dolphin/Source/UnitTests/Core/DSP/HermesText.cpp
Pokechu22 3cb0976367 UnitTests: Use hermes.s as part of an actual test
Before, the file just existed as the source code for HermesBinary.cpp, but we can test that things assemble correctly too (compare DSPTestBinary.cpp and DSPTestText.cpp).

A bit of jank is needed due to MSVC limitations (see https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2026?view=msvc-170).
2022-06-14 12:22:05 -07:00

1087 lines
22 KiB
C++

/* DSP_MIXER -> PCM VOICE SOFTWARE PROCESSOR (8-16 Bits Mono/Stereo Voices)
// Thanks to Duddie for you hard work and documentation
Copyright (c) 2008 Hermes <www.entuwii.net>
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
*/
#include "HermesText.h"
const char s_hermes_text[21370] = R"(
/********************************/
/** REGISTER NAMES **/
/********************************/
AR0: equ 0x00 ; address registers
AR1: equ 0x01
AR2: equ 0x02
AR3: equ 0x03 // used as jump function selector
IX0: equ 0x04 // LEFT_VOLUME accel
IX1: equ 0x05 // RIGHT_VOLUME accel
IX2: equ 0x06 // ADDRH_SMP accel
IX3: equ 0x07 // ADDRL_SMP accel
R08: equ 0x08 // fixed to 48000 value
R09: equ 0x09 // problems using this
R0A: equ 0x0a // ADDREH_SMP accel
R0B: equ 0x0b // ADDREL_SMP accel
ST0: equ 0x0c
ST1: equ 0x0d
ST2: equ 0x0e
ST3: equ 0x0f
CONFIG: equ 0x12
SR: equ 0x13
PRODL: equ 0x14
PRODM: equ 0x15
PRODH: equ 0x16
PRODM2: equ 0x17
AXL0: equ 0x18
AXL1: equ 0x19
AXH0: equ 0x1A // SMP_R accel
AXH1: equ 0x1b // SMP_L accel
ACC0: equ 0x1c // accumulator (global)
ACC1: equ 0x1d
ACL0: equ 0x1c // Low accumulator
ACL1: equ 0x1d
ACM0: equ 0x1e // Mid accumulator
ACM1: equ 0x1f
ACH0: equ 0x10 // Sign extended 8 bit register 0
ACH1: equ 0x11 // Sign extended 8 bit register 1
/********************************/
/** HARDWARE REGISTER ADDRESS **/
/********************************/
DSCR: equ 0xffc9 ; DSP DMA Control Reg
DSBL: equ 0xffcb ; DSP DMA Block Length
DSPA: equ 0xffcd ; DSP DMA DMEM Address
DSMAH: equ 0xffce ; DSP DMA Mem Address H
DSMAL: equ 0xffcf ; DSP DMA Mem Address L
DIRQ: equ 0xfffb ; DSP Irq Request
DMBH: equ 0xfffc ; DSP Mailbox H
DMBL: equ 0xfffd ; DSP Mailbox L
CMBH: equ 0xfffe ; CPU Mailbox H
CMBL: equ 0xffff ; CPU Mailbox L
DMA_TO_DSP: equ 0
DMA_TO_CPU: equ 1
/**************************************************************/
/* NUM_SAMPLES SLICE */
/**************************************************************/
NUM_SAMPLES: equ 1024 ; 1024 stereo samples 16 bits
/**************************************************************/
/* SOUND CHANNEL REGS */
/**************************************************************/
MEM_REG2: equ 0x0
MEM_VECTH: equ MEM_REG2
MEM_VECTL: equ MEM_REG2+1
RETURN: equ MEM_REG2+2
/**************************************************************/
/* CHANNEL DATAS */
/**************************************************************/
MEM_REG: equ MEM_REG2+0x10
ADDRH_SND: equ MEM_REG // Output buffer
ADDRL_SND: equ MEM_REG+1
DELAYH_SND: equ MEM_REG+2 // Delay samples High word
DELAYL_SND: equ MEM_REG+3 // Delay samples Low word
CHAN_REGS: equ MEM_REG+4 // specific regs for the channel
FLAGSH_SMP: equ CHAN_REGS+0 // countain number of bytes for step (1-> Mono 8 bits, 2-> Stereo 8 bits and Mono 16 bits, 4-> Stereo 16 bits)
FLAGSL_SMP: equ CHAN_REGS+1 // 0->Mono 8 bits, 1->Stereo 8 bits, 2->Mono 16 bits 3 -> Stereo 16 bits
ADDRH_SMP: equ CHAN_REGS+2 // start address
ADDRL_SMP: equ CHAN_REGS+3
ADDREH_SMP: equ CHAN_REGS+4 // end address
ADDREL_SMP: equ CHAN_REGS+5
FREQH_SMP: equ CHAN_REGS+6 // Freq in Hz to play
FREQL_SMP: equ CHAN_REGS+7
SMP_L: equ CHAN_REGS+8 // last sample for left (used to joint various buffers)
SMP_R: equ CHAN_REGS+9 // last sample for right (used to joint various buffers)
COUNTERH_SMP: equ CHAN_REGS+10 // pitch counter
COUNTERL_SMP: equ CHAN_REGS+11
LEFT_VOLUME: equ CHAN_REGS+12 // volume (0 to 255)
RIGHT_VOLUME: equ CHAN_REGS+13
ADDR2H_SMP: equ CHAN_REGS+14 // start address of buffer two (to joint)
ADDR2L_SMP: equ CHAN_REGS+15
ADDR2EH_SMP: equ CHAN_REGS+16 // end address of buffer two (to joint)
ADDR2EL_SMP: equ CHAN_REGS+17
LEFT_VOLUME2: equ CHAN_REGS+18 // volume (0 to 255) for buffer two
RIGHT_VOLUME2: equ CHAN_REGS+19
BACKUPH_SMP: equ CHAN_REGS+20 // start address backup
BACKUPL_SMP: equ CHAN_REGS+21
/**************************************************************/
/* VOICE SAMPLE BUFFER DATAS */
/**************************************************************/
MEM_SAMP: equ CHAN_REGS+0x20
data_end: equ MEM_SAMP+0x20
/**************************************************************/
/* SND OUTPUT DATAS */
/**************************************************************/
MEM_SND: equ data_end ; it need 2048 words (4096 bytes)
/*** START CODE ***/
/**************************************************************/
/* EXCEPTION TABLE */
/**************************************************************/
jmp exception0
jmp exception1
jmp exception2
jmp exception3
jmp exception4
jmp exception5
jmp exception6
jmp exception7
lri $CONFIG, #0xff
lri $SR,#0
s40
clr15
m0
/**************************************************************/
/* main */
/**************************************************************/
main:
// send init token to CPU
si @DMBH, #0xdcd1
si @DMBL, #0x0000
si @DIRQ, #1
recv_cmd:
// check if previous mail is received from the CPU
call wait_for_dsp_mail
// wait a mail from CPU
call wait_for_cpu_mail
si @DMBH, #0xdcd1
clr $ACC0
lri $ACM0,#0xcdd1
cmp
jz sys_command
clr $ACC1
lrs $ACM1, @CMBL
cmpi $ACM1, #0x111 // fill the internal sample buffer and process the voice internally
jz input_samples
cmpi $ACM1, #0x112 // get samples from the external buffer to the internal buffer and process the voice mixing the samples internally
jz input_samples2
cmpi $ACM1, #0x123 // get the address of the voice datas buffer (CHANNEL DATAS)
jz get_data_addr
cmpi $ACM1, #0x222 // process the voice mixing the samples internally
jz input_next_samples
cmpi $ACM1, #0x666 // send the samples for the internal buffer to the external buffer
jz send_samples
cmpi $ACM1, #0x777 // special: to dump the IROM Datas (remember disable others functions from the interrupt vector to use)
jz rom_dump_word // (CMBH+0x8000) countain the address of IROM
cmpi $ACM1, #0x888 // Used for test
jz polla_loca
cmpi $ACM1, #0x999
jz task_terminate
si @DMBL, #0x0004 // return 0 as ignore command
si @DIRQ, #0x1 // set the interrupt
jmp recv_cmd
task_terminate:
si @DMBL, #0x0003
si @DIRQ, #0x1
jmp recv_cmd
sys_command:
clr $ACC1
lrs $ACM1, @CMBL
cmpi $ACM1,#0x0001
jz run_nexttask
cmpi $ACM1,#0x0002
jz 0x8000
jmp recv_cmd
run_nexttask:
s40
call wait_for_cpu_mail
lrs $29,@CMBL
call wait_for_cpu_mail
lrs $29,@CMBL
call wait_for_cpu_mail
lrs $29,@CMBL
call wait_for_cpu_mail
lr $5,@CMBL
andi $31,#0x0fff
mrr $4,$31
call wait_for_cpu_mail
lr $7,@CMBL
call wait_for_cpu_mail
lr $6,@CMBL
call wait_for_cpu_mail
lr $0,@CMBL
call wait_for_cpu_mail
lrs $24,@CMBL
andi $31,#0x0fff
mrr $26,$31
call wait_for_cpu_mail
lrs $25,@CMBL
call wait_for_cpu_mail
lrs $27,@CMBL
sbclr #0x05
sbclr #0x06
jmp 0x80b5
halt
/**************************************************************************************************************************************/
// send the samples for the internal buffer to the external buffer
send_samples:
lri $AR0, #MEM_SND
lris $AXL1, #DMA_TO_CPU;
lri $AXL0, #NUM_SAMPLES*4 ; len
lr $ACM0, @ADDRH_SND
lr $ACL0, @ADDRL_SND
call do_dma
si @DMBL, #0x0004
si @DIRQ, #0x1 // set the interrupt
jmp recv_cmd
/**************************************************************************************************************************************/
// get the address of the voice datas buffer (CHANNEL DATAS)
get_data_addr:
call wait_for_cpu_mail
lrs $ACM0, @CMBH
lr $ACL0, @CMBL
sr @MEM_VECTH, $ACM0
sr @MEM_VECTL, $ACL0
si @DIRQ, #0x0 // clear the interrupt
jmp recv_cmd
/**************************************************************************************************************************************/
// fill the internal sample buffer and process the voice internally
input_samples:
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lris $AXL0, #0x0004
sr @RETURN, $AXL0
si @DIRQ, #0x0000
// program DMA to get datas
lri $AR0, #MEM_REG
lris $AXL1, #DMA_TO_DSP
lris $AXL0, #64 ; len
call do_dma
lri $AR1, #MEM_SND
lri $ACL1, #0;
lri $AXL0, #NUM_SAMPLES
bloop $AXL0, loop_get1
srri @$AR1, $ACL1
srri @$AR1, $ACL1
loop_get1:
nop
lr $ACM0, @ADDRH_SND
lr $ACL0, @ADDRL_SND
jmp start_main
/**************************************************************************************************************************************/
// get samples from the external buffer to the internal buffer and process the voice mixing the samples internally
input_samples2:
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lris $AXL0, #0x0004
sr @RETURN, $AXL0
si @DIRQ, #0x0000
// program DMA to get datas
lri $AR0, #MEM_REG
lri $AXL1, #DMA_TO_DSP
lris $AXL0, #64 ; len
call do_dma
lr $ACM0, @ADDRH_SND
lr $ACL0, @ADDRL_SND
lri $AR0, #MEM_SND
lris $AXL1, #DMA_TO_DSP;
lri $AXL0, #NUM_SAMPLES*4; len
call do_dma
jmp start_main
/**************************************************************************************************************************************/
// process the voice mixing the samples internally
input_next_samples:
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lris $AXL0, #0x0004
sr @RETURN, $AXL0
si @DIRQ, #0x0000
// program DMA to get datas
lri $AR0, #MEM_REG
lris $AXL1, #DMA_TO_DSP
lris $AXL0, #64 ; len
call do_dma
/**************************************************************************************************************************************/
// mixing and control pitch to create 1024 Stereo Samples at 16 bits from here
start_main:
lri $R08, #48000
// load the previous samples used
lr $AXH0, @SMP_R
lr $AXH1, @SMP_L
// optimize the jump function to get MONO/STEREO 8/16 bits samples
lr $ACM1, @FLAGSL_SMP
andi $ACM1, #0x3
addi $ACM1, #sample_selector
mrr $AR3, $ACM1
ilrr $ACM1, @$AR3
mrr $AR3, $ACM1 // AR3 countain the jump loaded from sample selector
clr $ACC0
// test for channel paused
lr $ACM0, @FLAGSL_SMP
andcf $ACM0, #0x20
jlz end_main
// load the sample address
lr $ACM0, @ADDRH_SMP
lr $ACL0, @ADDRL_SMP
// test if ADDR_SMP & ADDR2H_SMP are zero
tst $ACC0
jnz do_not_change1
// set return as "change of buffer"
lris $AXL0, #0x0004
sr @RETURN, $AXL0
// change to buffer 2 if it is possible
call change_buffer
// stops if again 0 address
tst $ACC0
jz save_datas_end
do_not_change1:
// backup the external sample address
mrr $IX2, $ACM0
mrr $IX3, $ACL0
// load the counter pitch
//lr $r08, @COUNTERH_SMP
//lr $r09, @COUNTERL_SMP
// load the end address of the samples
lr $r0a, @ADDREH_SMP
lr $r0b, @ADDREL_SMP
// load AR1 with internal buffer address
lri $AR1, #MEM_SND
/////////////////////////////////////
// delay time section
/////////////////////////////////////
// load AXL0 with the samples to be processed
lri $AXL0, #NUM_SAMPLES
// test if DELAY == 0 and skip or not
clr $ACC0
clr $ACC1
lr $ACH0, @DELAYH_SND
lr $ACM0, @DELAYL_SND
tst $ACC0
jz no_delay
// samples left and right to 0
lris $AXH0, #0
lris $AXH1, #0
// load the samples to be processed in ACM1
mrr $ACM1, $AXL0
l_delay:
iar $AR1 // skip two samples
iar $AR1
decm $ACM1
jz exit_delay1 // exit1 if samples to be processed == 0
decm $ACM0
jz exit_delay2 // exit2 if delay time == 0
jmp l_delay
// store the remanent delay and ends
exit_delay1:
decm $ACM0
sr @DELAYH_SND, $ACH0
sr @DELAYL_SND, $ACM0
lris $AXL0,#0 ; exit from loop
jmp no_delay
exit_delay2:
// store delay=0 and continue
sr @DELAYH_SND, $ACH0
sr @DELAYL_SND, $ACM0
mrr $AXL0, $ACL1 // load remanent samples to be processed in AXL0
no_delay:
/////////////////////////////////////
// end of delay time section
/////////////////////////////////////
)" // Work around C2026 on MSVC, which allows at most 16380 single-byte characters in a single
// non-concatenated string literal (but you can concatenate multiple shorter string literals to
// produce a longer string just fine). (This comment is not part of the actual test program,
// and instead there is a single blank line at this location.)
R"(
/* bucle de generacion de samples */
// load the sample buffer with address aligned to 32 bytes blocks (first time)
si @DSCR, #DMA_TO_DSP // very important!: load_smp_addr_align and jump_load_smp_addr need fix this DMA Register (I gain some cycles so)
// load_smp_addr_align input: $IX2:$IX3
call load_smp_addr_align
// load the volume registers
lr $IX0, @LEFT_VOLUME
lr $IX1, @RIGHT_VOLUME
// test the freq value
clr $ACL0
lr $ACH0, @FREQH_SMP
lr $ACM0, @FREQL_SMP
clr $ACC1
;lri $ACM1,#48000
mrr $ACM1, $R08
cmp
// select the output of the routine to process stereo-mono 8/16bits samples
lri $AR0, #get_sample // fast method <=48000
// if number is greater freq>48000 fix different routine
ifg
lri $AR0, #get_sample2 // slow method >48000
// loops for samples to be processed
bloop $AXL0, loop_end
//srri @$AR1, $AXH0 // put sample R
//srri @$AR1, $AXH1 // put sample L
// Mix right sample section
lrr $ACL0, @$AR1 // load in ACL0 the right sample from the internal buffer
movax $ACC1, $AXL1 // big trick :) load the current sample <<16 and sign extended
asl $ACC0,#24 // convert sample from buffer to 24 bit number with sign extended (ACH0:ACM0)
asr $ACC0,#-8
add $ACC0,$ACC1 // current_sample+buffer sample
cmpi $ACM0,#32767 // limit to 32767
jle right_skip
lri $ACM0, #32767
jmp right_skip2
right_skip:
cmpi $ACM0,#-32768 // limit to -32768
ifle
lri $ACM0, #-32768
right_skip2:
srri @$AR1, $ACM0 // store the right sample mixed to the internal buffer and increment AR1
// Mix left sample section
lrr $ACL0, @$AR1 // load in ACL0 the left sample from the internal buffer
movax $ACC1, $AXL0 // big trick :) load the current sample <<16 and sign extended
asl $ACC0, #24 // convert sample from buffer to 24 bit number with sign extended (ACH0:ACM0)
asr $ACC0, #-8
add $ACC0, $ACC1 // current_sample+buffer sample
cmpi $ACM0,#32767 // limit to 32767
jle left_skip
lri $ACM0, #32767
jmp left_skip2
left_skip:
cmpi $ACM0,#-32768 // limit to -32768
ifle
lri $ACM0, #-32768
left_skip2:
srri @$AR1, $ACM0 // store the left sample mixed to the internal buffer and increment AR1
// adds the counter with the voice frequency and test if it >=48000 to get the next sample
clr $ACL1
lr $ACH1, @COUNTERH_SMP
lr $ACM1, @COUNTERL_SMP
clr $ACL0
lr $ACH0, @FREQH_SMP
lr $ACM0, @FREQL_SMP
add $ACC1,$ACC0
clr $ACC0
//lri $ACM0,#48000
mrr $ACM0, $R08
cmp
jrl $AR0 //get_sample or get_sample2 method
sr @COUNTERH_SMP, $ACH1
sr @COUNTERL_SMP, $ACM1
jmp loop_end
// get a new sample for freq > 48000 Hz
get_sample2: // slow method
sub $ACC1,$ACC0 // restore the counter
// restore the external sample buffer address
clr $ACC0
mrr $ACM0, $IX2 // load ADDRH_SMP
mrr $ACL0, $IX3 // load ADDRL_SMP
lr $AXL1, @FLAGSH_SMP // add the step to get the next samples
addaxl $ACC0, $AXL1
mrr $IX2, $ACM0 // store ADDRH_SMP
mrr $IX3, $ACL0 // store ADDRL_SMP
mrr $ACM0, $ACL0
andf $ACM0, #0x1f
// load_smp_addr_align input: $IX2:$IX3 call if (ACM0 & 0x1f)==0
calllz load_smp_addr_align
clr $ACC0
//lri $ACM0,#48000
mrr $ACM0, $R08
cmp
jle get_sample2
sr @COUNTERH_SMP, $ACH1
sr @COUNTERL_SMP, $ACM1
mrr $ACM0, $IX2 // load ADDRH_SMP
mrr $ACL0, $IX3 // load ADDRL_SMP
clr $ACC1
mrr $ACM1, $r0a // load ADDREH_SMP
mrr $ACL1, $r0b // load ADDREL_SMP
// compares if the current address is >= end address to change the buffer or stops
cmp
// if addr>addr end get a new buffer (if you uses double buffer)
jge get_new_buffer
// load samples from dma, return $ar2 with the addr to get the samples and return using $ar0 to the routine to process 8-16bits Mono/Stereo
jmp jump_load_smp_addr
// get a new sample for freq <= 48000 Hz
get_sample: // fast method
sub $ACC1,$ACC0 // restore the counter
sr @COUNTERH_SMP, $ACH1
sr @COUNTERL_SMP, $ACM1
// restore the external sample buffer address
clr $ACC0
mrr $ACM0, $IX2 // load ADDRH_SMP
mrr $ACL0, $IX3 // load ADDRL_SMP
lr $AXL1, @FLAGSH_SMP // add the step to get the next samples
addaxl $ACC0, $AXL1
clr $ACC1
mrr $ACM1, $r0a // load ADDREH_SMP
mrr $ACL1, $r0b // load ADDREL_SMP
// compares if the current address is >= end address to change the buffer or stops
cmp
jge get_new_buffer
// load the new sample from the buffer
mrr $IX2, $ACM0 // store ADDRH_SMP
mrr $IX3, $ACL0 // store ADDRL_SMP
// load samples from dma, return $ar2 with the addr and return using $ar0 to the routine to process 8-16bits Mono/Stereo or addr_get_sample_again
jmp jump_load_smp_addr
sample_selector:
cw mono_8bits
cw mono_16bits
cw stereo_8bits
cw stereo_16bits
get_new_buffer:
// set return as "change of buffer": it need to change the sample address
lris $AXL0, #0x0004
sr @RETURN, $AXL0
call change_buffer // load add from addr2
// addr is 0 ? go to zero_samples and exit
tst $acc0
jz zero_samples
// load_smp_addr_align input: $IX2:$IX3
call load_smp_addr_align // force the load the samples cached (address aligned)
// jump_load_smp_addr: $IX2:$IX3
// load samples from dma, return $ar2 with the addr to get the samples and return using $ar0 to the routine to process 8-16bits Mono/Stereo
jmp jump_load_smp_addr
// set to 0 the current samples
zero_samples:
lris $AXH0, #0
lris $AXH1, #0
jmp out_samp
mono_8bits:
// 8 bits mono
mrr $ACM1, $IX3
lrri $ACL0, @$AR2
andf $ACM1, #0x1
iflz // obtain sample0-sample1 from 8bits packet
asr $ACL0, #-8
asl $ACL0, #8
mrr $AXH1,$ACL0
mrr $AXH0,$ACL0
jmp out_samp
stereo_8bits:
// 8 bits stereo
lrri $ACL0, @$AR2
mrr $ACM0, $ACL0
andi $ACM0, #0xff00
mrr $AXH1, $ACM0
lsl $ACL0, #8
mrr $AXH0, $ACL0
jmp out_samp
mono_16bits:
// 16 bits mono
lrri $AXH1, @$AR2
mrr $AXH0,$AXH1
jmp out_samp
stereo_16bits:
// 16 bits stereo
lrri $AXH1, @$AR2
lrri $AXH0, @$AR2
out_samp:
// multiply sample x volume
// LEFT_VOLUME
mrr $AXL0,$IX0
mul $AXL0,$AXH0
movp $ACL0
asr $ACL0,#-8
mrr $AXH0, $ACL0
// RIGHT VOLUME
mrr $AXL1,$IX1
mul $AXL1,$AXH1
movp $ACL0
asr $ACL0,#-8
mrr $AXH1, $ACL0
loop_end:
nop
end_process:
// load the sample address
clr $ACC0
mrr $ACM0, $IX2
mrr $ACL0, $IX3
tst $ACC0
jnz save_datas_end
// set return as "change of buffer"
lris $AXL0, #0x0004
sr @RETURN, $AXL0
// change to buffer 2 if it is possible
call change_buffer
save_datas_end:
sr @ADDRH_SMP, $IX2
sr @ADDRL_SMP, $IX3
sr @SMP_R, $AXH0
sr @SMP_L, $AXH1
end_main:
// program DMA to send the CHANNEL DATAS changed
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lri $AR0, #MEM_REG
lris $AXL1, #DMA_TO_CPU
lris $AXL0, #64 ; len
call do_dma
si @DMBH, #0xdcd1
lr $ACL0, @RETURN
sr @DMBL, $ACL0
si @DIRQ, #0x1 // set the interrupt
jmp recv_cmd
change_buffer:
clr $ACC0
lr $ACM0, @LEFT_VOLUME2
lr $ACL0, @RIGHT_VOLUME2
sr @LEFT_VOLUME, $ACM0
sr @RIGHT_VOLUME, $ACL0
mrr $IX0, $ACM0
mrr $IX1, $ACL0
lr $ACM0, @ADDR2EH_SMP
lr $ACL0, @ADDR2EL_SMP
sr @ADDREH_SMP, $ACM0
sr @ADDREL_SMP, $ACL0
mrr $r0a, $ACM0
mrr $r0b, $ACL0
lr $ACM0, @ADDR2H_SMP
lr $ACL0, @ADDR2L_SMP
sr @ADDRH_SMP, $ACM0
sr @ADDRL_SMP, $ACL0
sr @BACKUPH_SMP, $ACM0
sr @BACKUPL_SMP, $ACL0
mrr $IX2, $ACM0
mrr $IX3, $ACL0
lr $ACM1, @FLAGSL_SMP
andcf $ACM1, #0x4
retlz
sr @ADDR2H_SMP, $ACH0
sr @ADDR2L_SMP, $ACH0
sr @ADDR2EH_SMP, $ACH0
sr @ADDR2EL_SMP, $ACH0
ret
/**************************************************************/
/* DMA ROUTINE */
/**************************************************************/
do_dma:
sr @DSMAH, $ACM0
sr @DSMAL, $ACL0
sr @DSPA, $AR0
sr @DSCR, $AXL1
sr @DSBL, $AXL0
wait_dma:
lrs $ACM1, @DSCR
andcf $ACM1, #0x4
jlz wait_dma
ret
wait_for_dsp_mail:
lrs $ACM1, @DMBH
andf $ACM1, #0x8000
jnz wait_for_dsp_mail
ret
wait_for_cpu_mail:
lrs $ACM1, @cmbh
andcf $ACM1, #0x8000
jlnz wait_for_cpu_mail
ret
load_smp_addr_align:
mrr $ACL0, $IX3 // load ADDRL_SMP
lsr $ACC0, #-5
lsl $ACC0, #5
sr @DSMAH, $IX2
sr @DSMAL, $ACL0
si @DSPA, #MEM_SAMP
;si @DSCR, #DMA_TO_DSP
si @DSBL, #0x20
wait_dma1:
lrs $ACM0, @DSCR
andcf $ACM0, #0x4
jlz wait_dma1
lri $AR2, #MEM_SAMP
ret
//////////////////////////////////////////
jump_load_smp_addr:
mrr $ACM0, $IX3 // load ADDRL_SMP
asr $ACC0, #-1
andi $ACM0, #0xf
jz jump_load_smp_dma
addi $ACM0, #MEM_SAMP
mrr $AR2, $ACM0
jmpr $AR3
jump_load_smp_dma:
sr @DSMAH, $IX2
sr @DSMAL, $IX3
si @DSPA, #MEM_SAMP
;si @DSCR, #DMA_TO_DSP // to gain some cycles
si @DSBL, #0x20
wait_dma2:
lrs $ACM0, @DSCR
andcf $ACM0, #0x4
jlz wait_dma2
lri $AR2, #MEM_SAMP
jmpr $AR3
// exception table
exception0: // RESET
rti
exception1: // STACK OVERFLOW
rti
exception2:
rti
exception3:
rti
exception4:
rti
exception5: // ACCELERATOR ADDRESS OVERFLOW
rti
exception6:
rti
exception7:
rti
// routine to read a word of the IROM space
rom_dump_word:
clr $ACC0
lr $ACM0, @CMBH
ori $ACM0, #0x8000
mrr $AR0, $ACM0
clr $ACC0
ilrr $ACM0, @$AR0
sr @DMBH, $ACL0
sr @DMBL, $ACM0
;si @DIRQ, #0x1 // set the interrupt
clr $ACC0
jmp recv_cmd
polla_loca:
clr $ACC0
lri $acm0, #0x0
andf $acm0,#0x1
sr @DMBH, $sr
sr @DMBL, $acm0
;si @DIRQ, #0x1 // set the interrupt
clr $ACC0
jmp recv_cmd
)";