dolphin/Source/Core/VideoCommon/VertexLoader.cpp
Tillmann Karras d802d39281 clang-modernize -use-nullptr
and s/\bNULL\b/nullptr/g for *.cpp/h/mm files not compiled on my machine
2014-03-09 21:14:26 +01:00

1010 lines
32 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/Common.h"
#include "Common/MemoryUtil.h"
#include "Common/StringUtil.h"
#include "Common/x64ABI.h"
#include "Common/x64Emitter.h"
#include "Core/Host.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/LookUpTables.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoader_Color.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
#include "VideoCommon/VertexLoader_TextCoord.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
//BBox
#include "VideoCommon/XFMemory.h"
#define COMPILED_CODE_SIZE 4096
NativeVertexFormat *g_nativeVertexFmt;
#ifndef _WIN32
#undef inline
#define inline
#endif
// Matrix components are first in GC format but later in PC format - we need to store it temporarily
// when decoding each vertex.
static u8 s_curposmtx = MatrixIndexA.PosNormalMtxIdx;
static u8 s_curtexmtx[8];
static int s_texmtxwrite = 0;
static int s_texmtxread = 0;
static int loop_counter;
// Vertex loaders read these. Although the scale ones should be baked into the shader.
int tcIndex;
int colIndex;
TVtxAttr* pVtxAttr;
int colElements[2];
float posScale;
float tcScale[8];
// bbox variables
// bbox must read vertex position, so convert it to this buffer
static float s_bbox_vertex_buffer[3];
static u8 *s_bbox_pCurBufferPointer_orig;
static int s_bbox_primitive;
static struct Point
{
s32 x;
s32 y;
float z;
} s_bbox_points[3];
static u8 s_bbox_currPoint;
static u8 s_bbox_loadedPoints;
static const u8 s_bbox_primitivePoints[8] = { 3, 0, 3, 3, 3, 2, 2, 1 };
static const float fractionTable[32] = {
1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3),
1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7),
1.0f / (1U << 8), 1.0f / (1U << 9), 1.0f / (1U << 10), 1.0f / (1U << 11),
1.0f / (1U << 12), 1.0f / (1U << 13), 1.0f / (1U << 14), 1.0f / (1U << 15),
1.0f / (1U << 16), 1.0f / (1U << 17), 1.0f / (1U << 18), 1.0f / (1U << 19),
1.0f / (1U << 20), 1.0f / (1U << 21), 1.0f / (1U << 22), 1.0f / (1U << 23),
1.0f / (1U << 24), 1.0f / (1U << 25), 1.0f / (1U << 26), 1.0f / (1U << 27),
1.0f / (1U << 28), 1.0f / (1U << 29), 1.0f / (1U << 30), 1.0f / (1U << 31),
};
using namespace Gen;
void LOADERDECL PosMtx_ReadDirect_UByte()
{
s_curposmtx = DataReadU8() & 0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
void LOADERDECL PosMtx_Write()
{
DataWrite<u8>(s_curposmtx);
DataWrite<u8>(0);
DataWrite<u8>(0);
DataWrite<u8>(0);
// Resetting current position matrix to default is needed for bbox to behave
s_curposmtx = (u8) MatrixIndexA.PosNormalMtxIdx;
}
void LOADERDECL UpdateBoundingBoxPrepare()
{
if (!PixelEngine::bbox_active)
return;
// set our buffer as videodata buffer, so we will get a copy of the vertex positions
// this is a big hack, but so we can use the same converting function then without bbox
s_bbox_pCurBufferPointer_orig = VertexManager::s_pCurBufferPointer;
VertexManager::s_pCurBufferPointer = (u8*)s_bbox_vertex_buffer;
}
inline bool UpdateBoundingBoxVars()
{
switch (s_bbox_primitive)
{
// Quads: fill 0,1,2 (check),1 (check, clear, repeat)
case 0:
++s_bbox_loadedPoints;
if (s_bbox_loadedPoints == 3)
{
s_bbox_currPoint = 1;
return true;
}
if (s_bbox_loadedPoints == 4)
{
s_bbox_loadedPoints = 0;
s_bbox_currPoint = 0;
return true;
}
++s_bbox_currPoint;
return false;
// Triangles: 0,1,2 (check, clear, repeat)
case 2:
++s_bbox_loadedPoints;
if (s_bbox_loadedPoints == 3)
{
s_bbox_loadedPoints = 0;
s_bbox_currPoint = 0;
return true;
}
++s_bbox_currPoint;
return false;
// Triangle strip: 0, 1, 2 (check), 0 (check), 1, (check), 2 (check, repeat checking 0, 1, 2)
case 3:
if (++s_bbox_currPoint == 3)
s_bbox_currPoint = 0;
if (s_bbox_loadedPoints == 2)
return true;
++s_bbox_loadedPoints;
return false;
// Triangle fan: 0,1,2 (check), 1 (check), 2 (check, repeat checking 1,2)
case 4:
s_bbox_currPoint ^= s_bbox_currPoint ? 3 : 1;
if (s_bbox_loadedPoints == 2)
return true;
++s_bbox_loadedPoints;
return false;
// Lines: 0,1 (check, clear, repeat)
case 5:
++s_bbox_loadedPoints;
if (s_bbox_loadedPoints == 2)
{
s_bbox_loadedPoints = 0;
s_bbox_currPoint = 0;
return true;
}
++s_bbox_currPoint;
return false;
// Line strip: 0,1 (check), 0 (check), 1 (check, repeat checking 0,1)
case 6:
s_bbox_currPoint ^= 1;
if (s_bbox_loadedPoints == 1)
return true;
++s_bbox_loadedPoints;
return false;
// Points: 0 (check, clear, repeat)
case 7:
return true;
// This should not happen!
default:
return false;
}
}
void LOADERDECL UpdateBoundingBox()
{
if (!PixelEngine::bbox_active)
return;
// Reset videodata pointer
VertexManager::s_pCurBufferPointer = s_bbox_pCurBufferPointer_orig;
// Copy vertex pointers
memcpy(VertexManager::s_pCurBufferPointer, s_bbox_vertex_buffer, 12);
VertexManager::s_pCurBufferPointer += 12;
// We must transform the just loaded point by the current world and projection matrix - in software
float transformed[3];
float screenPoint[3];
// We need to get the raw projection values for the bounding box calculation
// to work properly. That means, no projection hacks!
const float * const orig_point = s_bbox_vertex_buffer;
const float * const world_matrix = (float*)xfmem + s_curposmtx * 4;
const float * const proj_matrix = xfregs.projection.rawProjection;
// Transform by world matrix
// Only calculate what we need, discard the rest
transformed[0] = orig_point[0] * world_matrix[0] + orig_point[1] * world_matrix[1] + orig_point[2] * world_matrix[2] + world_matrix[3];
transformed[1] = orig_point[0] * world_matrix[4] + orig_point[1] * world_matrix[5] + orig_point[2] * world_matrix[6] + world_matrix[7];
// Transform by projection matrix
switch (xfregs.projection.type)
{
// Perspective projection, we must divide by w
case GX_PERSPECTIVE:
transformed[2] = orig_point[0] * world_matrix[8] + orig_point[1] * world_matrix[9] + orig_point[2] * world_matrix[10] + world_matrix[11];
screenPoint[0] = (transformed[0] * proj_matrix[0] + transformed[2] * proj_matrix[1]) / (-transformed[2]);
screenPoint[1] = (transformed[1] * proj_matrix[2] + transformed[2] * proj_matrix[3]) / (-transformed[2]);
screenPoint[2] = ((transformed[2] * proj_matrix[4] + proj_matrix[5]) * (1.0f - (float) 1e-7)) / (-transformed[2]);
break;
// Orthographic projection
case GX_ORTHOGRAPHIC:
screenPoint[0] = transformed[0] * proj_matrix[0] + proj_matrix[1];
screenPoint[1] = transformed[1] * proj_matrix[2] + proj_matrix[3];
// We don't really have to care about z here
screenPoint[2] = -0.2f;
break;
default:
ERROR_LOG(VIDEO, "Unknown projection type: %d", xfregs.projection.type);
screenPoint[0] = screenPoint[1] = screenPoint[2] = 1;
}
// Convert to screen space and add the point to the list - round like the real hardware
s_bbox_points[s_bbox_currPoint].x = (((s32) (0.5f + (16.0f * (screenPoint[0] * xfregs.viewport.wd + (xfregs.viewport.xOrig - 342.0f))))) + 3) >> 4;
s_bbox_points[s_bbox_currPoint].y = (((s32) (0.5f + (16.0f * (screenPoint[1] * xfregs.viewport.ht + (xfregs.viewport.yOrig - 342.0f))))) + 3) >> 4;
s_bbox_points[s_bbox_currPoint].z = screenPoint[2];
// Update point list for primitive
bool check_bbox = UpdateBoundingBoxVars();
// If we do not have enough points to check the bounding box yet, we are done for now
if (!check_bbox)
return;
// How many points does our primitive have?
const u8 numPoints = s_bbox_primitivePoints[s_bbox_primitive];
// If the primitive is a point, update the bounding box now
if (numPoints == 1)
{
Point & p = s_bbox_points[0];
// Point is out of bounds
if (p.x < 0 || p.x > 607 || p.y < 0 || p.y > 479 || p.z >= 0.0f)
return;
// Point is in bounds. Update bounding box if necessary and return
PixelEngine::bbox[0] = (p.x < PixelEngine::bbox[0]) ? p.x : PixelEngine::bbox[0];
PixelEngine::bbox[1] = (p.x > PixelEngine::bbox[1]) ? p.x : PixelEngine::bbox[1];
PixelEngine::bbox[2] = (p.y < PixelEngine::bbox[2]) ? p.y : PixelEngine::bbox[2];
PixelEngine::bbox[3] = (p.y > PixelEngine::bbox[3]) ? p.y : PixelEngine::bbox[3];
return;
}
// Now comes the fun part. We must clip the triangles/lines to the viewport - also in software
Point & p0 = s_bbox_points[0], &p1 = s_bbox_points[1], &p2 = s_bbox_points[2];
// Check for z-clip. This crude method is required for Mickey's Magical Mirror, at least
if ((p0.z > 0.0f) || (p1.z > 0.0f) || ((numPoints == 3) && (p2.z > 0.0f)))
return;
// Check points for bounds
u8 b0 = ((p0.x > 0) ? 1 : 0) | (((p0.y > 0) ? 1 : 0) << 1) | (((p0.x > 607) ? 1 : 0) << 2) | (((p0.y > 479) ? 1 : 0) << 3);
u8 b1 = ((p1.x > 0) ? 1 : 0) | (((p1.y > 0) ? 1 : 0) << 1) | (((p1.x > 607) ? 1 : 0) << 2) | (((p1.y > 479) ? 1 : 0) << 3);
// Let's be practical... If we only have a line, setting b2 to 3 saves an "if"-clause later on
u8 b2 = 3;
// Otherwise if we have a triangle, we need to check the third point
if (numPoints == 3)
b2 = ((p2.x > 0) ? 1 : 0) | (((p2.y > 0) ? 1 : 0) << 1) | (((p2.x > 607) ? 1 : 0) << 2) | (((p2.y > 479) ? 1 : 0) << 3);
// These are the internal bbox vars
s32 left = 608, right = -1, top = 480, bottom = -1;
// If the polygon is inside viewport, let's update the bounding box and be done with it
if ((b0 == 3) && (b0 == b1) && (b0 == b2))
{
// Line
if (numPoints == 2)
{
left = (p0.x < p1.x) ? p0.x : p1.x;
top = (p0.y < p1.y) ? p0.y : p1.y;
right = (p0.x > p1.x) ? p0.x : p1.x;
bottom = (p0.y > p1.y) ? p0.y : p1.y;
}
// Triangle
else
{
left = (p0.x < p1.x) ? (p0.x < p2.x) ? p0.x : p2.x : (p1.x < p2.x) ? p1.x : p2.x;
top = (p0.y < p1.y) ? (p0.y < p2.y) ? p0.y : p2.y : (p1.y < p2.y) ? p1.y : p2.y;
right = (p0.x > p1.x) ? (p0.x > p2.x) ? p0.x : p2.x : (p1.x > p2.x) ? p1.x : p2.x;
bottom = (p0.y > p1.y) ? (p0.y > p2.y) ? p0.y : p2.y : (p1.y > p2.y) ? p1.y : p2.y;
}
// Update bounding box
PixelEngine::bbox[0] = (left < PixelEngine::bbox[0]) ? left : PixelEngine::bbox[0];
PixelEngine::bbox[1] = (right > PixelEngine::bbox[1]) ? right : PixelEngine::bbox[1];
PixelEngine::bbox[2] = (top < PixelEngine::bbox[2]) ? top : PixelEngine::bbox[2];
PixelEngine::bbox[3] = (bottom > PixelEngine::bbox[3]) ? bottom : PixelEngine::bbox[3];
return;
}
// If it is not inside, then either it is completely outside, or it needs clipping.
// Check the primitive's lines
u8 i0 = b0 ^ b1;
u8 i1 = (numPoints == 3) ? (b1 ^ b2) : i0;
u8 i2 = (numPoints == 3) ? (b0 ^ b2) : i0;
// Primitive out of bounds - return
if (!(i0 | i1 | i2))
return;
// First point inside viewport - update internal bbox
if (b0 == 3)
{
left = p0.x;
top = p0.y;
right = p0.x;
bottom = p0.y;
}
// Second point inside
if (b1 == 3)
{
left = (p1.x < left) ? p1.x : left;
top = (p1.y < top) ? p1.y : top;
right = (p1.x > right) ? p1.x : right;
bottom = (p1.y > bottom) ? p1.y : bottom;
}
// Third point inside
if ((b2 == 3) && (numPoints == 3))
{
left = (p2.x < left) ? p2.x : left;
top = (p2.y < top) ? p2.y : top;
right = (p2.x > right) ? p2.x : right;
bottom = (p2.y > bottom) ? p2.y : bottom;
}
// Triangle equation vars
float m, c;
// Some definitions to help with rounding later on
const float highNum = 89374289734.0f;
const float roundUp = 0.001f;
// Intersection result
s32 s;
// First line intersects
if (i0)
{
m = (p1.x - p0.x) ? ((p1.y - p0.y) / (p1.x - p0.x)) : highNum;
c = p0.y - (m * p0.x);
if (i0 & 1) { s = (s32)(c + roundUp); if (s >= 0 && s <= 479) left = 0; top = (s < top) ? s : top; bottom = (s > bottom) ? s : bottom; }
if (i0 & 2) { s = (s32)((-c / m) + roundUp); if (s >= 0 && s <= 607) top = 0; left = (s < left) ? s : left; right = (s > right) ? s : right; }
if (i0 & 4) { s = (s32)((m * 607) + c + roundUp); if (s >= 0 && s <= 479) right = 607; top = (s < top) ? s : top; bottom = (s > bottom) ? s : bottom; }
if (i0 & 8) { s = (s32)(((479 - c) / m) + roundUp); if (s >= 0 && s <= 607) bottom = 479; left = (s < left) ? s : left; right = (s > right) ? s : right; }
}
// Only check other lines if we are dealing with a triangle
if (numPoints == 3)
{
// Second line intersects
if (i1)
{
m = (p2.x - p1.x) ? ((p2.y - p1.y) / (p2.x - p1.x)) : highNum;
c = p1.y - (m * p1.x);
if (i1 & 1) { s = (s32)(c + roundUp); if (s >= 0 && s <= 479) left = 0; top = (s < top) ? s : top; bottom = (s > bottom) ? s : bottom; }
if (i1 & 2) { s = (s32)((-c / m) + roundUp); if (s >= 0 && s <= 607) top = 0; left = (s < left) ? s : left; right = (s > right) ? s : right; }
if (i1 & 4) { s = (s32)((m * 607) + c + roundUp); if (s >= 0 && s <= 479) right = 607; top = (s < top) ? s : top; bottom = (s > bottom) ? s : bottom; }
if (i1 & 8) { s = (s32)(((479 - c) / m) + roundUp); if (s >= 0 && s <= 607) bottom = 479; left = (s < left) ? s : left; right = (s > right) ? s : right; }
}
// Third line intersects
if (i2)
{
m = (p2.x - p0.x) ? ((p2.y - p0.y) / (p2.x - p0.x)) : highNum;
c = p0.y - (m * p0.x);
if (i2 & 1) { s = (s32)(c + roundUp); if (s >= 0 && s <= 479) left = 0; top = (s < top) ? s : top; bottom = (s > bottom) ? s : bottom; }
if (i2 & 2) { s = (s32)((-c / m) + roundUp); if (s >= 0 && s <= 607) top = 0; left = (s < left) ? s : left; right = (s > right) ? s : right; }
if (i2 & 4) { s = (s32)((m * 607) + c + roundUp); if (s >= 0 && s <= 479) right = 607; top = (s < top) ? s : top; bottom = (s > bottom) ? s : bottom; }
if (i2 & 8) { s = (s32)(((479 - c) / m) + roundUp); if (s >= 0 && s <= 607) bottom = 479; left = (s < left) ? s : left; right = (s > right) ? s : right; }
}
}
// Wrong bounding box values, discard this polygon (it is outside)
if (left > 607 || top > 479 || right < 0 || bottom < 0)
return;
// Trim bounding box to viewport
left = (left < 0) ? 0 : left;
top = (top < 0) ? 0 : top;
right = (right > 607) ? 607 : right;
bottom = (bottom > 479) ? 479 : bottom;
// Update bounding box
PixelEngine::bbox[0] = (left < PixelEngine::bbox[0]) ? left : PixelEngine::bbox[0];
PixelEngine::bbox[1] = (right > PixelEngine::bbox[1]) ? right : PixelEngine::bbox[1];
PixelEngine::bbox[2] = (top < PixelEngine::bbox[2]) ? top : PixelEngine::bbox[2];
PixelEngine::bbox[3] = (bottom > PixelEngine::bbox[3]) ? bottom : PixelEngine::bbox[3];
}
void LOADERDECL TexMtx_ReadDirect_UByte()
{
s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
void LOADERDECL TexMtx_Write_Float()
{
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}
void LOADERDECL TexMtx_Write_Float2()
{
DataWrite(0.f);
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}
void LOADERDECL TexMtx_Write_Float4()
{
DataWrite(0.f);
DataWrite(0.f);
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
// Just to fill out with 0.
DataWrite(0.f);
}
VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr)
{
m_compiledCode = nullptr;
m_numLoadedVertices = 0;
m_VertexSize = 0;
m_NativeFmt = nullptr;
loop_counter = 0;
VertexLoader_Normal::Init();
VertexLoader_Position::Init();
VertexLoader_TextCoord::Init();
m_VtxDesc = vtx_desc;
SetVAT(vtx_attr.g0.Hex, vtx_attr.g1.Hex, vtx_attr.g2.Hex);
#ifdef USE_VERTEX_LOADER_JIT
AllocCodeSpace(COMPILED_CODE_SIZE);
CompileVertexTranslator();
WriteProtect();
#else
m_numPipelineStages = 0;
CompileVertexTranslator();
#endif
}
VertexLoader::~VertexLoader()
{
#ifdef USE_VERTEX_LOADER_JIT
FreeCodeSpace();
#endif
delete m_NativeFmt;
}
void VertexLoader::CompileVertexTranslator()
{
m_VertexSize = 0;
const TVtxAttr &vtx_attr = m_VtxAttr;
#ifdef USE_VERTEX_LOADER_JIT
if (m_compiledCode)
PanicAlert("Trying to recompile a vertex translator");
m_compiledCode = GetCodePtr();
ABI_PushAllCalleeSavedRegsAndAdjustStack();
// Start loop here
const u8 *loop_start = GetCodePtr();
// Reset component counters if present in vertex format only.
if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord ||
m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord)
{
WriteSetVariable(32, &tcIndex, Imm32(0));
}
if (m_VtxDesc.Color0 || m_VtxDesc.Color1)
{
WriteSetVariable(32, &colIndex, Imm32(0));
}
if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx ||
m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx)
{
WriteSetVariable(32, &s_texmtxwrite, Imm32(0));
WriteSetVariable(32, &s_texmtxread, Imm32(0));
}
#else
// Reset pipeline
m_numPipelineStages = 0;
#endif
// Colors
const u32 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
// TextureCoord
// Since m_VtxDesc.Text7Coord is broken across a 32 bit word boundary, retrieve its value manually.
// If we didn't do this, the vertex format would be read as one bit offset from where it should be, making
// 01 become 00, and 10/11 become 01
const u32 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, (const u32)((m_VtxDesc.Hex >> 31) & 3)
};
u32 components = 0;
// Position in pc vertex format.
int nat_offset = 0;
PortableVertexDeclaration vtx_decl;
memset(&vtx_decl, 0, sizeof(vtx_decl));
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_ReadDirect_UByte);
components |= VB_HAS_POSMTXIDX;
m_VertexSize += 1;
}
if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Write vertex position loader
if(g_ActiveConfig.bUseBBox)
{
WriteCall(UpdateBoundingBoxPrepare);
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
WriteCall(UpdateBoundingBox);
}
else
{
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
}
m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements);
nat_offset += 12;
vtx_decl.position.components = 3;
vtx_decl.position.enable = true;
vtx_decl.position.offset = 0;
vtx_decl.position.type = VAR_FLOAT;
vtx_decl.position.integer = false;
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT)
{
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal,
m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal,
m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
if (pFunc == nullptr)
{
Host_SysMessage(
StringFromFormat("VertexLoader_Normal::GetFunction(%i %i %i %i) returned zero!",
m_VtxDesc.Normal, m_VtxAttr.NormalFormat,
m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3).c_str());
}
WriteCall(pFunc);
for (int i = 0; i < (vtx_attr.NormalElements ? 3 : 1); i++)
{
vtx_decl.normals[i].components = 3;
vtx_decl.normals[i].enable = true;
vtx_decl.normals[i].offset = nat_offset;
vtx_decl.normals[i].type = VAR_FLOAT;
vtx_decl.normals[i].integer = false;
nat_offset += 12;
}
int numNormals = (m_VtxAttr.NormalElements == 1) ? NRM_THREE : NRM_ONE;
components |= VB_HAS_NRM0;
if (numNormals == NRM_THREE)
components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
for (int i = 0; i < 2; i++)
{
vtx_decl.colors[i].components = 4;
vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
vtx_decl.colors[i].integer = false;
switch (col[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break;
case FORMAT_24B_888: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break;
case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break;
case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break;
case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break;
case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX8:
m_VertexSize += 1;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX16:
m_VertexSize += 2;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
default: _assert_(0); break;
}
break;
}
// Common for the three bottom cases
if (col[i] != NOT_PRESENT)
{
components |= VB_HAS_COL0 << i;
vtx_decl.colors[i].offset = nat_offset;
vtx_decl.colors[i].enable = true;
nat_offset += 4;
}
}
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++)
{
vtx_decl.texcoords[i].offset = nat_offset;
vtx_decl.texcoords[i].type = VAR_FLOAT;
vtx_decl.texcoords[i].integer = false;
const int format = m_VtxAttr.texCoord[i].Format;
const int elements = m_VtxAttr.texCoord[i].Elements;
if (tc[i] == NOT_PRESENT)
{
components &= ~(VB_HAS_UV0 << i);
}
else
{
_assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", tc[i]);
_assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format);
_assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elements!\n(elements = %d)", elements);
components |= VB_HAS_UV0 << i;
WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements));
m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements);
}
if (components & (VB_HAS_TEXMTXIDX0 << i))
{
vtx_decl.texcoords[i].enable = true;
if (tc[i] != NOT_PRESENT)
{
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
vtx_decl.texcoords[i].components = 3;
nat_offset += 12;
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
}
else
{
components |= VB_HAS_UV0 << i; // have to include since using now
vtx_decl.texcoords[i].components = 4;
nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes
WriteCall(TexMtx_Write_Float4);
}
}
else
{
if (tc[i] != NOT_PRESENT)
{
vtx_decl.texcoords[i].enable = true;
vtx_decl.texcoords[i].components = vtx_attr.texCoord[i].Elements ? 2 : 1;
nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1);
}
}
if (tc[i] == NOT_PRESENT)
{
// if there's more tex coords later, have to write a dummy call
int j = i + 1;
for (; j < 8; ++j)
{
if (tc[j] != NOT_PRESENT)
{
WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right!
break;
}
}
// tricky!
if (j == 8 && !((components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1))))
{
// no more tex coords and tex matrices, so exit loop
break;
}
}
}
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_Write);
vtx_decl.posmtx.components = 4;
vtx_decl.posmtx.enable = true;
vtx_decl.posmtx.offset = nat_offset;
vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
vtx_decl.posmtx.integer = false;
nat_offset += 4;
}
native_stride = nat_offset;
vtx_decl.stride = native_stride;
#ifdef USE_VERTEX_LOADER_JIT
// End loop here
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)&loop_counter));
SUB(32, MatR(RAX), Imm8(1));
#else
SUB(32, M(&loop_counter), Imm8(1));
#endif
J_CC(CC_NZ, loop_start, true);
ABI_PopAllCalleeSavedRegsAndAdjustStack();
RET();
#endif
m_NativeFmt = g_vertex_manager->CreateNativeVertexFormat();
m_NativeFmt->m_components = components;
m_NativeFmt->Initialize(vtx_decl);
}
void VertexLoader::WriteCall(TPipelineFunction func)
{
#ifdef USE_VERTEX_LOADER_JIT
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)func));
CALLptr(R(RAX));
#else
CALL((void*)func);
#endif
#else
m_PipelineStages[m_numPipelineStages++] = func;
#endif
}
// ARMTODO: This should be done in a better way
#ifndef _M_GENERIC
void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address)
{
#ifdef USE_VERTEX_LOADER_JIT
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, dest, MatR(RAX));
#else
MOV(bits, dest, M(address));
#endif
#endif
}
void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value)
{
#ifdef USE_VERTEX_LOADER_JIT
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, MatR(RAX), value);
#else
MOV(bits, M(address), value);
#endif
#endif
}
#endif
void VertexLoader::SetupRunVertices(int vtx_attr_group, int primitive, int const count)
{
m_numLoadedVertices += count;
// Flush if our vertex format is different from the currently set.
if (g_nativeVertexFmt != nullptr && g_nativeVertexFmt != m_NativeFmt)
{
// We really must flush here. It's possible that the native representations
// of the two vtx formats are the same, but we have no way to easily check that
// now.
VertexManager::Flush();
// Also move the Set() here?
}
g_nativeVertexFmt = m_NativeFmt;
// Load position and texcoord scale factors.
m_VtxAttr.PosFrac = g_VtxAttr[vtx_attr_group].g0.PosFrac;
m_VtxAttr.texCoord[0].Frac = g_VtxAttr[vtx_attr_group].g0.Tex0Frac;
m_VtxAttr.texCoord[1].Frac = g_VtxAttr[vtx_attr_group].g1.Tex1Frac;
m_VtxAttr.texCoord[2].Frac = g_VtxAttr[vtx_attr_group].g1.Tex2Frac;
m_VtxAttr.texCoord[3].Frac = g_VtxAttr[vtx_attr_group].g1.Tex3Frac;
m_VtxAttr.texCoord[4].Frac = g_VtxAttr[vtx_attr_group].g2.Tex4Frac;
m_VtxAttr.texCoord[5].Frac = g_VtxAttr[vtx_attr_group].g2.Tex5Frac;
m_VtxAttr.texCoord[6].Frac = g_VtxAttr[vtx_attr_group].g2.Tex6Frac;
m_VtxAttr.texCoord[7].Frac = g_VtxAttr[vtx_attr_group].g2.Tex7Frac;
pVtxAttr = &m_VtxAttr;
posScale = fractionTable[m_VtxAttr.PosFrac];
if (m_NativeFmt->m_components & VB_HAS_UVALL)
for (int i = 0; i < 8; i++)
tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac];
for (int i = 0; i < 2; i++)
colElements[i] = m_VtxAttr.color[i].Elements;
// Prepare bounding box
s_bbox_primitive = primitive;
s_bbox_currPoint = 0;
s_bbox_loadedPoints = 0;
}
void VertexLoader::ConvertVertices ( int count )
{
#ifdef USE_VERTEX_LOADER_JIT
if (count > 0)
{
loop_counter = count;
((void (*)())(void*)m_compiledCode)();
}
#else
for (int s = 0; s < count; s++)
{
tcIndex = 0;
colIndex = 0;
s_texmtxwrite = s_texmtxread = 0;
for (int i = 0; i < m_numPipelineStages; i++)
m_PipelineStages[i]();
PRIM_LOG("\n");
}
#endif
}
void VertexLoader::RunVertices(int vtx_attr_group, int primitive, int const count)
{
if (bpmem.genMode.cullmode == 3 && primitive < 5)
{
// if cull mode is none, ignore triangles and quads
DataSkip(count * m_VertexSize);
return;
}
SetupRunVertices(vtx_attr_group, primitive, count);
VertexManager::PrepareForAdditionalData(primitive, count, native_stride);
ConvertVertices(count);
IndexGenerator::AddIndices(primitive, count);
ADDSTAT(stats.thisFrame.numPrims, count);
INCSTAT(stats.thisFrame.numPrimitiveJoins);
}
void VertexLoader::SetVAT(u32 _group0, u32 _group1, u32 _group2)
{
VAT vat;
vat.g0.Hex = _group0;
vat.g1.Hex = _group1;
vat.g2.Hex = _group2;
m_VtxAttr.PosElements = vat.g0.PosElements;
m_VtxAttr.PosFormat = vat.g0.PosFormat;
m_VtxAttr.PosFrac = vat.g0.PosFrac;
m_VtxAttr.NormalElements = vat.g0.NormalElements;
m_VtxAttr.NormalFormat = vat.g0.NormalFormat;
m_VtxAttr.color[0].Elements = vat.g0.Color0Elements;
m_VtxAttr.color[0].Comp = vat.g0.Color0Comp;
m_VtxAttr.color[1].Elements = vat.g0.Color1Elements;
m_VtxAttr.color[1].Comp = vat.g0.Color1Comp;
m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements;
m_VtxAttr.texCoord[0].Format = vat.g0.Tex0CoordFormat;
m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac;
m_VtxAttr.ByteDequant = vat.g0.ByteDequant;
m_VtxAttr.NormalIndex3 = vat.g0.NormalIndex3;
m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements;
m_VtxAttr.texCoord[1].Format = vat.g1.Tex1CoordFormat;
m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac;
m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements;
m_VtxAttr.texCoord[2].Format = vat.g1.Tex2CoordFormat;
m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac;
m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements;
m_VtxAttr.texCoord[3].Format = vat.g1.Tex3CoordFormat;
m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac;
m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements;
m_VtxAttr.texCoord[4].Format = vat.g1.Tex4CoordFormat;
m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac;
m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements;
m_VtxAttr.texCoord[5].Format = vat.g2.Tex5CoordFormat;
m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac;
m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements;
m_VtxAttr.texCoord[6].Format = vat.g2.Tex6CoordFormat;
m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac;
m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements;
m_VtxAttr.texCoord[7].Format = vat.g2.Tex7CoordFormat;
m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac;
if(!m_VtxAttr.ByteDequant) {
ERROR_LOG(VIDEO, "ByteDequant is set to zero");
}
};
void VertexLoader::AppendToString(std::string *dest) const
{
dest->reserve(250);
static const char *posMode[4] = {
"Inv",
"Dir",
"I8",
"I16",
};
static const char *posFormats[5] = {
"u8", "s8", "u16", "s16", "flt",
};
static const char *colorFormat[8] = {
"565",
"888",
"888x",
"4444",
"6666",
"8888",
"Inv",
"Inv",
};
dest->append(StringFromFormat("%ib skin: %i P: %i %s-%s ",
m_VertexSize, m_VtxDesc.PosMatIdx,
m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat]));
if (m_VtxDesc.Normal)
{
dest->append(StringFromFormat("Nrm: %i %s-%s ",
m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat]));
}
u32 color_mode[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++)
{
if (color_mode[i])
{
dest->append(StringFromFormat("C%i: %i %s-%s ", i, m_VtxAttr.color[i].Elements, posMode[color_mode[i]], colorFormat[m_VtxAttr.color[i].Comp]));
}
}
u32 tex_mode[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord
};
for (int i = 0; i < 8; i++)
{
if (tex_mode[i])
{
dest->append(StringFromFormat("T%i: %i %s-%s ",
i, m_VtxAttr.texCoord[i].Elements, posMode[tex_mode[i]], posFormats[m_VtxAttr.texCoord[i].Format]));
}
}
dest->append(StringFromFormat(" - %i v\n", m_numLoadedVertices));
}