_numeratorY) / static_cast<int>(m_efb_scale_denominatorY);
|
|
|
|
return std::make_tuple(scaled_x, scaled_y);
|
|
}
|
|
|
|
// return true if target size changed
|
|
bool Renderer::CalculateTargetSize()
|
|
{
|
|
m_last_efb_scale = g_ActiveConfig.iEFBScale;
|
|
|
|
int new_efb_width = 0;
|
|
int new_efb_height = 0;
|
|
|
|
// TODO: Ugly. Clean up
|
|
switch (m_last_efb_scale)
|
|
{
|
|
case SCALE_AUTO:
|
|
case SCALE_AUTO_INTEGRAL:
|
|
new_efb_width = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, m_target_rectangle);
|
|
new_efb_height =
|
|
FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, m_target_rectangle);
|
|
|
|
if (m_last_efb_scale == SCALE_AUTO_INTEGRAL)
|
|
{
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY =
|
|
std::max((new_efb_width - 1) / EFB_WIDTH + 1, (new_efb_height - 1) / EFB_HEIGHT + 1);
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
|
|
new_efb_width = EFBToScaledX(EFB_WIDTH);
|
|
new_efb_height = EFBToScaledY(EFB_HEIGHT);
|
|
}
|
|
else
|
|
{
|
|
m_efb_scale_numeratorX = new_efb_width;
|
|
m_efb_scale_denominatorX = EFB_WIDTH;
|
|
m_efb_scale_numeratorY = new_efb_height;
|
|
m_efb_scale_denominatorY = EFB_HEIGHT;
|
|
}
|
|
break;
|
|
|
|
case SCALE_1X:
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 1;
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
|
|
break;
|
|
|
|
case SCALE_1_5X:
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 3;
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2;
|
|
break;
|
|
|
|
case SCALE_2X:
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 2;
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
|
|
break;
|
|
|
|
case SCALE_2_5X:
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY = 5;
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2;
|
|
break;
|
|
|
|
default:
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY = m_last_efb_scale - 3;
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
|
|
|
|
const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize;
|
|
if (max_size < EFB_WIDTH * m_efb_scale_numeratorX / m_efb_scale_denominatorX)
|
|
{
|
|
m_efb_scale_numeratorX = m_efb_scale_numeratorY = (max_size / EFB_WIDTH);
|
|
m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
if (m_last_efb_scale > SCALE_AUTO_INTEGRAL)
|
|
std::tie(new_efb_width, new_efb_height) = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT);
|
|
|
|
if (new_efb_width != m_target_width || new_efb_height != m_target_height)
|
|
{
|
|
m_target_width = new_efb_width;
|
|
m_target_height = new_efb_height;
|
|
PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::tuple<TargetRectangle, TargetRectangle>
|
|
Renderer::ConvertStereoRectangle(const TargetRectangle& rc) const
|
|
{
|
|
// Resize target to half its original size
|
|
TargetRectangle draw_rc = rc;
|
|
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
|
|
{
|
|
// The height may be negative due to flipped rectangles
|
|
int height = rc.bottom - rc.top;
|
|
draw_rc.top += height / 4;
|
|
draw_rc.bottom -= height / 4;
|
|
}
|
|
else
|
|
{
|
|
int width = rc.right - rc.left;
|
|
draw_rc.left += width / 4;
|
|
draw_rc.right -= width / 4;
|
|
}
|
|
|
|
// Create two target rectangle offset to the sides of the backbuffer
|
|
TargetRectangle left_rc = draw_rc;
|
|
TargetRectangle right_rc = draw_rc;
|
|
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
|
|
{
|
|
left_rc.top -= m_backbuffer_height / 4;
|
|
left_rc.bottom -= m_backbuffer_height / 4;
|
|
right_rc.top += m_backbuffer_height / 4;
|
|
right_rc.bottom += m_backbuffer_height / 4;
|
|
}
|
|
else
|
|
{
|
|
left_rc.left -= m_backbuffer_width / 4;
|
|
left_rc.right -= m_backbuffer_width / 4;
|
|
right_rc.left += m_backbuffer_width / 4;
|
|
right_rc.right += m_backbuffer_width / 4;
|
|
}
|
|
|
|
return std::make_tuple(left_rc, right_rc);
|
|
}
|
|
|
|
void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion)
|
|
{
|
|
// We must not hold the lock while waiting for the screenshot to complete.
|
|
{
|
|
std::lock_guard<std::mutex> lk(m_screenshot_lock);
|
|
m_screenshot_name = filename;
|
|
m_screenshot_request.Set();
|
|
}
|
|
|
|
if (wait_for_completion)
|
|
{
|
|
// This is currently only used by Android, and it was using a wait time of 2 seconds.
|
|
m_screenshot_completed.WaitFor(std::chrono::seconds(2));
|
|
}
|
|
}
|
|
|
|
// Create On-Screen-Messages
|
|
void Renderer::DrawDebugText()
|
|
{
|
|
std::string final_yellow, final_cyan;
|
|
|
|
if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount)
|
|
{
|
|
if (g_ActiveConfig.bShowFPS)
|
|
final_cyan += StringFromFormat("FPS: %u", m_fps_counter.GetFPS());
|
|
|
|
if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount)
|
|
final_cyan += " - ";
|
|
if (SConfig::GetInstance().m_ShowFrameCount)
|
|
{
|
|
final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame());
|
|
if (Movie::IsPlayingInput())
|
|
final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64,
|
|
Movie::GetCurrentInputCount(), Movie::GetTotalInputCount());
|
|
}
|
|
|
|
final_cyan += "\n";
|
|
final_yellow += "\n";
|
|
}
|
|
|
|
if (SConfig::GetInstance().m_ShowLag)
|
|
{
|
|
final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount());
|
|
final_yellow += "\n";
|
|
}
|
|
|
|
if (SConfig::GetInstance().m_ShowInputDisplay)
|
|
{
|
|
final_cyan += Movie::GetInputDisplay();
|
|
final_yellow += "\n";
|
|
}
|
|
|
|
if (SConfig::GetInstance().m_ShowRTC)
|
|
{
|
|
final_cyan += Movie::GetRTCDisplay();
|
|
final_yellow += "\n";
|
|
}
|
|
|
|
// OSD Menu messages
|
|
if (OSDChoice > 0)
|
|
{
|
|
OSDTime = Common::Timer::GetTimeMs() + 3000;
|
|
OSDChoice = -OSDChoice;
|
|
}
|
|
|
|
if ((u32)OSDTime > Common::Timer::GetTimeMs())
|
|
{
|
|
std::string res_text;
|
|
switch (g_ActiveConfig.iEFBScale)
|
|
{
|
|
case SCALE_AUTO:
|
|
res_text = "Auto (fractional)";
|
|
break;
|
|
case SCALE_AUTO_INTEGRAL:
|
|
res_text = "Auto (integral)";
|
|
break;
|
|
case SCALE_1X:
|
|
res_text = "Native";
|
|
break;
|
|
case SCALE_1_5X:
|
|
res_text = "1.5x";
|
|
break;
|
|
case SCALE_2X:
|
|
res_text = "2x";
|
|
break;
|
|
case SCALE_2_5X:
|
|
res_text = "2.5x";
|
|
break;
|
|
default:
|
|
res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale - 3);
|
|
break;
|
|
}
|
|
const char* ar_text = "";
|
|
switch (g_ActiveConfig.iAspectRatio)
|
|
{
|
|
case ASPECT_AUTO:
|
|
ar_text = "Auto";
|
|
break;
|
|
case ASPECT_STRETCH:
|
|
ar_text = "Stretch";
|
|
break;
|
|
case ASPECT_ANALOG:
|
|
ar_text = "Force 4:3";
|
|
break;
|
|
case ASPECT_ANALOG_WIDE:
|
|
ar_text = "Force 16:9";
|
|
}
|
|
|
|
const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM";
|
|
|
|
// The rows
|
|
const std::string lines[] = {
|
|
std::string("Internal Resolution: ") + res_text,
|
|
std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
|
|
std::string("Copy EFB: ") + efbcopy_text,
|
|
std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
|
|
SConfig::GetInstance().m_EmulationSpeed <= 0 ?
|
|
"Speed Limit: Unlimited" :
|
|
StringFromFormat("Speed Limit: %li%%",
|
|
std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)),
|
|
};
|
|
|
|
enum
|
|
{
|
|
lines_count = sizeof(lines) / sizeof(*lines)
|
|
};
|
|
|
|
// The latest changed setting in yellow
|
|
for (int i = 0; i != lines_count; ++i)
|
|
{
|
|
if (OSDChoice == -i - 1)
|
|
final_yellow += lines[i];
|
|
final_yellow += '\n';
|
|
}
|
|
|
|
// The other settings in cyan
|
|
for (int i = 0; i != lines_count; ++i)
|
|
{
|
|
if (OSDChoice != -i - 1)
|
|
final_cyan += lines[i];
|
|
final_cyan += '\n';
|
|
}
|
|
}
|
|
|
|
final_cyan += Common::Profiler::ToString();
|
|
|
|
if (g_ActiveConfig.bOverlayStats)
|
|
final_cyan += Statistics::ToString();
|
|
|
|
if (g_ActiveConfig.bOverlayProjStats)
|
|
final_cyan += Statistics::ToStringProj();
|
|
|
|
// and then the text
|
|
RenderText(final_cyan, 20, 20, 0xFF00FFFF);
|
|
RenderText(final_yellow, 20, 20, 0xFFFFFF00);
|
|
}
|
|
|
|
float Renderer::CalculateDrawAspectRatio(int target_width, int target_height) const
|
|
{
|
|
// The dimensions are the sizes that are used to create the EFB/backbuffer textures, so
|
|
// they should always be greater than zero.
|
|
_assert_(target_width > 0 && target_height > 0);
|
|
if (g_ActiveConfig.iAspectRatio == ASPECT_STRETCH)
|
|
{
|
|
// If stretch is enabled, we prefer the aspect ratio of the window.
|
|
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
|
|
(static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
|
|
}
|
|
|
|
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
|
|
if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
|
|
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide))
|
|
{
|
|
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
|
|
AspectToWidescreen(VideoInterface::GetAspectRatio());
|
|
}
|
|
else
|
|
{
|
|
return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
|
|
VideoInterface::GetAspectRatio();
|
|
}
|
|
}
|
|
|
|
std::tuple<float, float> Renderer::ScaleToDisplayAspectRatio(const int width,
|
|
const int height) const
|
|
{
|
|
// Scale either the width or height depending the content aspect ratio.
|
|
// This way we preserve as much resolution as possible when scaling.
|
|
float ratio = CalculateDrawAspectRatio(width, height);
|
|
if (ratio >= 1.0f)
|
|
{
|
|
// Preserve horizontal resolution, scale vertically.
|
|
return std::make_tuple(static_cast<float>(width), static_cast<float>(height) * ratio);
|
|
}
|
|
|
|
// Preserve vertical resolution, scale horizontally.
|
|
return std::make_tuple(static_cast<float>(width) / ratio, static_cast<float>(height));
|
|
}
|
|
|
|
TargetRectangle Renderer::CalculateFrameDumpDrawRectangle() const
|
|
{
|
|
// No point including any borders in the frame dump image, since they'd have to be cropped anyway.
|
|
TargetRectangle rc;
|
|
rc.left = 0;
|
|
rc.top = 0;
|
|
|
|
// If full-resolution frame dumping is disabled, just use the window draw rectangle.
|
|
// Also do this if RealXFB is enabled, since the image has been downscaled for the XFB copy
|
|
// anyway, and there's no point writing an upscaled frame with no filtering.
|
|
if (!g_ActiveConfig.bInternalResolutionFrameDumps || g_ActiveConfig.RealXFBEnabled())
|
|
{
|
|
// But still remove the borders, since the caller expects this.
|
|
rc.right = m_target_rectangle.GetWidth();
|
|
rc.bottom = m_target_rectangle.GetHeight();
|
|
return rc;
|
|
}
|
|
|
|
// Grab the dimensions of the EFB textures, we scale either of these depending on the ratio.
|
|
u32 efb_width, efb_height;
|
|
std::tie(efb_width, efb_height) = g_framebuffer_manager->GetTargetSize();
|
|
|
|
float draw_width, draw_height;
|
|
std::tie(draw_width, draw_height) = ScaleToDisplayAspectRatio(efb_width, efb_height);
|
|
|
|
rc.right = static_cast<int>(std::ceil(draw_width));
|
|
rc.bottom = static_cast<int>(std::ceil(draw_height));
|
|
return rc;
|
|
}
|
|
|
|
void Renderer::UpdateDrawRectangle()
|
|
{
|
|
float FloatGLWidth = static_cast<float>(m_backbuffer_width);
|
|
float FloatGLHeight = static_cast<float>(m_backbuffer_height);
|
|
float FloatXOffset = 0;
|
|
float FloatYOffset = 0;
|
|
|
|
// The rendering window size
|
|
const float WinWidth = FloatGLWidth;
|
|
const float WinHeight = FloatGLHeight;
|
|
|
|
// Update aspect ratio hack values
|
|
// Won't take effect until next frame
|
|
// Don't know if there is a better place for this code so there isn't a 1 frame delay
|
|
if (g_ActiveConfig.bWidescreenHack)
|
|
{
|
|
float source_aspect = VideoInterface::GetAspectRatio();
|
|
if (Core::g_aspect_wide)
|
|
source_aspect = AspectToWidescreen(source_aspect);
|
|
float target_aspect;
|
|
|
|
switch (g_ActiveConfig.iAspectRatio)
|
|
{
|
|
case ASPECT_STRETCH:
|
|
target_aspect = WinWidth / WinHeight;
|
|
break;
|
|
case ASPECT_ANALOG:
|
|
target_aspect = VideoInterface::GetAspectRatio();
|
|
break;
|
|
case ASPECT_ANALOG_WIDE:
|
|
target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio());
|
|
break;
|
|
default:
|
|
// ASPECT_AUTO
|
|
target_aspect = source_aspect;
|
|
break;
|
|
}
|
|
|
|
float adjust = source_aspect / target_aspect;
|
|
if (adjust > 1)
|
|
{
|
|
// Vert+
|
|
g_Config.fAspectRatioHackW = 1;
|
|
g_Config.fAspectRatioHackH = 1 / adjust;
|
|
}
|
|
else
|
|
{
|
|
// Hor+
|
|
g_Config.fAspectRatioHackW = adjust;
|
|
g_Config.fAspectRatioHackH = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Hack is disabled
|
|
g_Config.fAspectRatioHackW = 1;
|
|
g_Config.fAspectRatioHackH = 1;
|
|
}
|
|
|
|
// Check for force-settings and override.
|
|
|
|
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
|
|
float Ratio = CalculateDrawAspectRatio(m_backbuffer_width, m_backbuffer_height);
|
|
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
|
|
{
|
|
if (Ratio >= 0.995f && Ratio <= 1.005f)
|
|
{
|
|
// If we're very close already, don't scale.
|
|
Ratio = 1.0f;
|
|
}
|
|
else if (Ratio > 1.0f)
|
|
{
|
|
// Scale down and center in the X direction.
|
|
FloatGLWidth /= Ratio;
|
|
FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
|
|
}
|
|
// The window is too high, we have to limit the height
|
|
else
|
|
{
|
|
// Scale down and center in the Y direction.
|
|
FloatGLHeight *= Ratio;
|
|
FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9.
|
|
// Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
|
|
// ------------------
|
|
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
|
|
{
|
|
Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio();
|
|
if (Ratio <= 1.0f)
|
|
{
|
|
Ratio = 1.0f / Ratio;
|
|
}
|
|
// The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is
|
|
// adjusted)
|
|
float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
|
|
float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
|
|
// The new width and height
|
|
FloatGLWidth = FloatGLWidth * Ratio;
|
|
FloatGLHeight = FloatGLHeight * Ratio;
|
|
// Adjust the X and Y offset
|
|
FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
|
|
FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
|
|
}
|
|
|
|
int XOffset = (int)(FloatXOffset + 0.5f);
|
|
int YOffset = (int)(FloatYOffset + 0.5f);
|
|
int iWhidth = (int)ceil(FloatGLWidth);
|
|
int iHeight = (int)ceil(FloatGLHeight);
|
|
iWhidth -=
|
|
iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders
|
|
iHeight -= iHeight % 4;
|
|
|
|
m_target_rectangle.left = XOffset;
|
|
m_target_rectangle.top = YOffset;
|
|
m_target_rectangle.right = XOffset + iWhidth;
|
|
m_target_rectangle.bottom = YOffset + iHeight;
|
|
}
|
|
|
|
void Renderer::SetWindowSize(int width, int height)
|
|
{
|
|
width = std::max(width, 1);
|
|
height = std::max(height, 1);
|
|
|
|
// Scale the window size by the EFB scale.
|
|
std::tie(width, height) = CalculateTargetScale(width, height);
|
|
|
|
float scaled_width, scaled_height;
|
|
std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height);
|
|
|
|
if (g_ActiveConfig.bCrop)
|
|
{
|
|
// Force 4:3 or 16:9 by cropping the image.
|
|
float current_aspect = scaled_width / scaled_height;
|
|
float expected_aspect =
|
|
(g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
|
|
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide)) ?
|
|
(16.0f / 9.0f) :
|
|
(4.0f / 3.0f);
|
|
if (current_aspect > expected_aspect)
|
|
{
|
|
// keep height, crop width
|
|
scaled_width = scaled_height * expected_aspect;
|
|
}
|
|
else
|
|
{
|
|
// keep width, crop height
|
|
scaled_height = scaled_width / expected_aspect;
|
|
}
|
|
}
|
|
|
|
width = static_cast<int>(std::ceil(scaled_width));
|
|
height = static_cast<int>(std::ceil(scaled_height));
|
|
|
|
// UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
|
|
// encoders, so do that here too to match it
|
|
width -= width % 4;
|
|
height -= height % 4;
|
|
|
|
// Track the last values of width/height to avoid sending a window resize event every frame.
|
|
if (width != m_last_window_request_width || height != m_last_window_request_height)
|
|
{
|
|
m_last_window_request_width = width;
|
|
m_last_window_request_height = height;
|
|
Host_RequestRenderWindowSize(width, height);
|
|
}
|
|
}
|
|
|
|
void Renderer::CheckFifoRecording()
|
|
{
|
|
bool wasRecording = g_bRecordFifoData;
|
|
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
|
|
|
|
if (g_bRecordFifoData)
|
|
{
|
|
if (!wasRecording)
|
|
{
|
|
RecordVideoMemory();
|
|
}
|
|
|
|
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase,
|
|
CommandProcessor::fifo.CPEnd);
|
|
}
|
|
}
|
|
|
|
void Renderer::RecordVideoMemory()
|
|
{
|
|
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
|
|
u32 cpmem[256] = {};
|
|
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
|
|
// that split here.
|
|
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
|
|
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
|
|
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
|
|
|
|
FillCPMemoryArray(cpmem);
|
|
|
|
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
|
|
texMem);
|
|
}
|
|
|
|
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
|
|
u64 ticks, float Gamma)
|
|
{
|
|
// TODO: merge more generic parts into VideoCommon
|
|
SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, ticks, Gamma);
|
|
|
|
if (m_xfb_written)
|
|
m_fps_counter.Update();
|
|
|
|
frameCount++;
|
|
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
|
|
|
|
// Begin new frame
|
|
// Set default viewport and scissor, for the clear to work correctly
|
|
// New frame
|
|
stats.ResetFrame();
|
|
|
|
Core::Callback_VideoCopiedToXFB(m_xfb_written ||
|
|
(g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
|
|
m_xfb_written = false;
|
|
}
|
|
|
|
bool Renderer::IsFrameDumping()
|
|
{
|
|
if (m_screenshot_request.IsSet())
|
|
return true;
|
|
|
|
#if defined(HAVE_LIBAV) || defined(_WIN32)
|
|
if (SConfig::GetInstance().m_DumpFrames)
|
|
return true;
|
|
#endif
|
|
|
|
ShutdownFrameDumping();
|
|
return false;
|
|
}
|
|
|
|
void Renderer::ShutdownFrameDumping()
|
|
{
|
|
if (!m_frame_dump_thread_running.IsSet())
|
|
return;
|
|
|
|
FinishFrameData();
|
|
m_frame_dump_thread_running.Clear();
|
|
m_frame_dump_start.Set();
|
|
}
|
|
|
|
void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state,
|
|
bool swap_upside_down)
|
|
{
|
|
FinishFrameData();
|
|
|
|
m_frame_dump_config = FrameDumpConfig{data, w, h, stride, swap_upside_down, state};
|
|
|
|
if (!m_frame_dump_thread_running.IsSet())
|
|
{
|
|
if (m_frame_dump_thread.joinable())
|
|
m_frame_dump_thread.join();
|
|
m_frame_dump_thread_running.Set();
|
|
m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this);
|
|
}
|
|
|
|
m_frame_dump_start.Set();
|
|
m_frame_dump_frame_running = true;
|
|
}
|
|
|
|
void Renderer::FinishFrameData()
|
|
{
|
|
if (!m_frame_dump_frame_running)
|
|
return;
|
|
|
|
m_frame_dump_done.Wait();
|
|
m_frame_dump_frame_running = false;
|
|
}
|
|
|
|
void Renderer::RunFrameDumps()
|
|
{
|
|
Common::SetCurrentThreadName("FrameDumping");
|
|
bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages;
|
|
bool frame_dump_started = false;
|
|
|
|
// If Dolphin was compiled without libav, we only support dumping to images.
|
|
#if !defined(HAVE_LIBAV) && !defined(_WIN32)
|
|
if (dump_to_avi)
|
|
{
|
|
WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. "
|
|
"Frame dump will be saved as images instead.");
|
|
dump_to_avi = false;
|
|
}
|
|
#endif
|
|
|
|
while (true)
|
|
{
|
|
m_frame_dump_start.Wait();
|
|
if (!m_frame_dump_thread_running.IsSet())
|
|
break;
|
|
|
|
auto config = m_frame_dump_config;
|
|
|
|
if (config.upside_down)
|
|
{
|
|
config.data = config.data + (config.height - 1) * config.stride;
|
|
config.stride = -config.stride;
|
|
}
|
|
|
|
// Save screenshot
|
|
if (m_screenshot_request.TestAndClear())
|
|
{
|
|
std::lock_guard<std::mutex> lk(m_screenshot_lock);
|
|
|
|
if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height,
|
|
false))
|
|
OSD::AddMessage("Screenshot saved to " + m_screenshot_name);
|
|
|
|
// Reset settings
|
|
m_screenshot_name.clear();
|
|
m_screenshot_completed.Set();
|
|
}
|
|
|
|
if (SConfig::GetInstance().m_DumpFrames)
|
|
{
|
|
if (!frame_dump_started)
|
|
{
|
|
if (dump_to_avi)
|
|
frame_dump_started = StartFrameDumpToAVI(config);
|
|
else
|
|
frame_dump_started = StartFrameDumpToImage(config);
|
|
|
|
// Stop frame dumping if we fail to start.
|
|
if (!frame_dump_started)
|
|
SConfig::GetInstance().m_DumpFrames = false;
|
|
}
|
|
|
|
// If we failed to start frame dumping, don't write a frame.
|
|
if (frame_dump_started)
|
|
{
|
|
if (dump_to_avi)
|
|
DumpFrameToAVI(config);
|
|
else
|
|
DumpFrameToImage(config);
|
|
}
|
|
}
|
|
|
|
m_frame_dump_done.Set();
|
|
}
|
|
|
|
if (frame_dump_started)
|
|
{
|
|
// No additional cleanup is needed when dumping to images.
|
|
if (dump_to_avi)
|
|
StopFrameDumpToAVI();
|
|
}
|
|
}
|
|
|
|
#if defined(HAVE_LIBAV) || defined(_WIN32)
|
|
|
|
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
|
|
{
|
|
return AVIDump::Start(config.width, config.height);
|
|
}
|
|
|
|
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
|
|
{
|
|
AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state);
|
|
}
|
|
|
|
void Renderer::StopFrameDumpToAVI()
|
|
{
|
|
AVIDump::Stop();
|
|
}
|
|
|
|
#else
|
|
|
|
bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
|
|
{
|
|
}
|
|
|
|
void Renderer::StopFrameDumpToAVI()
|
|
{
|
|
}
|
|
|
|
#endif // defined(HAVE_LIBAV) || defined(WIN32)
|
|
|
|
std::string Renderer::GetFrameDumpNextImageFileName() const
|
|
{
|
|
return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(),
|
|
m_frame_dump_image_counter);
|
|
}
|
|
|
|
bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config)
|
|
{
|
|
m_frame_dump_image_counter = 1;
|
|
if (!SConfig::GetInstance().m_DumpFramesSilent)
|
|
{
|
|
// Only check for the presence of the first image to confirm overwriting.
|
|
// A previous run will always have at least one image, and it's safe to assume that if the user
|
|
// has allowed the first image to be overwritten, this will apply any remaining images as well.
|
|
std::string filename = GetFrameDumpNextImageFileName();
|
|
if (File::Exists(filename))
|
|
{
|
|
if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Renderer::DumpFrameToImage(const FrameDumpConfig& config)
|
|
{
|
|
std::string filename = GetFrameDumpNextImageFileName();
|
|
TextureToPng(config.data, config.stride, filename, config.width, config.height, false);
|
|
m_frame_dump_image_counter++;
|
|
}
|
|
|
|
bool Renderer::UseVertexDepthRange() const
|
|
{
|
|
// We can't compute the depth range in the vertex shader if we don't support depth clamp.
|
|
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
|
|
return false;
|
|
|
|
// We need a full depth range if a ztexture is used.
|
|
if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest)
|
|
return true;
|
|
|
|
// If an inverted depth range is unsupported, we also need to check if the range is inverted.
|
|
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f)
|
|
return true;
|
|
|
|
// If an oversized depth range or a ztexture is used, we need to calculate the depth range
|
|
// in the vertex shader.
|
|
return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
|
|
}
|