dolphin/Source/Core/VideoCommon/PixelShaderManager.cpp
2022-12-27 20:20:27 +01:00

544 lines
16 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/PixelShaderManager.h"
#include <iterator>
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
void PixelShaderManager::Init()
{
constants = {};
// Init any intial constants which aren't zero when bpmem is zero.
m_fog_range_adjusted_changed = true;
m_viewport_changed = false;
SetIndMatrixChanged(0);
SetIndMatrixChanged(1);
SetIndMatrixChanged(2);
SetZTextureTypeChanged();
SetTexCoordChanged(0);
SetTexCoordChanged(1);
SetTexCoordChanged(2);
SetTexCoordChanged(3);
SetTexCoordChanged(4);
SetTexCoordChanged(5);
SetTexCoordChanged(6);
SetTexCoordChanged(7);
// fixed Konstants
for (int component = 0; component < 4; component++)
{
constants.konst[0][component] = 255; // 1
constants.konst[1][component] = 223; // 7/8
constants.konst[2][component] = 191; // 3/4
constants.konst[3][component] = 159; // 5/8
constants.konst[4][component] = 128; // 1/2
constants.konst[5][component] = 96; // 3/8
constants.konst[6][component] = 64; // 1/4
constants.konst[7][component] = 32; // 1/8
// Invalid Konstants (reads as zero on hardware)
constants.konst[8][component] = 0;
constants.konst[9][component] = 0;
constants.konst[10][component] = 0;
constants.konst[11][component] = 0;
// Annoyingly, alpha reads zero values for the .rgb colors (offically
// defined as invalid)
// If it wasn't for this, we could just use one of the first 3 colunms
// instead of
// wasting an entire 4th column just for alpha.
if (component == 3)
{
constants.konst[12][component] = 0;
constants.konst[13][component] = 0;
constants.konst[14][component] = 0;
constants.konst[15][component] = 0;
}
}
dirty = true;
}
void PixelShaderManager::Dirty()
{
// This function is called after a savestate is loaded.
// Any constants that can changed based on settings should be re-calculated
m_fog_range_adjusted_changed = true;
SetEfbScaleChanged(g_renderer->EFBToScaledXf(1), g_renderer->EFBToScaledYf(1));
SetFogParamChanged();
dirty = true;
}
void PixelShaderManager::SetConstants()
{
if (m_fog_range_adjusted_changed)
{
// set by two components, so keep changed flag here
// TODO: try to split both registers and move this logic to the shader
if (!g_ActiveConfig.bDisableFog && bpmem.fogRange.Base.Enabled == 1)
{
// bpmem.fogRange.Base.Center : center of the viewport in x axis. observation:
// bpmem.fogRange.Base.Center = realcenter + 342;
int center = ((u32)bpmem.fogRange.Base.Center) - 342;
// normalize center to make calculations easy
float ScreenSpaceCenter = center / (2.0f * xfmem.viewport.wd);
ScreenSpaceCenter = (ScreenSpaceCenter * 2.0f) - 1.0f;
// bpmem.fogRange.K seems to be a table of precalculated coefficients for the adjust factor
// observations: bpmem.fogRange.K[0].LO appears to be the lowest value and
// bpmem.fogRange.K[4].HI the largest
// they always seems to be larger than 256 so my theory is :
// they are the coefficients from the center to the border of the screen
// so to simplify I use the hi coefficient as K in the shader taking 256 as the scale
// TODO: Shouldn't this be EFBToScaledXf?
constants.fogf[2] = ScreenSpaceCenter;
constants.fogf[3] =
static_cast<float>(g_renderer->EFBToScaledX(static_cast<int>(2.0f * xfmem.viewport.wd)));
for (size_t i = 0, vec_index = 0; i < std::size(bpmem.fogRange.K); i++)
{
constexpr float scale = 4.0f;
constants.fogrange[vec_index / 4][vec_index % 4] = bpmem.fogRange.K[i].GetValue(0) * scale;
vec_index++;
constants.fogrange[vec_index / 4][vec_index % 4] = bpmem.fogRange.K[i].GetValue(1) * scale;
vec_index++;
}
}
else
{
constants.fogf[2] = 0;
constants.fogf[3] = 1;
}
dirty = true;
m_fog_range_adjusted_changed = false;
}
if (m_viewport_changed)
{
constants.zbias[1][0] = (s32)xfmem.viewport.farZ;
constants.zbias[1][1] = (s32)xfmem.viewport.zRange;
dirty = true;
m_viewport_changed = false;
}
if (m_indirect_dirty)
{
for (int i = 0; i < 4; i++)
constants.pack1[i][3] = 0;
for (u32 i = 0; i < (bpmem.genMode.numtevstages + 1); ++i)
{
// Note: a tevind of zero just happens to be a passthrough, so no need
// to set an extra bit. Furthermore, wrap and add to previous apply even if there is no
// indirect stage.
constants.pack1[i][2] = bpmem.tevind[i].hex;
u32 stage = bpmem.tevind[i].bt;
// We use an extra bit (1 << 16) to provide a fast way of testing if this feature is in use.
// Note also that this is indexed by indirect stage, not by TEV stage.
if (bpmem.tevind[i].IsActive() && stage < bpmem.genMode.numindstages)
constants.pack1[stage][3] =
bpmem.tevindref.getTexCoord(stage) | bpmem.tevindref.getTexMap(stage) << 8 | 1 << 16;
}
dirty = true;
m_indirect_dirty = false;
}
if (m_dest_alpha_dirty)
{
// Destination alpha is only enabled if alpha writes are enabled. Force entire uniform to zero
// when disabled.
u32 dstalpha = bpmem.blendmode.alphaupdate && bpmem.dstalpha.enable &&
bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24 ?
bpmem.dstalpha.hex :
0;
if (constants.dstalpha != dstalpha)
{
constants.dstalpha = dstalpha;
dirty = true;
}
}
}
void PixelShaderManager::SetTevColor(int index, int component, s32 value)
{
auto& c = constants.colors[index];
c[component] = value;
dirty = true;
PRIM_LOG("tev color{}: {} {} {} {}", index, c[0], c[1], c[2], c[3]);
}
void PixelShaderManager::SetTevKonstColor(int index, int component, s32 value)
{
auto& c = constants.kcolors[index];
c[component] = value;
dirty = true;
// Konst for ubershaders. We build the whole array on cpu so the gpu can do a single indirect
// access.
if (component != 3) // Alpha doesn't included in the .rgb konsts
constants.konst[index + 12][component] = value;
// .rrrr .gggg .bbbb .aaaa konsts
constants.konst[index + 16 + component * 4][0] = value;
constants.konst[index + 16 + component * 4][1] = value;
constants.konst[index + 16 + component * 4][2] = value;
constants.konst[index + 16 + component * 4][3] = value;
PRIM_LOG("tev konst color{}: {} {} {} {}", index, c[0], c[1], c[2], c[3]);
}
void PixelShaderManager::SetTevOrder(int index, u32 order)
{
if (constants.pack2[index][0] != order)
{
constants.pack2[index][0] = order;
dirty = true;
}
}
void PixelShaderManager::SetTevKSel(int index, u32 ksel)
{
if (constants.pack2[index][1] != ksel)
{
constants.pack2[index][1] = ksel;
dirty = true;
}
}
void PixelShaderManager::SetTevCombiner(int index, int alpha, u32 combiner)
{
if (constants.pack1[index][alpha] != combiner)
{
constants.pack1[index][alpha] = combiner;
dirty = true;
}
}
void PixelShaderManager::SetTevIndirectChanged()
{
m_indirect_dirty = true;
}
void PixelShaderManager::SetAlpha()
{
constants.alpha[0] = bpmem.alpha_test.ref0;
constants.alpha[1] = bpmem.alpha_test.ref1;
constants.alpha[3] = static_cast<s32>(bpmem.dstalpha.alpha);
dirty = true;
}
void PixelShaderManager::SetAlphaTestChanged()
{
// Force alphaTest Uniform to zero if it will always pass.
// (set an extra bit to distinguish from "never && never")
// TODO: we could optimize this further and check the actual constants,
// i.e. "a <= 0" and "a >= 255" will always pass.
u32 alpha_test =
bpmem.alpha_test.TestResult() != AlphaTestResult::Pass ? bpmem.alpha_test.hex | 1 << 31 : 0;
if (constants.alphaTest != alpha_test)
{
constants.alphaTest = alpha_test;
dirty = true;
}
}
void PixelShaderManager::SetDestAlphaChanged()
{
m_dest_alpha_dirty = true;
}
void PixelShaderManager::SetTexDims(int texmapid, u32 width, u32 height)
{
// TODO: move this check out to callee. There we could just call this function on texture changes
// or better, use textureSize() in glsl
if (constants.texdims[texmapid][0] != width || constants.texdims[texmapid][1] != height)
dirty = true;
constants.texdims[texmapid][0] = width;
constants.texdims[texmapid][1] = height;
}
void PixelShaderManager::SetSamplerState(int texmapid, u32 tm0, u32 tm1)
{
if (constants.pack2[texmapid][2] != tm0 || constants.pack2[texmapid][3] != tm1)
dirty = true;
constants.pack2[texmapid][2] = tm0;
constants.pack2[texmapid][3] = tm1;
}
void PixelShaderManager::SetZTextureBias()
{
constants.zbias[1][3] = bpmem.ztex1.bias;
dirty = true;
}
void PixelShaderManager::SetViewportChanged()
{
m_viewport_changed = true;
m_fog_range_adjusted_changed =
true; // TODO: Shouldn't be necessary with an accurate fog range adjust implementation
}
void PixelShaderManager::SetEfbScaleChanged(float scalex, float scaley)
{
constants.efbscale[0] = 1.0f / scalex;
constants.efbscale[1] = 1.0f / scaley;
dirty = true;
}
void PixelShaderManager::SetZSlope(float dfdx, float dfdy, float f0)
{
constants.zslope[0] = dfdx;
constants.zslope[1] = dfdy;
constants.zslope[2] = f0;
dirty = true;
}
void PixelShaderManager::SetIndTexScaleChanged(bool high)
{
constants.indtexscale[high][0] = bpmem.texscale[high].ss0;
constants.indtexscale[high][1] = bpmem.texscale[high].ts0;
constants.indtexscale[high][2] = bpmem.texscale[high].ss1;
constants.indtexscale[high][3] = bpmem.texscale[high].ts1;
dirty = true;
}
void PixelShaderManager::SetIndMatrixChanged(int matrixidx)
{
const u8 scale = bpmem.indmtx[matrixidx].GetScale();
// xyz - static matrix
// w - dynamic matrix scale / 128
constants.indtexmtx[2 * matrixidx][0] = bpmem.indmtx[matrixidx].col0.ma;
constants.indtexmtx[2 * matrixidx][1] = bpmem.indmtx[matrixidx].col1.mc;
constants.indtexmtx[2 * matrixidx][2] = bpmem.indmtx[matrixidx].col2.me;
constants.indtexmtx[2 * matrixidx][3] = 17 - scale;
constants.indtexmtx[2 * matrixidx + 1][0] = bpmem.indmtx[matrixidx].col0.mb;
constants.indtexmtx[2 * matrixidx + 1][1] = bpmem.indmtx[matrixidx].col1.md;
constants.indtexmtx[2 * matrixidx + 1][2] = bpmem.indmtx[matrixidx].col2.mf;
constants.indtexmtx[2 * matrixidx + 1][3] = 17 - scale;
dirty = true;
PRIM_LOG("indmtx{}: scale={}, mat=({} {} {}; {} {} {})", matrixidx, scale,
bpmem.indmtx[matrixidx].col0.ma, bpmem.indmtx[matrixidx].col1.mc,
bpmem.indmtx[matrixidx].col2.me, bpmem.indmtx[matrixidx].col0.mb,
bpmem.indmtx[matrixidx].col1.md, bpmem.indmtx[matrixidx].col2.mf);
}
void PixelShaderManager::SetZTextureTypeChanged()
{
switch (bpmem.ztex2.type)
{
case ZTexFormat::U8:
constants.zbias[0][0] = 0;
constants.zbias[0][1] = 0;
constants.zbias[0][2] = 0;
constants.zbias[0][3] = 1;
break;
case ZTexFormat::U16:
constants.zbias[0][0] = 1;
constants.zbias[0][1] = 0;
constants.zbias[0][2] = 0;
constants.zbias[0][3] = 256;
break;
case ZTexFormat::U24:
constants.zbias[0][0] = 65536;
constants.zbias[0][1] = 256;
constants.zbias[0][2] = 1;
constants.zbias[0][3] = 0;
break;
default:
PanicAlertFmt("Invalid ztex format {}", bpmem.ztex2.type);
break;
}
dirty = true;
}
void PixelShaderManager::SetZTextureOpChanged()
{
constants.ztex_op = bpmem.ztex2.op;
dirty = true;
}
void PixelShaderManager::SetTexCoordChanged(u8 texmapid)
{
TCoordInfo& tc = bpmem.texcoords[texmapid];
constants.texdims[texmapid][2] = tc.s.scale_minus_1 + 1;
constants.texdims[texmapid][3] = tc.t.scale_minus_1 + 1;
dirty = true;
}
void PixelShaderManager::SetFogColorChanged()
{
if (g_ActiveConfig.bDisableFog)
return;
constants.fogcolor[0] = bpmem.fog.color.r;
constants.fogcolor[1] = bpmem.fog.color.g;
constants.fogcolor[2] = bpmem.fog.color.b;
dirty = true;
}
void PixelShaderManager::SetFogParamChanged()
{
if (!g_ActiveConfig.bDisableFog)
{
constants.fogf[0] = bpmem.fog.GetA();
constants.fogf[1] = bpmem.fog.GetC();
constants.fogi[1] = bpmem.fog.b_magnitude;
constants.fogi[3] = bpmem.fog.b_shift;
constants.fogParam3 = bpmem.fog.c_proj_fsel.hex;
}
else
{
constants.fogf[0] = 0.f;
constants.fogf[1] = 0.f;
constants.fogi[1] = 1;
constants.fogi[3] = 1;
constants.fogParam3 = 0;
}
dirty = true;
}
void PixelShaderManager::SetFogRangeAdjustChanged()
{
if (g_ActiveConfig.bDisableFog)
return;
m_fog_range_adjusted_changed = true;
if (constants.fogRangeBase != bpmem.fogRange.Base.hex)
{
constants.fogRangeBase = bpmem.fogRange.Base.hex;
dirty = true;
}
}
void PixelShaderManager::SetGenModeChanged()
{
constants.genmode = bpmem.genMode.hex;
m_indirect_dirty = true;
dirty = true;
}
void PixelShaderManager::SetZModeControl()
{
u32 late_ztest = bpmem.GetEmulatedZ() == EmulatedZ::Late;
u32 rgba6_format =
(bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24 && !g_ActiveConfig.bForceTrueColor) ?
1 :
0;
u32 dither = rgba6_format && bpmem.blendmode.dither;
if (constants.late_ztest != late_ztest || constants.rgba6_format != rgba6_format ||
constants.dither != dither)
{
constants.late_ztest = late_ztest;
constants.rgba6_format = rgba6_format;
constants.dither = dither;
dirty = true;
}
m_dest_alpha_dirty = true;
}
void PixelShaderManager::SetBlendModeChanged()
{
u32 dither = constants.rgba6_format && bpmem.blendmode.dither;
if (constants.dither != dither)
{
constants.dither = dither;
dirty = true;
}
BlendingState state = {};
state.Generate(bpmem);
if (constants.blend_enable != state.blendenable)
{
constants.blend_enable = state.blendenable;
dirty = true;
}
if (constants.blend_src_factor != state.srcfactor)
{
constants.blend_src_factor = state.srcfactor;
dirty = true;
}
if (constants.blend_src_factor_alpha != state.srcfactoralpha)
{
constants.blend_src_factor_alpha = state.srcfactoralpha;
dirty = true;
}
if (constants.blend_dst_factor != state.dstfactor)
{
constants.blend_dst_factor = state.dstfactor;
dirty = true;
}
if (constants.blend_dst_factor_alpha != state.dstfactoralpha)
{
constants.blend_dst_factor_alpha = state.dstfactoralpha;
dirty = true;
}
if (constants.blend_subtract != state.subtract)
{
constants.blend_subtract = state.subtract;
dirty = true;
}
if (constants.blend_subtract_alpha != state.subtractAlpha)
{
constants.blend_subtract_alpha = state.subtractAlpha;
dirty = true;
}
if (constants.logic_op_enable != state.logicopenable)
{
constants.logic_op_enable = state.logicopenable;
dirty = true;
}
if (constants.logic_op_mode != state.logicmode)
{
constants.logic_op_mode = state.logicmode;
dirty = true;
}
m_dest_alpha_dirty = true;
}
void PixelShaderManager::SetBoundingBoxActive(bool active)
{
const bool enable = active && g_ActiveConfig.bBBoxEnable;
if (enable == (constants.bounding_box != 0))
return;
constants.bounding_box = active;
dirty = true;
}
void PixelShaderManager::DoState(PointerWrap& p)
{
p.Do(m_fog_range_adjusted_changed);
p.Do(m_viewport_changed);
p.Do(m_indirect_dirty);
p.Do(m_dest_alpha_dirty);
p.Do(constants);
if (p.IsReadMode())
{
// Fixup the current state from global GPU state
// NOTE: This requires that all GPU memory has been loaded already.
Dirty();
}
}