dolphin/Source/Core/VideoBackends/Software/TransformUnit.cpp
Pokechu22 784079853d VideoCommon: Add comment explaining why only the first normal gets normalized
Co-authored-by: Scott Mansell <phiren@gmail.com>
2022-04-22 16:54:38 -07:00

448 lines
14 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Software/TransformUnit.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstring>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Swap.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/Vec3.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/XFMemory.h"
namespace TransformUnit
{
static void MultiplyVec2Mat24(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] + mat[7];
result.z = 1.0f;
}
static void MultiplyVec2Mat34(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] + mat[7];
result.z = mat[8] * vec.x + mat[9] * vec.y + mat[10] + mat[11];
}
static void MultiplyVec3Mat33(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z;
result.y = mat[3] * vec.x + mat[4] * vec.y + mat[5] * vec.z;
result.z = mat[6] * vec.x + mat[7] * vec.y + mat[8] * vec.z;
}
static void MultiplyVec3Mat24(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] * vec.z + mat[7];
result.z = 1.0f;
}
static void MultiplyVec3Mat34(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] * vec.z + mat[7];
result.z = mat[8] * vec.x + mat[9] * vec.y + mat[10] * vec.z + mat[11];
}
static void MultipleVec3Perspective(const Vec3& vec, const Projection::Raw& proj, Vec4& result)
{
result.x = proj[0] * vec.x + proj[1] * vec.z;
result.y = proj[2] * vec.y + proj[3] * vec.z;
// result.z = (proj[4] * vec.z + proj[5]);
result.z = (proj[4] * vec.z + proj[5]) * (1.0f - (float)1e-7);
result.w = -vec.z;
}
static void MultipleVec3Ortho(const Vec3& vec, const Projection::Raw& proj, Vec4& result)
{
result.x = proj[0] * vec.x + proj[1];
result.y = proj[2] * vec.y + proj[3];
result.z = proj[4] * vec.z + proj[5];
result.w = 1;
}
void TransformPosition(const InputVertexData* src, OutputVertexData* dst)
{
const float* mat = &xfmem.posMatrices[src->posMtx * 4];
MultiplyVec3Mat34(src->position, mat, dst->mvPosition);
if (xfmem.projection.type == ProjectionType::Perspective)
{
MultipleVec3Perspective(dst->mvPosition, xfmem.projection.rawProjection,
dst->projectedPosition);
}
else
{
MultipleVec3Ortho(dst->mvPosition, xfmem.projection.rawProjection, dst->projectedPosition);
}
}
void TransformNormal(const InputVertexData* src, OutputVertexData* dst)
{
const float* mat = &xfmem.normalMatrices[(src->posMtx & 31) * 3];
MultiplyVec3Mat33(src->normal[0], mat, dst->normal[0]);
MultiplyVec3Mat33(src->normal[1], mat, dst->normal[1]);
MultiplyVec3Mat33(src->normal[2], mat, dst->normal[2]);
// The scale of the transform matrix is used to control the size of the emboss map effect, by
// changing the scale of the transformed binormals (which only get used by emboss map texgens).
// By normalising the first transformed normal (which is used by lighting calculations and needs
// to be unit length), the same transform matrix can do double duty, scaling for emboss mapping,
// and not scaling for lighting.
dst->normal[0].Normalize();
}
static void TransformTexCoordRegular(const TexMtxInfo& texinfo, int coordNum,
const InputVertexData* srcVertex, OutputVertexData* dstVertex)
{
Vec3 src;
switch (texinfo.sourcerow)
{
case SourceRow::Geom:
src = srcVertex->position;
break;
case SourceRow::Normal:
src = srcVertex->normal[0];
break;
case SourceRow::BinormalT:
src = srcVertex->normal[1];
break;
case SourceRow::BinormalB:
src = srcVertex->normal[2];
break;
default:
{
ASSERT(texinfo.sourcerow >= SourceRow::Tex0 && texinfo.sourcerow <= SourceRow::Tex7);
u32 texnum = static_cast<u32>(texinfo.sourcerow.Value()) - static_cast<u32>(SourceRow::Tex0);
src.x = srcVertex->texCoords[texnum][0];
src.y = srcVertex->texCoords[texnum][1];
src.z = 1.0f;
break;
}
}
// Convert NaNs to 1 - needed to fix eyelids in Shadow the Hedgehog during cutscenes
// See https://bugs.dolphin-emu.org/issues/11458
if (std::isnan(src.x))
src.x = 1;
if (std::isnan(src.y))
src.y = 1;
if (std::isnan(src.z))
src.z = 1;
const float* mat = &xfmem.posMatrices[srcVertex->texMtx[coordNum] * 4];
Vec3* dst = &dstVertex->texCoords[coordNum];
if (texinfo.projection == TexSize::ST)
{
if (texinfo.inputform == TexInputForm::AB11)
MultiplyVec2Mat24(src, mat, *dst);
else
MultiplyVec3Mat24(src, mat, *dst);
}
else // texinfo.projection == TexSize::STQ
{
if (texinfo.inputform == TexInputForm::AB11)
MultiplyVec2Mat34(src, mat, *dst);
else
MultiplyVec3Mat34(src, mat, *dst);
}
if (xfmem.dualTexTrans.enabled)
{
Vec3 tempCoord;
// normalize
const PostMtxInfo& postInfo = xfmem.postMtxInfo[coordNum];
const float* postMat = &xfmem.postMatrices[postInfo.index * 4];
if (postInfo.normalize)
tempCoord = dst->Normalized();
else
tempCoord = *dst;
MultiplyVec3Mat34(tempCoord, postMat, *dst);
}
// When q is 0, the GameCube appears to have a special case
// This can be seen in devkitPro's neheGX Lesson08 example for Wii
// Makes differences in Rogue Squadron 3 (Hoth sky) and The Last Story (shadow culling)
if (dst->z == 0.0f)
{
dst->x = std::clamp(dst->x / 2.0f, -1.0f, 1.0f);
dst->y = std::clamp(dst->y / 2.0f, -1.0f, 1.0f);
}
}
struct LightPointer
{
u32 reserved[3];
u8 color[4];
Vec3 cosatt;
Vec3 distatt;
Vec3 pos;
Vec3 dir;
};
static inline void AddScaledIntegerColor(const u8* src, float scale, Vec3& dst)
{
dst.x += src[1] * scale;
dst.y += src[2] * scale;
dst.z += src[3] * scale;
}
static inline float SafeDivide(float n, float d)
{
return (d == 0) ? (n > 0 ? 1 : 0) : n / d;
}
static float CalculateLightAttn(const LightPointer* light, Vec3* _ldir, const Vec3& normal,
const LitChannel& chan)
{
float attn = 1.0f;
Vec3& ldir = *_ldir;
switch (chan.attnfunc)
{
case AttenuationFunc::None:
case AttenuationFunc::Dir:
{
ldir = ldir.Normalized();
if (ldir == Vec3(0.0f, 0.0f, 0.0f))
ldir = normal;
break;
}
case AttenuationFunc::Spec:
{
ldir = ldir.Normalized();
attn = (ldir * normal) >= 0.0 ? std::max(0.0f, light->dir * normal) : 0;
Vec3 attLen = Vec3(1.0, attn, attn * attn);
Vec3 cosAttn = light->cosatt;
Vec3 distAttn = light->distatt;
if (chan.diffusefunc != DiffuseFunc::None)
distAttn = distAttn.Normalized();
attn = SafeDivide(std::max(0.0f, attLen * cosAttn), attLen * distAttn);
break;
}
case AttenuationFunc::Spot:
{
float dist2 = ldir.Length2();
float dist = sqrtf(dist2);
ldir = ldir / dist;
attn = std::max(0.0f, ldir * light->dir);
float cosAtt = light->cosatt.x + (light->cosatt.y * attn) + (light->cosatt.z * attn * attn);
float distAtt = light->distatt.x + (light->distatt.y * dist) + (light->distatt.z * dist2);
attn = SafeDivide(std::max(0.0f, cosAtt), distAtt);
break;
}
default:
PanicAlertFmt("Invalid attnfunc: {}", chan.attnfunc);
}
return attn;
}
static void LightColor(const Vec3& pos, const Vec3& normal, u8 lightNum, const LitChannel& chan,
Vec3& lightCol)
{
const LightPointer* light = (const LightPointer*)&xfmem.lights[lightNum];
Vec3 ldir = light->pos - pos;
float attn = CalculateLightAttn(light, &ldir, normal, chan);
float difAttn = ldir * normal;
switch (chan.diffusefunc)
{
case DiffuseFunc::None:
AddScaledIntegerColor(light->color, attn, lightCol);
break;
case DiffuseFunc::Sign:
AddScaledIntegerColor(light->color, attn * difAttn, lightCol);
break;
case DiffuseFunc::Clamp:
difAttn = std::max(0.0f, difAttn);
AddScaledIntegerColor(light->color, attn * difAttn, lightCol);
break;
default:
PanicAlertFmt("Invalid diffusefunc: {}", chan.attnfunc);
}
}
static void LightAlpha(const Vec3& pos, const Vec3& normal, u8 lightNum, const LitChannel& chan,
float& lightCol)
{
const LightPointer* light = (const LightPointer*)&xfmem.lights[lightNum];
Vec3 ldir = light->pos - pos;
float attn = CalculateLightAttn(light, &ldir, normal, chan);
float difAttn = ldir * normal;
switch (chan.diffusefunc)
{
case DiffuseFunc::None:
lightCol += light->color[0] * attn;
break;
case DiffuseFunc::Sign:
lightCol += light->color[0] * attn * difAttn;
break;
case DiffuseFunc::Clamp:
difAttn = std::max(0.0f, difAttn);
lightCol += light->color[0] * attn * difAttn;
break;
default:
PanicAlertFmt("Invalid diffusefunc: {}", chan.attnfunc);
}
}
void TransformColor(const InputVertexData* src, OutputVertexData* dst)
{
for (u32 chan = 0; chan < NUM_XF_COLOR_CHANNELS; chan++)
{
// abgr
std::array<u8, 4> matcolor;
std::array<u8, 4> chancolor;
// color
const LitChannel& colorchan = xfmem.color[chan];
if (colorchan.matsource == MatSource::Vertex)
matcolor = src->color[chan];
else
std::memcpy(matcolor.data(), &xfmem.matColor[chan], sizeof(u32));
if (colorchan.enablelighting)
{
Vec3 lightCol;
if (colorchan.ambsource == AmbSource::Vertex)
{
lightCol.x = src->color[chan][1];
lightCol.y = src->color[chan][2];
lightCol.z = src->color[chan][3];
}
else
{
const u8* ambColor = reinterpret_cast<u8*>(&xfmem.ambColor[chan]);
lightCol.x = ambColor[1];
lightCol.y = ambColor[2];
lightCol.z = ambColor[3];
}
u8 mask = colorchan.GetFullLightMask();
for (int i = 0; i < 8; ++i)
{
if (mask & (1 << i))
LightColor(dst->mvPosition, dst->normal[0], i, colorchan, lightCol);
}
int light_x = std::clamp(static_cast<int>(lightCol.x), 0, 255);
int light_y = std::clamp(static_cast<int>(lightCol.y), 0, 255);
int light_z = std::clamp(static_cast<int>(lightCol.z), 0, 255);
chancolor[1] = (matcolor[1] * (light_x + (light_x >> 7))) >> 8;
chancolor[2] = (matcolor[2] * (light_y + (light_y >> 7))) >> 8;
chancolor[3] = (matcolor[3] * (light_z + (light_z >> 7))) >> 8;
}
else
{
chancolor = matcolor;
}
// alpha
const LitChannel& alphachan = xfmem.alpha[chan];
if (alphachan.matsource == MatSource::Vertex)
matcolor[0] = src->color[chan][0];
else
matcolor[0] = xfmem.matColor[chan] & 0xff;
if (xfmem.alpha[chan].enablelighting)
{
float lightCol;
if (alphachan.ambsource == AmbSource::Vertex)
lightCol = src->color[chan][0];
else
lightCol = static_cast<float>(xfmem.ambColor[chan] & 0xff);
u8 mask = alphachan.GetFullLightMask();
for (int i = 0; i < 8; ++i)
{
if (mask & (1 << i))
LightAlpha(dst->mvPosition, dst->normal[0], i, alphachan, lightCol);
}
int light_a = std::clamp(static_cast<int>(lightCol), 0, 255);
chancolor[0] = (matcolor[0] * (light_a + (light_a >> 7))) >> 8;
}
else
{
chancolor[0] = matcolor[0];
}
// abgr -> rgba
const u32 rgba_color = Common::swap32(chancolor.data());
std::memcpy(dst->color[chan].data(), &rgba_color, sizeof(u32));
}
}
void TransformTexCoord(const InputVertexData* src, OutputVertexData* dst)
{
for (u32 coordNum = 0; coordNum < xfmem.numTexGen.numTexGens; coordNum++)
{
const TexMtxInfo& texinfo = xfmem.texMtxInfo[coordNum];
switch (texinfo.texgentype)
{
case TexGenType::Regular:
TransformTexCoordRegular(texinfo, coordNum, src, dst);
break;
case TexGenType::EmbossMap:
{
const LightPointer* light = (const LightPointer*)&xfmem.lights[texinfo.embosslightshift];
Vec3 ldir = (light->pos - dst->mvPosition).Normalized();
float d1 = ldir * dst->normal[1];
float d2 = ldir * dst->normal[2];
dst->texCoords[coordNum].x = dst->texCoords[texinfo.embosssourceshift].x + d1;
dst->texCoords[coordNum].y = dst->texCoords[texinfo.embosssourceshift].y + d2;
dst->texCoords[coordNum].z = dst->texCoords[texinfo.embosssourceshift].z;
}
break;
case TexGenType::Color0:
ASSERT(texinfo.inputform == TexInputForm::AB11);
dst->texCoords[coordNum].x = (float)dst->color[0][0] / 255.0f;
dst->texCoords[coordNum].y = (float)dst->color[0][1] / 255.0f;
dst->texCoords[coordNum].z = 1.0f;
break;
case TexGenType::Color1:
ASSERT(texinfo.inputform == TexInputForm::AB11);
dst->texCoords[coordNum].x = (float)dst->color[1][0] / 255.0f;
dst->texCoords[coordNum].y = (float)dst->color[1][1] / 255.0f;
dst->texCoords[coordNum].z = 1.0f;
break;
default:
ERROR_LOG_FMT(VIDEO, "Bad tex gen type {}", texinfo.texgentype);
break;
}
}
for (u32 coordNum = 0; coordNum < xfmem.numTexGen.numTexGens; coordNum++)
{
dst->texCoords[coordNum][0] *= (bpmem.texcoords[coordNum].s.scale_minus_1 + 1);
dst->texCoords[coordNum][1] *= (bpmem.texcoords[coordNum].t.scale_minus_1 + 1);
}
}
} // namespace TransformUnit