dolphin/Source/Core/VideoBackends/Vulkan/VulkanContext.cpp
2017-04-29 13:46:42 +10:00

733 lines
28 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/DriverDetails.h"
namespace Vulkan
{
std::unique_ptr<VulkanContext> g_vulkan_context;
VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device)
: m_instance(instance), m_physical_device(physical_device)
{
// Read device physical memory properties, we need it for allocating buffers
vkGetPhysicalDeviceProperties(physical_device, &m_device_properties);
vkGetPhysicalDeviceMemoryProperties(physical_device, &m_device_memory_properties);
// Would any drivers be this silly? I hope not...
m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(
m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(
m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(
m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max(
m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast<VkDeviceSize>(1));
}
VulkanContext::~VulkanContext()
{
if (m_device != VK_NULL_HANDLE)
vkDestroyDevice(m_device, nullptr);
if (m_debug_report_callback != VK_NULL_HANDLE)
DisableDebugReports();
vkDestroyInstance(m_instance, nullptr);
}
bool VulkanContext::CheckValidationLayerAvailablility()
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkExtensionProperties> extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data());
_assert_(res == VK_SUCCESS);
u32 layer_count = 0;
res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkLayerProperties> layer_list(layer_count);
res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data());
_assert_(res == VK_SUCCESS);
// Check for both VK_EXT_debug_report and VK_LAYER_LUNARG_standard_validation
return (std::find_if(extension_list.begin(), extension_list.end(),
[](const auto& it) {
return strcmp(it.extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0;
}) != extension_list.end() &&
std::find_if(layer_list.begin(), layer_list.end(), [](const auto& it) {
return strcmp(it.layerName, "VK_LAYER_LUNARG_standard_validation") == 0;
}) != layer_list.end());
}
VkInstance VulkanContext::CreateVulkanInstance(bool enable_surface, bool enable_debug_report,
bool enable_validation_layer)
{
ExtensionList enabled_extensions;
if (!SelectInstanceExtensions(&enabled_extensions, enable_surface, enable_debug_report))
return VK_NULL_HANDLE;
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = nullptr;
app_info.pApplicationName = "Dolphin Emulator";
app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.pEngineName = "Dolphin Emulator";
app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.apiVersion = VK_MAKE_VERSION(1, 0, 0);
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pNext = nullptr;
instance_create_info.flags = 0;
instance_create_info.pApplicationInfo = &app_info;
instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
instance_create_info.ppEnabledExtensionNames = enabled_extensions.data();
instance_create_info.enabledLayerCount = 0;
instance_create_info.ppEnabledLayerNames = nullptr;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
instance_create_info.enabledLayerCount = 1;
instance_create_info.ppEnabledLayerNames = layer_names;
}
VkInstance instance;
VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateInstance failed: ");
return nullptr;
}
return instance;
}
bool VulkanContext::SelectInstanceExtensions(ExtensionList* extension_list, bool enable_surface,
bool enable_debug_report)
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG(VIDEO, "Vulkan: No extensions supported by instance.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count,
available_extension_list.data());
_assert_(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName);
auto CheckForExtension = [&](const char* name, bool required) -> bool {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG(VIDEO, "Enabling extension: %s", name);
extension_list->push_back(name);
return true;
}
if (required)
{
ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name);
return false;
}
return true;
};
// Common extensions
if (enable_surface && !CheckForExtension(VK_KHR_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (enable_surface && !CheckForExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true))
return false;
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
if (enable_surface && !CheckForExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true))
return false;
#elif defined(VK_USE_PLATFORM_XCB_KHR)
if (enable_surface && !CheckForExtension(VK_KHR_XCB_SURFACE_EXTENSION_NAME, true))
return false;
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
if (enable_surface && !CheckForExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true))
return false;
#endif
// VK_EXT_debug_report
if (enable_debug_report && !CheckForExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, true))
WARN_LOG(VIDEO, "Vulkan: Debug report requested, but extension is not available.");
return true;
}
VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance)
{
u32 gpu_count = 0;
VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
GPUList gpus;
gpus.resize(gpu_count);
res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
return gpus;
}
void VulkanContext::PopulateBackendInfo(VideoConfig* config)
{
config->backend_info.api_type = APIType::Vulkan;
config->backend_info.bSupportsExclusiveFullscreen = false; // Currently WSI does not allow this.
config->backend_info.bSupports3DVision = false; // D3D-exclusive.
config->backend_info.bSupportsOversizedViewports = true; // Assumed support.
config->backend_info.bSupportsEarlyZ = true; // Assumed support.
config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support.
config->backend_info.bSupportsBindingLayout = false; // Assumed support.
config->backend_info.bSupportsPaletteConversion = true; // Assumed support.
config->backend_info.bSupportsClipControl = true; // Assumed support.
config->backend_info.bSupportsMultithreading = true; // Assumed support.
config->backend_info.bSupportsComputeShaders = true; // Assumed support.
config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support.
config->backend_info.bSupportsInternalResolutionFrameDumps = true; // Assumed support.
config->backend_info.bSupportsPostProcessing = true; // Assumed support.
config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features.
config->backend_info.bSupportsGeometryShaders = false; // Dependent on features.
config->backend_info.bSupportsGSInstancing = false; // Dependent on features.
config->backend_info.bSupportsBBox = false; // Dependent on features.
config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features.
config->backend_info.bSupportsSSAA = false; // Dependent on features.
config->backend_info.bSupportsDepthClamp = false; // Dependent on features.
config->backend_info.bSupportsST3CTextures = false; // Dependent on features.
config->backend_info.bSupportsReversedDepthRange = false; // No support yet due to driver bugs.
}
void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list)
{
config->backend_info.Adapters.clear();
for (VkPhysicalDevice physical_device : gpu_list)
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(physical_device, &properties);
config->backend_info.Adapters.push_back(properties.deviceName);
}
}
void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu,
const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceFeatures& features)
{
config->backend_info.MaxTextureSize = properties.limits.maxImageDimension2D;
config->backend_info.bSupportsDualSourceBlend = (features.dualSrcBlend == VK_TRUE);
config->backend_info.bSupportsGeometryShaders = (features.geometryShader == VK_TRUE);
config->backend_info.bSupportsGSInstancing = (features.geometryShader == VK_TRUE);
config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics =
(features.fragmentStoresAndAtomics == VK_TRUE);
config->backend_info.bSupportsSSAA = (features.sampleRateShading == VK_TRUE);
// Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported.
// Seems this is needed for gl_Layer.
if (!features.shaderTessellationAndGeometryPointSize)
{
config->backend_info.bSupportsGeometryShaders = VK_FALSE;
config->backend_info.bSupportsGSInstancing = VK_FALSE;
}
// Depth clamping implies shaderClipDistance and depthClamp
config->backend_info.bSupportsDepthClamp =
(features.depthClamp == VK_TRUE && features.shaderClipDistance == VK_TRUE);
// textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need.
config->backend_info.bSupportsST3CTextures = features.textureCompressionBC == VK_TRUE;
// Our usage of primitive restart appears to be broken on AMD's binary drivers.
// Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4.
if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART))
config->backend_info.bSupportsPrimitiveRestart = false;
}
void VulkanContext::PopulateBackendInfoMultisampleModes(
VideoConfig* config, VkPhysicalDevice gpu, const VkPhysicalDeviceProperties& properties)
{
// Query image support for the EFB texture formats.
VkImageFormatProperties efb_color_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, EFB_COLOR_TEXTURE_FORMAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties);
VkImageFormatProperties efb_depth_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, EFB_DEPTH_TEXTURE_FORMAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties);
// We can only support MSAA if it's supported on our render target formats.
VkSampleCountFlags supported_sample_counts = properties.limits.framebufferColorSampleCounts &
properties.limits.framebufferDepthSampleCounts &
efb_color_properties.sampleCounts &
efb_depth_properties.sampleCounts;
// No AA
config->backend_info.AAModes.clear();
config->backend_info.AAModes.emplace_back(1);
// 2xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT)
config->backend_info.AAModes.emplace_back(2);
// 4xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT)
config->backend_info.AAModes.emplace_back(4);
// 8xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT)
config->backend_info.AAModes.emplace_back(8);
// 16xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT)
config->backend_info.AAModes.emplace_back(16);
// 32xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT)
config->backend_info.AAModes.emplace_back(32);
// 64xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT)
config->backend_info.AAModes.emplace_back(64);
}
std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu,
VkSurfaceKHR surface,
bool enable_debug_reports,
bool enable_validation_layer)
{
std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu);
// Initialize DriverDetails so that we can check for bugs to disable features if needed.
DriverDetails::Init(DriverDetails::API_VULKAN,
DriverDetails::TranslatePCIVendorID(context->m_device_properties.vendorID),
DriverDetails::DRIVER_UNKNOWN,
static_cast<double>(context->m_device_properties.driverVersion),
DriverDetails::Family::UNKNOWN);
// Enable debug reports if the "Host GPU" log category is enabled.
if (enable_debug_reports)
context->EnableDebugReports();
// Attempt to create the device.
if (!context->CreateDevice(surface, enable_validation_layer))
{
// Since we are destroying the instance, we're also responsible for destroying the surface.
if (surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(instance, surface, nullptr);
return nullptr;
}
return context;
}
bool VulkanContext::SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface)
{
u32 extension_count = 0;
VkResult res =
vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG(VIDEO, "Vulkan: No extensions supported by device.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count,
available_extension_list.data());
_assert_(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName);
auto CheckForExtension = [&](const char* name, bool required) -> bool {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG(VIDEO, "Enabling extension: %s", name);
extension_list->push_back(name);
return true;
}
if (required)
{
ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name);
return false;
}
return true;
};
if (enable_surface && !CheckForExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true))
return false;
return true;
}
bool VulkanContext::SelectDeviceFeatures()
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(m_physical_device, &properties);
VkPhysicalDeviceFeatures available_features;
vkGetPhysicalDeviceFeatures(m_physical_device, &available_features);
// Not having geometry shaders or wide lines will cause issues with rendering.
if (!available_features.geometryShader && !available_features.wideLines)
WARN_LOG(VIDEO, "Vulkan: Missing both geometryShader and wideLines features.");
if (!available_features.largePoints)
WARN_LOG(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower.");
if (!available_features.occlusionQueryPrecise)
WARN_LOG(VIDEO, "Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate.");
// Check push constant size.
if (properties.limits.maxPushConstantsSize < static_cast<u32>(PUSH_CONSTANT_BUFFER_SIZE))
{
PanicAlert("Vulkan: Push contant buffer size %u is below minimum %u.",
properties.limits.maxPushConstantsSize, static_cast<u32>(PUSH_CONSTANT_BUFFER_SIZE));
return false;
}
// Enable the features we use.
m_device_features.dualSrcBlend = available_features.dualSrcBlend;
m_device_features.geometryShader = available_features.geometryShader;
m_device_features.samplerAnisotropy = available_features.samplerAnisotropy;
m_device_features.logicOp = available_features.logicOp;
m_device_features.fragmentStoresAndAtomics = available_features.fragmentStoresAndAtomics;
m_device_features.sampleRateShading = available_features.sampleRateShading;
m_device_features.largePoints = available_features.largePoints;
m_device_features.shaderStorageImageMultisample =
available_features.shaderStorageImageMultisample;
m_device_features.shaderTessellationAndGeometryPointSize =
available_features.shaderTessellationAndGeometryPointSize;
m_device_features.occlusionQueryPrecise = available_features.occlusionQueryPrecise;
m_device_features.shaderClipDistance = available_features.shaderClipDistance;
m_device_features.depthClamp = available_features.depthClamp;
m_device_features.textureCompressionBC = available_features.textureCompressionBC;
return true;
}
bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer)
{
u32 queue_family_count;
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr);
if (queue_family_count == 0)
{
ERROR_LOG(VIDEO, "No queue families found on specified vulkan physical device.");
return false;
}
std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count,
queue_family_properties.data());
INFO_LOG(VIDEO, "%u vulkan queue families", queue_family_count);
// Find a graphics queue
// Currently we only use a single queue for both graphics and presenting.
// TODO: In the future we could do post-processing and presenting on a different queue.
m_graphics_queue_family_index = queue_family_count;
for (uint32_t i = 0; i < queue_family_count; i++)
{
if (queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)
{
// Check that it can present to our surface from this queue
if (surface)
{
VkBool32 present_supported;
VkResult res =
vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (present_supported)
{
m_graphics_queue_family_index = i;
break;
}
}
else
{
// We don't need present, so any graphics queue will do.
m_graphics_queue_family_index = i;
break;
}
}
}
if (m_graphics_queue_family_index == queue_family_count)
{
ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable graphics queue.");
return false;
}
VkDeviceCreateInfo device_info = {};
device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device_info.pNext = nullptr;
device_info.flags = 0;
static constexpr float queue_priorities[] = {1.0f};
VkDeviceQueueCreateInfo queue_info = {};
queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_info.pNext = nullptr;
queue_info.flags = 0;
queue_info.queueFamilyIndex = m_graphics_queue_family_index;
queue_info.queueCount = 1;
queue_info.pQueuePriorities = queue_priorities;
device_info.queueCreateInfoCount = 1;
device_info.pQueueCreateInfos = &queue_info;
ExtensionList enabled_extensions;
if (!SelectDeviceExtensions(&enabled_extensions, surface != VK_NULL_HANDLE))
return false;
device_info.enabledLayerCount = 0;
device_info.ppEnabledLayerNames = nullptr;
device_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
device_info.ppEnabledExtensionNames = enabled_extensions.data();
// Check for required features before creating.
if (!SelectDeviceFeatures())
return false;
device_info.pEnabledFeatures = &m_device_features;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
device_info.enabledLayerCount = 1;
device_info.ppEnabledLayerNames = layer_names;
}
VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDevice failed: ");
return false;
}
// With the device created, we can fill the remaining entry points.
if (!LoadVulkanDeviceFunctions(m_device))
return false;
// Grab the graphics queue (only one we're using at this point).
vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue);
return true;
}
static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object, size_t location,
int32_t messageCode,
const char* pLayerPrefix,
const char* pMessage, void* pUserData)
{
std::string log_message =
StringFromFormat("Vulkan debug report: (%s) %s", pLayerPrefix ? pLayerPrefix : "", pMessage);
if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LERROR, "%s", log_message.c_str())
else if (flags & (VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT))
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LWARNING, "%s", log_message.c_str())
else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LINFO, "%s", log_message.c_str())
else
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LDEBUG, "%s", log_message.c_str())
return VK_FALSE;
}
bool VulkanContext::EnableDebugReports()
{
// Already enabled?
if (m_debug_report_callback != VK_NULL_HANDLE)
return true;
// Check for presence of the functions before calling
if (!vkCreateDebugReportCallbackEXT || !vkDestroyDebugReportCallbackEXT ||
!vkDebugReportMessageEXT)
{
return false;
}
VkDebugReportCallbackCreateInfoEXT callback_info = {
VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, nullptr,
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
DebugReportCallback, nullptr};
VkResult res =
vkCreateDebugReportCallbackEXT(m_instance, &callback_info, nullptr, &m_debug_report_callback);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDebugReportCallbackEXT failed: ");
return false;
}
return true;
}
void VulkanContext::DisableDebugReports()
{
if (m_debug_report_callback != VK_NULL_HANDLE)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debug_report_callback, nullptr);
m_debug_report_callback = VK_NULL_HANDLE;
}
}
bool VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties, u32* out_type_index)
{
for (u32 i = 0; i < VK_MAX_MEMORY_TYPES; i++)
{
if ((bits & (1 << i)) != 0)
{
u32 supported = m_device_memory_properties.memoryTypes[i].propertyFlags & properties;
if (supported == properties)
{
*out_type_index = i;
return true;
}
}
}
return false;
}
u32 VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties)
{
u32 type_index = VK_MAX_MEMORY_TYPES;
if (!GetMemoryType(bits, properties, &type_index))
PanicAlert("Unable to find memory type for %x:%x", bits, properties);
return type_index;
}
u32 VulkanContext::GetUploadMemoryType(u32 bits, bool* is_coherent)
{
// Try for coherent memory first.
VkMemoryPropertyFlags flags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
u32 type_index;
if (!GetMemoryType(bits, flags, &type_index))
{
WARN_LOG(
VIDEO,
"Vulkan: Failed to find a coherent memory type for uploads, this will affect performance.");
// Try non-coherent memory.
flags &= ~VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (!GetMemoryType(bits, flags, &type_index))
{
// We shouldn't have any memory types that aren't host-visible.
PanicAlert("Unable to get memory type for upload.");
type_index = 0;
}
}
if (is_coherent)
*is_coherent = ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0);
return type_index;
}
u32 VulkanContext::GetReadbackMemoryType(u32 bits, bool* is_coherent, bool* is_cached)
{
// Try for cached and coherent memory first.
VkMemoryPropertyFlags flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
u32 type_index;
if (!GetMemoryType(bits, flags, &type_index))
{
// For readbacks, caching is more important than coherency.
flags &= ~VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (!GetMemoryType(bits, flags, &type_index))
{
WARN_LOG(VIDEO, "Vulkan: Failed to find a cached memory type for readbacks, this will affect "
"performance.");
// Remove the cached bit as well.
flags &= ~VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
if (!GetMemoryType(bits, flags, &type_index))
{
// We shouldn't have any memory types that aren't host-visible.
PanicAlert("Unable to get memory type for upload.");
type_index = 0;
}
}
}
if (is_coherent)
*is_coherent = ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0);
if (is_cached)
*is_cached = ((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0);
return type_index;
}
}